organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o374-o375

Crystal structure of 4-meth­­oxy­phenyl 2-oxo-2H-chromene-3-carboxyl­ate

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore, Karnataka 570 005, India, bDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and cRaman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, Karnataka, India
*Correspondence e-mail: palaksha.bspm@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 April 2015; accepted 7 April 2015; online 7 May 2015)

In the title compound, C17H12O5, the dihedral angle between the planes of the coumarin ring system (r.m.s. deviation = 0.015 Å) and the benzene ring is 48.04 (10)°. The central CO2 group subtends a dihedral angle of 27.15 (11)° with the coumarin ring system and 74.86 (13)° with the benzene ring. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, which generate a three-dimensional network. Very weak C—H⋯π inter­actions are also observed.

1. Related literature

For details of the biological activies of 2-oxo-2H-chromene derivatives, see: Kawase et al. (2001[Kawase, M., Varu, B., Shah, A., Motohashi, N., Tani, S., Saito, S., Debnath, S., Mahapatra, S., Dastidar, S. G. & Chakrabarty, A. N. (2001). Arzneim. Forsch./Drug Res. 51, 67.]); Traven (2004[Traven, V. F. (2004). Molecules. 9, 50-66.]); Lacy & O'Kennedy (2004[Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797-3811.]); Chimenti et al. (2009[Chimenti, F., Secci, D., Bolasco, A., Chimenti, P., Bizzarri, B., Granese, A., Carradori, S., Yáñez, M., Orallo, F. & Ortuso, F. (2009). J. Med. Chem. 52, 1935-1942.]). For related structures, see: Sreenivasa et al. (2013[Sreenivasa, S., Srinivasa, H. T., Palakshamurthy, B. S., Kumar, V. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o266.]); Devarajegowda et al., (2013[Devarajegowda, H. C., Palakshamurthy, B. S., Harishkumar, H. N., Suchetan, P. A. & Sreenivasa, S. (2013). Acta Cryst. E69, o1355-o1356.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H12O5

  • Mr = 296.27

  • Orthorhombic, P 21 21 21

  • a = 6.2648 (18) Å

  • b = 10.435 (3) Å

  • c = 20.621 (7) Å

  • V = 1348.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.18 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.981

  • 10472 measured reflections

  • 2385 independent reflections

  • 2150 reflections with I > 2σ(I)

  • Rint = 0.050

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.09

  • 1411 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1/C6/C7/C8/C9/O1 and C1/C2/C3/C4/C5/C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O5i 0.96 2.50 3.228 (3) 132
C12—H12⋯O2ii 0.93 2.48 3.353 (3) 156
C15—H15⋯O2iii 0.93 2.50 3.207 (3) 133
C3—H3⋯O3iv 0.93 2.47 3.272 (4) 145
C5—H5⋯Cg1v 0.93 2.82 3.303 (3) 114
C17—H17CCg2vi 0.93 2.96 3.709 (4) 136
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x-1, y, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z-1].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Chemical context top

The 2-oxo-2H-chromene is a useful starting material for the construction of heterocyclic compounds with a broad spectrum of biological activities. Especially the 3-substituted derivatives exhibits pharmacological effects such as analgesic, anti-arthritis, anti-inflammatory, anti-pyretic, anti-viral, anti-cancer and anti­coagulant properties (Chimenti et al., 2009; Traven et al., 2004; Lacy et al., 2004). Moreover, these derivatives are well known for their anti-microbial activity toward different microorganisms, they show anti-microbial activity with reference to anti-H. pylori activity.(Kawase et al., 2001).

2-oxo-2H-chromenes (coumarins) have been also used in the field of medicine, cosmetics and fluorescent dyes. They are efficient fluoro­phores characterized by good emission quantum yields and are used as materials for lasers in organic light emitting devices, non-linear optical chromophores and fluorescent labels. Keeping these facts in mind and in continuation of our work on 2-oxo-2H-chromene derivatives (Sreenivasa et al., 2013; Palakshamurthy, Sreenivasa et al., 2013; Palakshamurthy, Devarajegowda et al., 2013; Devarajegowda, et al.,2013), herein we report the synthesis and crystal structure of 4-Meth­oxy­phenyl 2-oxo-2H-chromene-3-carboxyl­ate (I).

Structural commentary top

In the title molecule (I), C17H12O5, the coumarin ring is almost planar, the rms deviation (considering non Hydrogen atom) being 0.012 (1)Å. The dihedral angle between the coumarin ring and the phenyl ring in (I) is 48.04 (10)o. Compared to this, the dihedral angle is 21.11 (1)° in 4-(octyl­oxy)phenyl 2-oxo-2H-chromene-3 -carboxyl­ate (II) (Palakshamurthy, Devarajegowda et al., 2013), 62.97 (2)o in 4-(decyl­oxy)phenyl 7-(tri­fluoro­methyl)-2-oxo-2H-chromene-3-carboxyl­ate (III) (Palakshamurthy, Sreenivasa et al., 2013b), 22.95 (11)o in 4'-Cyano­biphenyl-4-yl 7-di­ethyl­amino- 2-oxo-2H-chromene-3-carboxyl­ate (IV) (Sreenivasa et al., 2013) and 54.46 (17)o in 4-[4-(Heptyl­oxy)benzoyl­oxy] phenyl 2-oxo-7- tri­fluoro­methyl-2H-chromene-3- carboxyl­ate (V) (Devarajegowda, et al., 2013). Further, in (I), the dihedral angle between the central ester chain [C8—C10(O3)—O4] and the phenyl ring and the coumarin ring are 74.86 (10)o and 27.16 (8)o respectively. The meth­oxy group is slightly out of plane from the attached benzene ring, the C17—O5—C14—C13 torsion being 10.3 (3)o.

Supra­molecular features top

In the crystal structure, the molecules are linked into zig-zag C9 chains along c axis via C3—H3···O3 inter­molecular inter­actions. Further, C12—H12···O2 inter­actions between the molecules in the neighbouring chains leads to C8 chains along a axis, and thus forming sheets in the ac plane. These sheets are inter­connected via an inter­molecular C15—H15···O2 inter­actions which form helical C7 chains running along b axis, and hence a three dimensional architecture is displayed. An additional C17—H17B···O5 inter­actions between the molecules in the neighbouring C7 helical chains leading to the formation of C3 chains along a axis results in sheets along ab plane. Thus, a grid like three dimensional structure is observed. Packing of the molecules displaying the columns formed along a axis is shown in Figure 2.

The packing also features C5—H5···Cg1 and C17—H17C···Cg2 inter­actions (where Cg1 and the Cg2 are the centroids of the rings C1/C6/C7/C8/C9/O1 and C1/C2/C3/C4/C5/C6 respectively), as shown in Figure 3.

Synthesis and crystallization top

A solution of di­cyclo­hexyl­carbodi­imide (DCC) dissolved in dried CH2Cl2 was added to a solution containing coumarin 3-carb­oxy­lic acid (1.0 mmol) and 4-meth­oxy­phenol (1.0 mmol) and a catalytic amount of N—N-Di­methyl­amino­pyrimidine (DMAP) in anhydrous di­chloro­methane (CH2Cl2), under stirring, After 24 hrs of stirring, di­cyclo­hexyl­urea was filtered off and the solution was concentrated. The solid residue was purified by column chromatography on silica gel (60–120) using chloro­form (CHCl3) as an eluent. Colourless prisms of the title compound were grown by slow evaporation of an ethanol solution at room temperature.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93-0.99 Å. All H-atoms were refined with isotropic displacement parameters (set to 1.2-1.5 times of the U eq of the parent atom).

Related literature top

For details of the biological activies of 2-oxo-2H-chromene derivatives, see: Kawase et al. (2001); Traven (2004); Lacy et al. (2004); Chimenti et al. (2009). For realted structures, see: Sreenivasa et al. (2013); Devarajegowda et al., (2013).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of (I) showing grid like structure when viewed along a axis.
[Figure 3] Fig. 3. The packing of (I) showing C—H···π interactions when viewed along a axis.
[Figure 4] Fig. 4. The formation of the title compound.
4-Methoxyphenyl 2-oxo-2H-chromene-3-carboxylate top
Crystal data top
C17H12O5Dx = 1.460 Mg m3
Mr = 296.27Melting point: 435 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 6.2648 (18) ÅCell parameters from 2385 reflections
b = 10.435 (3) Åθ = 2.0–25.0°
c = 20.621 (7) ŵ = 0.11 mm1
V = 1348.0 (7) Å3T = 296 K
Z = 4Prism, colourless
F(000) = 6160.22 × 0.20 × 0.18 mm
prism
Data collection top
Bruker APEXII CCD
diffractometer
2385 independent reflections
Radiation source: fine-focus sealed tube2150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 2.01 pixels mm-1θmax = 25.0°, θmin = 2.0°
phi and ω scansh = 75
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1212
Tmin = 0.977, Tmax = 0.981l = 2423
10472 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0342P)2 + 0.2933P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1411 reflectionsΔρmax = 0.16 e Å3
201 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.010 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C17H12O5V = 1348.0 (7) Å3
Mr = 296.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.2648 (18) ŵ = 0.11 mm1
b = 10.435 (3) ÅT = 296 K
c = 20.621 (7) Å0.22 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2385 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2150 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.050
10472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.09Δρmax = 0.16 e Å3
1411 reflectionsΔρmin = 0.16 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.2218 (3)0.80557 (17)0.42819 (9)0.0181 (5)
O40.5756 (3)0.70623 (17)0.18810 (9)0.0213 (5)
O11.0215 (3)0.54316 (17)0.02385 (9)0.0172 (5)
O21.1382 (3)0.53880 (19)0.12431 (9)0.0221 (5)
O30.8203 (3)0.56290 (18)0.22324 (9)0.0216 (5)
C170.0344 (5)0.7406 (3)0.44957 (15)0.0235 (7)
H17A0.08270.76190.42150.035*
H17B0.00140.76640.49310.035*
H17C0.05840.64970.44840.035*
C140.3033 (5)0.7725 (2)0.36853 (13)0.0146 (6)
C130.1987 (5)0.6954 (2)0.32378 (13)0.0185 (6)
H130.06560.66060.33330.022*
C120.2960 (5)0.6709 (2)0.26457 (14)0.0195 (7)
H120.22840.61910.23410.023*
C110.4914 (5)0.7230 (2)0.25097 (13)0.0189 (6)
C100.7332 (4)0.6180 (2)0.17961 (14)0.0164 (6)
C80.7751 (4)0.6021 (2)0.10923 (13)0.0143 (6)
C90.9873 (5)0.5583 (2)0.08977 (13)0.0153 (6)
C10.8638 (5)0.5612 (2)0.02156 (13)0.0155 (6)
C20.9148 (5)0.5377 (2)0.08562 (14)0.0204 (7)
H21.04970.50800.09690.024*
C30.7610 (5)0.5592 (3)0.13272 (14)0.0223 (7)
H30.79350.54480.17610.027*
C70.6224 (5)0.6229 (2)0.06469 (13)0.0148 (6)
H70.48870.65110.07810.018*
C60.6609 (4)0.6025 (2)0.00282 (13)0.0153 (6)
C50.5082 (5)0.6226 (2)0.05175 (13)0.0181 (6)
H50.37170.65000.04070.022*
C40.5591 (5)0.6021 (3)0.11558 (14)0.0204 (7)
H40.45750.61690.14760.024*
C150.5015 (5)0.8245 (2)0.35439 (13)0.0173 (6)
H150.57050.87560.38490.021*
C160.5972 (5)0.8008 (3)0.29511 (14)0.0187 (7)
H160.72940.83610.28510.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0178 (11)0.0206 (9)0.0160 (11)0.0012 (9)0.0043 (8)0.0010 (8)
O40.0249 (12)0.0249 (10)0.0140 (11)0.0105 (9)0.0029 (8)0.0000 (8)
O10.0158 (11)0.0205 (9)0.0154 (11)0.0007 (9)0.0018 (8)0.0017 (8)
O20.0175 (12)0.0299 (11)0.0189 (11)0.0057 (9)0.0032 (9)0.0045 (8)
O30.0218 (12)0.0276 (10)0.0153 (11)0.0042 (10)0.0001 (9)0.0035 (8)
C170.0247 (19)0.0205 (14)0.0252 (17)0.0036 (13)0.0078 (14)0.0008 (12)
C140.0177 (16)0.0133 (12)0.0128 (15)0.0039 (12)0.0004 (12)0.0022 (10)
C130.0173 (16)0.0183 (13)0.0198 (16)0.0002 (13)0.0019 (13)0.0006 (12)
C120.0230 (18)0.0187 (14)0.0169 (16)0.0033 (13)0.0034 (13)0.0039 (11)
C110.0223 (17)0.0198 (14)0.0146 (15)0.0070 (13)0.0012 (12)0.0007 (12)
C100.0139 (16)0.0148 (13)0.0204 (17)0.0021 (12)0.0000 (13)0.0012 (12)
C80.0154 (16)0.0114 (12)0.0163 (15)0.0017 (11)0.0004 (12)0.0005 (11)
C90.0195 (17)0.0125 (12)0.0138 (15)0.0008 (12)0.0019 (13)0.0013 (10)
C10.0186 (17)0.0118 (12)0.0162 (15)0.0028 (12)0.0013 (12)0.0016 (11)
C20.0233 (17)0.0151 (13)0.0228 (17)0.0018 (12)0.0056 (13)0.0018 (12)
C30.034 (2)0.0186 (13)0.0145 (16)0.0064 (13)0.0031 (14)0.0009 (12)
C70.0135 (16)0.0108 (12)0.0202 (17)0.0005 (11)0.0021 (12)0.0003 (11)
C60.0183 (17)0.0097 (11)0.0178 (16)0.0030 (12)0.0017 (13)0.0010 (11)
C50.0211 (17)0.0127 (13)0.0206 (16)0.0006 (12)0.0020 (14)0.0011 (11)
C40.0298 (19)0.0143 (13)0.0171 (16)0.0027 (13)0.0056 (13)0.0017 (11)
C150.0188 (16)0.0143 (12)0.0189 (15)0.0001 (12)0.0030 (13)0.0019 (11)
C160.0125 (15)0.0220 (14)0.0216 (16)0.0013 (12)0.0020 (12)0.0013 (12)
Geometric parameters (Å, º) top
O5—C141.376 (3)C10—C81.484 (4)
O5—C171.426 (3)C8—C71.344 (4)
O4—C101.361 (3)C8—C91.462 (4)
O4—C111.411 (3)C1—C21.381 (4)
O1—C11.374 (3)C1—C61.397 (4)
O1—C91.385 (3)C2—C31.386 (4)
O2—C91.201 (3)C2—H20.9300
O3—C101.199 (3)C3—C41.388 (4)
C17—H17A0.9600C3—H30.9300
C17—H17B0.9600C7—C61.429 (4)
C17—H17C0.9600C7—H70.9300
C14—C151.386 (4)C6—C51.406 (4)
C14—C131.389 (4)C5—C41.371 (4)
C13—C121.388 (4)C5—H50.9300
C13—H130.9300C4—H40.9300
C12—C111.368 (4)C15—C161.384 (4)
C12—H120.9300C15—H150.9300
C11—C161.388 (4)C16—H160.9300
C14—O5—C17117.6 (2)O1—C9—C8116.5 (2)
C10—O4—C11118.2 (2)O1—C1—C2117.5 (3)
C1—O1—C9122.8 (2)O1—C1—C6120.5 (2)
O5—C17—H17A109.5C2—C1—C6122.0 (3)
O5—C17—H17B109.5C1—C2—C3118.7 (3)
H17A—C17—H17B109.5C1—C2—H2120.6
O5—C17—H17C109.5C3—C2—H2120.6
H17A—C17—H17C109.5C2—C3—C4120.5 (3)
H17B—C17—H17C109.5C2—C3—H3119.8
O5—C14—C15115.0 (2)C4—C3—H3119.8
O5—C14—C13124.4 (3)C8—C7—C6121.4 (3)
C15—C14—C13120.7 (3)C8—C7—H7119.3
C12—C13—C14118.9 (3)C6—C7—H7119.3
C12—C13—H13120.5C1—C6—C5117.8 (3)
C14—C13—H13120.5C1—C6—C7118.0 (3)
C11—C12—C13120.0 (3)C5—C6—C7124.2 (3)
C11—C12—H12120.0C4—C5—C6120.5 (3)
C13—C12—H12120.0C4—C5—H5119.8
C12—C11—C16121.7 (3)C6—C5—H5119.8
C12—C11—O4118.3 (3)C5—C4—C3120.5 (3)
C16—C11—O4119.8 (3)C5—C4—H4119.8
O3—C10—O4123.9 (3)C3—C4—H4119.8
O3—C10—C8126.8 (3)C16—C15—C14120.2 (3)
O4—C10—C8109.2 (2)C16—C15—H15119.9
C7—C8—C9120.7 (3)C14—C15—H15119.9
C7—C8—C10121.6 (3)C15—C16—C11118.5 (3)
C9—C8—C10117.7 (2)C15—C16—H16120.7
O2—C9—O1116.2 (3)C11—C16—H16120.7
O2—C9—C8127.3 (3)
C17—O5—C14—C15170.9 (2)C9—O1—C1—C63.2 (3)
C17—O5—C14—C1310.3 (4)O1—C1—C2—C3177.9 (2)
O5—C14—C13—C12178.8 (2)C6—C1—C2—C31.8 (4)
C15—C14—C13—C120.1 (4)C1—C2—C3—C40.8 (4)
C14—C13—C12—C110.3 (4)C9—C8—C7—C60.3 (4)
C13—C12—C11—C160.0 (4)C10—C8—C7—C6177.4 (2)
C13—C12—C11—O4174.0 (2)O1—C1—C6—C5178.3 (2)
C10—O4—C11—C12103.6 (3)C2—C1—C6—C51.4 (4)
C10—O4—C11—C1682.4 (3)O1—C1—C6—C71.1 (3)
C11—O4—C10—O38.0 (4)C2—C1—C6—C7179.3 (2)
C11—O4—C10—C8171.6 (2)C8—C7—C6—C10.6 (4)
O3—C10—C8—C7151.7 (3)C8—C7—C6—C5179.9 (2)
O4—C10—C8—C727.9 (3)C1—C6—C5—C40.0 (4)
O3—C10—C8—C926.2 (4)C7—C6—C5—C4179.3 (2)
O4—C10—C8—C9154.2 (2)C6—C5—C4—C31.0 (4)
C1—O1—C9—O2179.5 (2)C2—C3—C4—C50.6 (4)
C1—O1—C9—C83.3 (3)O5—C14—C15—C16178.4 (2)
C7—C8—C9—O2178.4 (3)C13—C14—C15—C160.5 (4)
C10—C8—C9—O23.8 (4)C14—C15—C16—C110.8 (4)
C7—C8—C9—O11.6 (3)C12—C11—C16—C150.6 (4)
C10—C8—C9—O1179.4 (2)O4—C11—C16—C15174.4 (2)
C9—O1—C1—C2177.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1/C6/C7/C8/C9/O1 and C1/C2/C3/C4/C5/C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17B···O5i0.962.503.228 (3)132
C12—H12···O2ii0.932.483.353 (3)156
C15—H15···O2iii0.932.503.207 (3)133
C3—H3···O3iv0.932.473.272 (4)145
C5—H5···Cg1v0.932.823.303 (3)114
C17—H17C···Cg2vi0.932.963.709 (4)136
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x+3/2, y+1, z1/2; (v) x, y+1/2, z+3/2; (vi) x+3/2, y+1/2, z1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1/C6/C7/C8/C9/O1 and C1/C2/C3/C4/C5/C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17B···O5i0.962.503.228 (3)132
C12—H12···O2ii0.932.483.353 (3)156
C15—H15···O2iii0.932.503.207 (3)133
C3—H3···O3iv0.932.473.272 (4)145
C5—H5···Cg1v0.932.823.303 (3)114
C17—H17C···Cg2vi0.932.963.709 (4)136
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x+3/2, y+1, z1/2; (v) x, y+1/2, z+3/2; (vi) x+3/2, y+1/2, z1.
 

Acknowledgements

BSP thanks Dr Biraj, Sophisticated Analytical Instrumentation Centre (SAIC), Tezpur University, Assam, for his help in data collection and UGC, Government of India, for financial support under Minor Research Project.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChimenti, F., Secci, D., Bolasco, A., Chimenti, P., Bizzarri, B., Granese, A., Carradori, S., Yáñez, M., Orallo, F. & Ortuso, F. (2009). J. Med. Chem. 52, 1935–1942.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDevarajegowda, H. C., Palakshamurthy, B. S., Harishkumar, H. N., Suchetan, P. A. & Sreenivasa, S. (2013). Acta Cryst. E69, o1355–o1356.  CSD CrossRef IUCr Journals Google Scholar
First citationKawase, M., Varu, B., Shah, A., Motohashi, N., Tani, S., Saito, S., Debnath, S., Mahapatra, S., Dastidar, S. G. & Chakrabarty, A. N. (2001). Arzneim. Forsch./Drug Res. 51, 67.  Google Scholar
First citationLacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSreenivasa, S., Srinivasa, H. T., Palakshamurthy, B. S., Kumar, V. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o266.  CSD CrossRef IUCr Journals Google Scholar
First citationTraven, V. F. (2004). Molecules. 9, 50–66.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o374-o375
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds