organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o379-o380

Crystal structure of 14-methyl-11-(3-methyl­phen­yl)-12-oxa-8,14-di­aza­tetra­cyclo­[8.3.3.01,10.02,7]hexa­deca-2(7),3,5-triene-9,13-dione

aDepartment of Physics, Queen Mary's College (Autonomous), Chennai 600 004, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 January 2015; accepted 23 April 2015; online 7 May 2015)

In the title compound, C21H20N2O3, the lactone ring adopts an envelope conformation with the quaternary C atom bonded to two other C atoms as the flap. The fused pyrrolidine ring adopts a twisted conformation about the Cq—N (q = quaternary) bond. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops. The dimers are linked into [110] chains by pairs of C—H⋯O inter­actions, which generate R22(14) loops.

1. Related literature

For related structures, see: Ramesh et al. (2008[Ramesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnu­swamy, M. N. (2008). Acta Cryst. E64, o1891.]); Zhao & Teng (2008[Zhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772-o1773.]); Bai et al. (2009[Bai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799.]); Du et al. (2010[Du, B.-X., Zhou, J., Li, Y.-L. & Wang, X.-S. (2010). Acta Cryst. E66, o1622.]); Wang et al. (2010[Wang, X.-S., Zhou, J., Yin, M.-Y., Yang, K. & Tu, S.-J. (2010). J. Comb. Chem. 12, 266-269.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H20N2O3

  • Mr = 348.39

  • Monoclinic, P 21 /c

  • a = 10.4772 (7) Å

  • b = 8.6834 (6) Å

  • c = 19.1123 (13) Å

  • β = 92.490 (2)°

  • V = 1737.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.974

  • 25650 measured reflections

  • 3787 independent reflections

  • 2875 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.137

  • S = 1.09

  • 3787 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.91 (2) 1.93 (2) 2.802 (2) 159.6 (19)
C5—H5⋯O2ii 0.93 2.55 3.303 (3) 138
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structures (Ramesh et al., 2008; Zhao & Teng, 2008; Bai et al., 2009; Du et al., 2010; Wang et al., 2010). The five-membered furan ring (atoms O1/C7–C10) adopts an envelope conformation, with atom C10 as the flap, with puckering parameters (Cremer & Pople, 1975), q2 = 0.4062 (2) Å and ϕ2 = 246.5 (2)° and the pyrrolidine ring (atoms N1/C9–C12) exhibits a twisted conformation as indicated by the puckering parameters q2 = 0.3981 (2) Å and ϕ2 = 22.4 (3)°. The quinoline ring system is roughly planar, with a maximum deviation of 0.315 (2) Å for atom C10 and the plane of the furan ring is oriented at dihedral angles of 72.5 (8) and 77.9 (1)° with respect to the quinoline and pyrrolidine rings, respectively.

In the crystal, hydrogen-bonded chains running along [110] are generated by connecting neighbouring molecules via C—H···O and N—H···O hydrogen bonds, forming a chain. Intermolecular C5—H5···O2 hydrohen bonding forms an R22(14) graph-set dimer (Fig. 2 and Table 1). In addition to this, another graph-set dimer of R22(8) forms in the unit cell involving N2—H2A···O3 hydrogen bonds (Fig. 2).

Related literature top

For related structures, see: Ramesh et al. (2008); Zhao & Teng (2008); Bai et al. (2009); Du et al. (2010); Wang et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of methyl 2-(hydroxy(m-tolyl)methyl)acrylate (1 mmol), isatin (1.1 mmol) and sarcosine (1.1 mmol) was placed in a round bottom flask and melted at 180°C until completion of the reaction was evidenced by TLC analysis. After completion of the reaction, the crude product was washed with 5ml of ethylacetate and hexane mixture (1:4 ratio) which successfully provided the pure product as colorless solid. The product was dissolved in ethyl acetate and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 48 hours resulting in the formation of colourless blocks.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C-H distances fixed in the range 0.93-0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing is viewed along the b axis. Dashed lines shows the intermolecular C-H···O and N-H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
14-Methyl-11-(3-methylphenyl)-12-oxa-8,14-diazatetracyclo[8.3.3.01,10.02,7]hexadeca-2(7),3,5-triene-9,13-dione top
Crystal data top
C21H20N2O3F(000) = 736
Mr = 348.39Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3787 reflections
a = 10.4772 (7) Åθ = 2.1–27.0°
b = 8.6834 (6) ŵ = 0.09 mm1
c = 19.1123 (13) ÅT = 293 K
β = 92.490 (2)°Block, colourless
V = 1737.2 (2) Å30.35 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3787 independent reflections
Radiation source: fine-focus sealed tube2875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.969, Tmax = 0.974k = 1111
25650 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.7606P]
where P = (Fo2 + 2Fc2)/3
3787 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H20N2O3V = 1737.2 (2) Å3
Mr = 348.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4772 (7) ŵ = 0.09 mm1
b = 8.6834 (6) ÅT = 293 K
c = 19.1123 (13) Å0.35 × 0.30 × 0.30 mm
β = 92.490 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3787 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2875 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.974Rint = 0.024
25650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.29 e Å3
3787 reflectionsΔρmin = 0.21 e Å3
239 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05279 (11)0.22692 (16)0.53826 (6)0.0458 (3)
O30.43975 (13)0.34579 (16)0.45820 (6)0.0505 (4)
O20.04279 (13)0.03341 (17)0.61440 (7)0.0557 (4)
N10.32532 (15)0.00285 (17)0.57673 (7)0.0427 (4)
N20.43155 (15)0.38257 (19)0.57461 (8)0.0454 (4)
C90.25355 (16)0.13927 (19)0.58542 (8)0.0342 (4)
C70.15071 (16)0.32733 (19)0.51218 (8)0.0368 (4)
H70.16490.41120.54590.044*
C100.27021 (15)0.22222 (19)0.51571 (8)0.0334 (4)
C130.29625 (17)0.2330 (2)0.64871 (8)0.0381 (4)
C190.38880 (16)0.3193 (2)0.51367 (8)0.0378 (4)
C180.38303 (17)0.3521 (2)0.64055 (9)0.0404 (4)
C110.27058 (18)0.0894 (2)0.46208 (9)0.0401 (4)
H11A0.18980.08470.43530.048*
H11B0.33890.10280.43000.048*
C140.2508 (2)0.2060 (3)0.71465 (9)0.0522 (5)
H140.19140.12800.72060.063*
C60.11100 (17)0.3972 (2)0.44276 (9)0.0400 (4)
C10.17662 (19)0.5259 (2)0.42071 (9)0.0436 (4)
H10.24270.56540.44940.052*
C80.10628 (17)0.1232 (2)0.58346 (9)0.0403 (4)
C120.2914 (2)0.0568 (2)0.50569 (10)0.0496 (5)
H12A0.21410.11840.50520.059*
H12B0.35980.11840.48760.059*
C20.1465 (2)0.5974 (2)0.35712 (9)0.0483 (5)
C170.4237 (2)0.4417 (2)0.69755 (10)0.0534 (5)
H170.48130.52170.69180.064*
C50.0112 (2)0.3400 (2)0.40112 (10)0.0530 (5)
H50.03340.25350.41500.064*
C30.0451 (2)0.5388 (3)0.31651 (10)0.0568 (5)
H30.02210.58540.27400.068*
C160.3779 (2)0.4109 (3)0.76275 (10)0.0624 (6)
H160.40510.47040.80100.075*
C200.2201 (3)0.7356 (3)0.33399 (12)0.0682 (6)
H20A0.18650.76920.28900.102*
H20B0.30850.70860.33070.102*
H20C0.21230.81710.36740.102*
C40.0220 (2)0.4130 (3)0.33825 (11)0.0627 (6)
H40.09050.37610.31050.075*
C150.2922 (2)0.2928 (3)0.77163 (10)0.0639 (6)
H150.26240.27190.81580.077*
C210.3205 (2)0.1220 (2)0.63015 (11)0.0571 (5)
H21A0.37210.20790.61710.086*
H21B0.23380.15530.63430.086*
H21C0.35240.08140.67420.086*
H2A0.488 (2)0.461 (3)0.5713 (11)0.058 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0362 (6)0.0560 (8)0.0455 (7)0.0010 (6)0.0058 (5)0.0056 (6)
O30.0578 (8)0.0531 (8)0.0422 (7)0.0136 (6)0.0208 (6)0.0003 (6)
O20.0497 (8)0.0598 (9)0.0586 (8)0.0169 (7)0.0140 (6)0.0077 (7)
N10.0495 (9)0.0392 (8)0.0393 (8)0.0024 (7)0.0011 (6)0.0039 (6)
N20.0459 (9)0.0520 (9)0.0384 (8)0.0206 (8)0.0050 (6)0.0006 (7)
C90.0368 (9)0.0367 (8)0.0294 (7)0.0049 (7)0.0052 (6)0.0018 (6)
C70.0386 (9)0.0372 (9)0.0350 (8)0.0003 (7)0.0050 (7)0.0011 (7)
C100.0368 (8)0.0365 (9)0.0273 (7)0.0028 (7)0.0051 (6)0.0004 (6)
C130.0397 (9)0.0444 (9)0.0306 (8)0.0034 (7)0.0040 (7)0.0009 (7)
C190.0403 (9)0.0380 (9)0.0356 (8)0.0039 (7)0.0085 (7)0.0025 (7)
C180.0421 (9)0.0465 (10)0.0326 (8)0.0052 (8)0.0014 (7)0.0011 (7)
C110.0482 (10)0.0398 (9)0.0325 (8)0.0019 (8)0.0048 (7)0.0033 (7)
C140.0586 (12)0.0651 (13)0.0335 (9)0.0121 (10)0.0087 (8)0.0021 (8)
C60.0464 (10)0.0385 (9)0.0349 (8)0.0074 (8)0.0008 (7)0.0044 (7)
C10.0537 (11)0.0389 (9)0.0378 (9)0.0048 (8)0.0012 (8)0.0021 (7)
C80.0418 (9)0.0436 (10)0.0360 (8)0.0073 (8)0.0067 (7)0.0022 (7)
C120.0635 (12)0.0413 (10)0.0439 (10)0.0054 (9)0.0022 (9)0.0039 (8)
C20.0645 (12)0.0422 (10)0.0385 (9)0.0111 (9)0.0053 (8)0.0008 (8)
C170.0569 (12)0.0552 (12)0.0475 (11)0.0128 (10)0.0047 (9)0.0069 (9)
C50.0566 (12)0.0515 (11)0.0500 (11)0.0028 (9)0.0066 (9)0.0009 (9)
C30.0751 (14)0.0579 (12)0.0368 (10)0.0158 (11)0.0030 (9)0.0020 (9)
C160.0726 (15)0.0767 (15)0.0374 (10)0.0030 (12)0.0059 (9)0.0158 (10)
C200.0925 (18)0.0582 (13)0.0540 (12)0.0012 (12)0.0053 (12)0.0138 (10)
C40.0667 (14)0.0691 (15)0.0507 (12)0.0009 (12)0.0169 (10)0.0063 (11)
C150.0738 (15)0.0882 (17)0.0303 (9)0.0080 (13)0.0075 (9)0.0051 (10)
C210.0636 (13)0.0513 (12)0.0559 (12)0.0000 (10)0.0032 (10)0.0159 (9)
Geometric parameters (Å, º) top
O1—C81.353 (2)C14—H140.9300
O1—C71.451 (2)C6—C51.378 (3)
O3—C191.2292 (19)C6—C11.387 (3)
O2—C81.197 (2)C1—C21.389 (2)
N1—C211.456 (2)C1—H10.9300
N1—C91.458 (2)C12—H12A0.9700
N1—C121.465 (2)C12—H12B0.9700
N2—C191.347 (2)C2—C31.385 (3)
N2—C181.404 (2)C2—C201.503 (3)
N2—H2A0.91 (2)C17—C161.381 (3)
C9—C131.510 (2)C17—H170.9300
C9—C101.531 (2)C5—C41.389 (3)
C9—C81.548 (2)C5—H50.9300
C7—C61.501 (2)C3—C41.374 (3)
C7—C101.548 (2)C3—H30.9300
C7—H70.9800C16—C151.378 (3)
C10—C191.504 (2)C16—H160.9300
C10—C111.543 (2)C20—H20A0.9600
C13—C141.386 (2)C20—H20B0.9600
C13—C181.390 (2)C20—H20C0.9600
C18—C171.390 (2)C4—H40.9300
C11—C121.529 (3)C15—H150.9300
C11—H11A0.9700C21—H21A0.9600
C11—H11B0.9700C21—H21B0.9600
C14—C151.379 (3)C21—H21C0.9600
C8—O1—C7109.89 (13)C6—C1—C2121.97 (18)
C21—N1—C9119.19 (15)C6—C1—H1119.0
C21—N1—C12114.09 (16)C2—C1—H1119.0
C9—N1—C12105.69 (13)O2—C8—O1121.69 (17)
C19—N2—C18125.42 (15)O2—C8—C9128.41 (17)
C19—N2—H2A116.1 (14)O1—C8—C9109.88 (14)
C18—N2—H2A117.9 (14)N1—C12—C11105.24 (14)
N1—C9—C13114.29 (14)N1—C12—H12A110.7
N1—C9—C10102.71 (12)C11—C12—H12A110.7
C13—C9—C10113.74 (13)N1—C12—H12B110.7
N1—C9—C8116.04 (14)C11—C12—H12B110.7
C13—C9—C8109.18 (13)H12A—C12—H12B108.8
C10—C9—C899.93 (13)C3—C2—C1117.75 (19)
O1—C7—C6111.93 (14)C3—C2—C20121.27 (18)
O1—C7—C10102.31 (13)C1—C2—C20120.97 (19)
C6—C7—C10117.98 (13)C16—C17—C18119.49 (19)
O1—C7—H7108.1C16—C17—H17120.3
C6—C7—H7108.1C18—C17—H17120.3
C10—C7—H7108.1C6—C5—C4119.4 (2)
C19—C10—C9114.33 (13)C6—C5—H5120.3
C19—C10—C11112.09 (13)C4—C5—H5120.3
C9—C10—C11103.29 (13)C4—C3—C2120.85 (19)
C19—C10—C7109.63 (14)C4—C3—H3119.6
C9—C10—C7101.11 (12)C2—C3—H3119.6
C11—C10—C7115.91 (14)C15—C16—C17120.59 (19)
C14—C13—C18118.69 (16)C15—C16—H16119.7
C14—C13—C9122.39 (16)C17—C16—H16119.7
C18—C13—C9118.92 (14)C2—C20—H20A109.5
O3—C19—N2121.95 (16)C2—C20—H20B109.5
O3—C19—C10121.17 (15)H20A—C20—H20B109.5
N2—C19—C10116.77 (14)C2—C20—H20C109.5
C13—C18—C17120.52 (16)H20A—C20—H20C109.5
C13—C18—N2120.33 (15)H20B—C20—H20C109.5
C17—C18—N2119.15 (17)C3—C4—C5120.8 (2)
C12—C11—C10105.24 (13)C3—C4—H4119.6
C12—C11—H11A110.7C5—C4—H4119.6
C10—C11—H11A110.7C16—C15—C14119.58 (19)
C12—C11—H11B110.7C16—C15—H15120.2
C10—C11—H11B110.7C14—C15—H15120.2
H11A—C11—H11B108.8N1—C21—H21A109.5
C15—C14—C13121.12 (19)N1—C21—H21B109.5
C15—C14—H14119.4H21A—C21—H21B109.5
C13—C14—H14119.4N1—C21—H21C109.5
C5—C6—C1119.21 (17)H21A—C21—H21C109.5
C5—C6—C7122.61 (17)H21B—C21—H21C109.5
C1—C6—C7118.17 (16)
C21—N1—C9—C1363.0 (2)C14—C13—C18—N2179.77 (18)
C12—N1—C9—C13167.01 (14)C9—C13—C18—N21.1 (3)
C21—N1—C9—C10173.31 (15)C19—N2—C18—C139.7 (3)
C12—N1—C9—C1043.33 (17)C19—N2—C18—C17170.84 (18)
C21—N1—C9—C865.4 (2)C19—C10—C11—C12108.42 (17)
C12—N1—C9—C864.55 (18)C9—C10—C11—C1215.13 (18)
C8—O1—C7—C6156.13 (14)C7—C10—C11—C12124.70 (16)
C8—O1—C7—C1028.85 (16)C18—C13—C14—C151.3 (3)
N1—C9—C10—C1986.79 (16)C9—C13—C14—C15179.6 (2)
C13—C9—C10—C1937.3 (2)O1—C7—C6—C516.5 (2)
C8—C9—C10—C19153.46 (14)C10—C7—C6—C5101.8 (2)
N1—C9—C10—C1135.28 (16)O1—C7—C6—C1162.34 (14)
C13—C9—C10—C11159.32 (14)C10—C7—C6—C179.3 (2)
C8—C9—C10—C1184.48 (15)C5—C6—C1—C21.3 (3)
N1—C9—C10—C7155.54 (13)C7—C6—C1—C2179.75 (16)
C13—C9—C10—C780.42 (16)C7—O1—C8—O2176.05 (16)
C8—C9—C10—C735.78 (15)C7—O1—C8—C95.39 (18)
O1—C7—C10—C19161.30 (12)N1—C9—C8—O248.4 (2)
C6—C7—C10—C1975.41 (18)C13—C9—C8—O282.4 (2)
O1—C7—C10—C940.25 (15)C10—C9—C8—O2157.98 (18)
C6—C7—C10—C9163.54 (14)N1—C9—C8—O1129.98 (15)
O1—C7—C10—C1170.59 (16)C13—C9—C8—O199.13 (16)
C6—C7—C10—C1152.7 (2)C10—C9—C8—O120.45 (17)
N1—C9—C13—C1485.5 (2)C21—N1—C12—C11166.51 (16)
C10—C9—C13—C14156.99 (17)C9—N1—C12—C1133.62 (19)
C8—C9—C13—C1446.3 (2)C10—C11—C12—N110.3 (2)
N1—C9—C13—C1895.38 (19)C6—C1—C2—C31.9 (3)
C10—C9—C13—C1822.2 (2)C6—C1—C2—C20179.25 (18)
C8—C9—C13—C18132.79 (17)C13—C18—C17—C160.4 (3)
C18—N2—C19—O3176.51 (18)N2—C18—C17—C16179.0 (2)
C18—N2—C19—C107.3 (3)C1—C6—C5—C40.4 (3)
C9—C10—C19—O3153.12 (16)C7—C6—C5—C4178.49 (19)
C11—C10—C19—O336.0 (2)C1—C2—C3—C40.9 (3)
C7—C10—C19—O394.19 (19)C20—C2—C3—C4179.7 (2)
C9—C10—C19—N230.6 (2)C18—C17—C16—C150.2 (3)
C11—C10—C19—N2147.74 (16)C2—C3—C4—C50.8 (3)
C7—C10—C19—N282.07 (18)C6—C5—C4—C31.4 (3)
C14—C13—C18—C170.3 (3)C17—C16—C15—C140.8 (4)
C9—C13—C18—C17179.47 (17)C13—C14—C15—C161.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.91 (2)1.93 (2)2.802 (2)159.6 (19)
C5—H5···O2ii0.932.553.303 (3)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.91 (2)1.93 (2)2.802 (2)159.6 (19)
C5—H5···O2ii0.932.553.303 (3)137.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.
 

Acknowledgements

MPS and ASP thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for the data collection.

References

First citationBai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDu, B.-X., Zhou, J., Li, Y.-L. & Wang, X.-S. (2010). Acta Cryst. E66, o1622.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnu­swamy, M. N. (2008). Acta Cryst. E64, o1891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Zhou, J., Yin, M.-Y., Yang, K. & Tu, S.-J. (2010). J. Comb. Chem. 12, 266–269.  Web of Science CSD CrossRef PubMed Google Scholar
First citationZhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772–o1773.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o379-o380
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds