organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-((1E)-{(E)-2-[(2-hy­droxy­naphthalen-1-yl)methyl­­idene]hydrazin-1-yl­­idene}meth­yl)naphthalen-2-ol

aDepartment of Chemistry, Periyar University, Salem 636 011, India, bInstitute of Mineralogy and Crystallography Geozentrum, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria, and cCentre of Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: viswanathamurthi72@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 April 2015; accepted 20 May 2015; online 28 May 2015)

The complete mol­ecule of the title compound, C22H16N2O2, is generated by a crystallographic inversion centre at the mid-point of the central N—N bond. Two intra­molecular O—H⋯N hydrogen bonds occur.

1. Related literature

For general background to Schiff base derivatives, see: Hoshino (1998[Hoshino, N. (1998). Coord. Chem. Rev. 174. 77-108.]); Kalaivani et al. (2013[Kalaivani, P., Prabhakaran, R., Poornima, P., Huang, R., Hornebecq, V., Dallemer, F., Vijaya Padma, V. & Natarajan, K. (2013). RSC Adv. 3, 20363-20378.]); Vijayan et al. (2014[Vijayan, P., Viswanathamurthi, P., Silambarasan, V., Velmurugan, D., Velmurugan, K., Nandhakumar, R., Butcher, R. J., Silambarasan, T. & Dhandapani, R. (2014). J. Organomet. Chem. 768, 163-177.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H16N2O2

  • Mr = 340.37

  • Monoclinic, P 21 /n

  • a = 8.5680 (7) Å

  • b = 6.1020 (5) Å

  • c = 15.9870 (6) Å

  • β = 91.191 (5)°

  • V = 835.65 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.984

  • 1907 measured reflections

  • 1907 independent reflections

  • 1859 reflections with I > 2σ(I)

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.007

  • wR(F2) = 0.019

  • S = 1.03

  • 1907 reflections

  • 122 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.02 e Å−3

  • Δρmin = −0.08 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.98 1.67 (1) 2.5671 (3) 151 (1)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are important ligands, as moderate electron donors with a chelating structure and control the behaviour of metal ions in a diverse range of applications (Hoshino, 1998). Dithiocarbazate compounds are an important class of Schiff bases which can be easily obtained by condensation of dithiocarbazides with aldehydes or ketones. In particular hydrazone containing naphthalene ring compounds have drawn much attention because of their biological activities such as DNA/BSA binding affinities and anticancer activities in vitro (Kalaivani et al., 2013; Vijayan et al., 2014).

The ORTEP plot of the molecule is shown in Fig.1. The title compound (I), crystallized in the monoclinic spacegroup P21/n with half molecule in the asymmetric unit. Pair of molecules related by an crystallographic inversion centre generate another half of the molecule.

Related literature top

For general background to Schiff base derivatives, see: Hoshino (1998); Kalaivani et al. (2013); Vijayan et al. (2014).

Experimental top

The title compound was obtained by the reaction of S-benzyldithiocarbazate and 2-Hydroxy-1-napthaldehyde in boiling ethanol. The unexpected formation of the hydrazone was probably due to the decomposition of S-benzyldithiocarbazate in solution resulting in the formation of hydrazine, which then reacted with 2-hydroxy-1-napthaldehyde to form the corresponding hydrazone. The dithiocarbazates are known to decompose on heating.

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were located geometrically (aromatic C—H 0.95 Å, secondary alkane C—H 0.99 Å, tertiary alkane C—H 1.0 Å) and refined using a riding model with the isotropic displacement parameters fixed at Uiso= 1.2 times Ueq of the parent carbon for all of the hydrogen atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at 50% probability level.
1-((1E)-{(E)-2-[(2-Hydroxynaphthalen-1-yl)methylidene]hydrazin-1-ylidene}methyl)naphthalen-2-ol top
Crystal data top
C22H16N2O2F(000) = 356
Mr = 340.37Dx = 1.353 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1859 reflections
a = 8.5680 (7) Åθ = 2.6–27.5°
b = 6.1020 (5) ŵ = 0.09 mm1
c = 15.9870 (6) ÅT = 293 K
β = 91.191 (5)°Block, yellow
V = 835.65 (10) Å30.22 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
1907 independent reflections
Radiation source: fine-focus sealed tube1859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.0000
ω and ϕ scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.981, Tmax = 0.984k = 07
1907 measured reflectionsl = 020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.007Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.019H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.008P)2
where P = (Fo2 + 2Fc2)/3
1907 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.02 e Å3
1 restraintΔρmin = 0.08 e Å3
Crystal data top
C22H16N2O2V = 835.65 (10) Å3
Mr = 340.37Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.5680 (7) ŵ = 0.09 mm1
b = 6.1020 (5) ÅT = 293 K
c = 15.9870 (6) Å0.22 × 0.20 × 0.18 mm
β = 91.191 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
1907 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1859 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.0000
1907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0071 restraint
wR(F2) = 0.019H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.02 e Å3
1907 reflectionsΔρmin = 0.08 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37033 (2)0.02490 (3)0.395255 (11)0.03120 (4)
C20.32482 (2)0.16485 (3)0.350605 (13)0.03653 (5)
H20.26100.26830.37550.044*
C30.37391 (2)0.19647 (3)0.271551 (13)0.03672 (5)
H30.34500.32400.24340.044*
C40.46786 (2)0.04107 (3)0.230675 (12)0.03129 (5)
C50.51123 (3)0.06977 (4)0.146509 (13)0.04195 (5)
H50.48150.19670.11820.050*
C60.59566 (3)0.08510 (5)0.106276 (13)0.04842 (6)
H60.62130.06540.05050.058*
C70.64395 (3)0.27462 (5)0.149184 (13)0.04576 (6)
H70.70210.38020.12170.055*
C80.60616 (2)0.30547 (4)0.231137 (12)0.03661 (5)
H80.64080.43100.25880.044*
C90.51573 (2)0.15099 (3)0.274652 (11)0.02726 (4)
C100.46705 (2)0.18089 (3)0.359484 (10)0.02658 (4)
C110.51614 (2)0.37178 (3)0.406697 (11)0.02991 (4)
H110.58270.47270.38240.036*
N10.46961 (2)0.40510 (3)0.481933 (10)0.03414 (4)
O10.31470 (2)0.04548 (3)0.472921 (9)0.04471 (5)
H10.3596 (5)0.1824 (7)0.4943 (2)0.0995 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.03470 (9)0.03336 (10)0.02553 (9)0.00099 (8)0.00052 (7)0.00058 (7)
C20.03940 (11)0.03200 (10)0.03805 (11)0.00574 (8)0.00259 (8)0.00167 (8)
C30.03929 (11)0.03106 (10)0.03943 (11)0.00132 (8)0.00822 (8)0.00859 (8)
C40.02942 (9)0.03540 (10)0.02889 (9)0.00595 (8)0.00317 (7)0.00776 (8)
C50.04097 (11)0.05126 (13)0.03346 (11)0.00604 (10)0.00287 (8)0.01694 (9)
C60.04610 (12)0.07303 (17)0.02636 (10)0.00235 (12)0.00672 (9)0.01219 (10)
C70.04615 (12)0.06073 (15)0.03086 (10)0.00308 (11)0.01184 (9)0.00236 (10)
C80.03867 (10)0.04315 (12)0.02823 (10)0.00353 (9)0.00582 (8)0.00574 (8)
C90.02591 (8)0.03176 (9)0.02405 (8)0.00337 (7)0.00108 (6)0.00519 (7)
C100.02861 (9)0.02830 (9)0.02281 (8)0.00107 (7)0.00030 (6)0.00319 (7)
C110.03341 (9)0.03091 (10)0.02545 (9)0.00130 (7)0.00150 (7)0.00289 (7)
N10.04353 (9)0.03257 (9)0.02637 (8)0.00328 (7)0.00204 (7)0.00689 (7)
O10.05713 (10)0.04698 (10)0.03052 (8)0.01041 (8)0.01283 (7)0.00151 (7)
Geometric parameters (Å, º) top
C1—O11.3451 (2)C6—H60.9300
C1—C101.3927 (3)C7—C81.3691 (3)
C1—C21.4109 (3)C7—H70.9300
C2—C31.3541 (3)C8—C91.4125 (3)
C2—H20.9300C8—H80.9300
C3—C41.4129 (3)C9—C101.4388 (2)
C3—H30.9300C10—C111.4458 (3)
C4—C51.4142 (3)C11—N11.2911 (2)
C4—C91.4226 (3)C11—H110.9300
C5—C61.3600 (4)N1—N1i1.3906 (3)
C5—H50.9300O1—H10.978 (4)
C6—C71.4026 (4)
O1—C1—C10122.721 (18)C8—C7—C6120.54 (2)
O1—C1—C2116.367 (18)C8—C7—H7119.7
C10—C1—C2120.911 (18)C6—C7—H7119.7
C3—C2—C1120.079 (19)C7—C8—C9121.51 (2)
C3—C2—H2120.0C7—C8—H8119.2
C1—C2—H2120.0C9—C8—H8119.2
C2—C3—C4121.809 (19)C8—C9—C4117.502 (17)
C2—C3—H3119.1C8—C9—C10123.528 (18)
C4—C3—H3119.1C4—C9—C10118.951 (18)
C3—C4—C5121.360 (19)C1—C10—C9119.145 (17)
C3—C4—C9119.045 (17)C1—C10—C11120.359 (17)
C5—C4—C9119.570 (19)C9—C10—C11120.491 (17)
C6—C5—C4121.12 (2)N1—C11—C10121.408 (18)
C6—C5—H5119.4N1—C11—H11119.3
C4—C5—H5119.4C10—C11—H11119.3
C5—C6—C7119.739 (19)C11—N1—N1i113.45 (2)
C5—C6—H6120.1C1—O1—H1104.9 (2)
C7—C6—H6120.1
O1—C1—C2—C3179.043 (18)C3—C4—C9—C100.06 (3)
C10—C1—C2—C30.64 (3)C5—C4—C9—C10178.266 (17)
C1—C2—C3—C41.51 (3)O1—C1—C10—C9177.234 (17)
C2—C3—C4—C5176.393 (19)C2—C1—C10—C92.43 (3)
C2—C3—C4—C91.78 (3)O1—C1—C10—C111.96 (3)
C3—C4—C5—C6176.95 (2)C2—C1—C10—C11178.377 (17)
C9—C4—C5—C61.21 (3)C8—C9—C10—C1176.247 (18)
C4—C5—C6—C71.46 (4)C4—C9—C10—C12.11 (3)
C5—C6—C7—C80.31 (4)C8—C9—C10—C112.94 (3)
C6—C7—C8—C91.12 (4)C4—C9—C10—C11178.703 (16)
C7—C8—C9—C41.33 (3)C1—C10—C11—N11.45 (3)
C7—C8—C9—C10177.044 (19)C9—C10—C11—N1177.730 (17)
C3—C4—C9—C8178.391 (18)C10—C11—N1—N1i179.073 (19)
C5—C4—C9—C80.19 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.981.67 (1)2.5671 (3)151 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.981.668 (4)2.5671 (3)150.9 (3)
 

Acknowledgements

PV acknowledges the University Grants Commission (UGC), Government of India, New Delhi, for financial support in the form of a major research project No. F·No.40–66/2011 (SR).

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHoshino, N. (1998). Coord. Chem. Rev. 174. 77–108.  Google Scholar
First citationKalaivani, P., Prabhakaran, R., Poornima, P., Huang, R., Hornebecq, V., Dallemer, F., Vijaya Padma, V. & Natarajan, K. (2013). RSC Adv. 3, 20363–20378.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayan, P., Viswanathamurthi, P., Silambarasan, V., Velmurugan, D., Velmurugan, K., Nandhakumar, R., Butcher, R. J., Silambarasan, T. & Dhandapani, R. (2014). J. Organomet. Chem. 768, 163–177.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds