organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o389-o390

Crystal structure of 2-nitro-N-(2-nitro­phen­yl)benzamide

aDepartamento de Química – Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 April 2015; accepted 5 May 2015; online 9 May 2015)

In the title compound, C13H9N3O5, the mean plane of the non-H atoms of the central amide fragment C—N—C(=O)—C [r.m.s. deviation = 0.0442 Å] forms dihedral angles of 71.76 (6) and 24.29 (10)° with the C-bonded and N-bonded benzene rings, respectively. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds forming C(4) chains along [100]. Weak C—H⋯O contacts link the mol­ecules into (100) sheets containing edge-fused R44(30) rings. Together, the N—H⋯O and C—H⋯O hydrogen bonds generate a three-dimensional network.

1. Related literature

For anti­convulsant and anti­microbial properties of benzanilide compounds, see: Leander (1992[Leander, J. D. (1992). Epilepsia, 33, 705-711.]); Ahles et al. (2004[Ahles, T. A., Herndon, J. E., Small, E. J., Vogelzang, N. J., Kornblith, A. B., Ratain, M. J., Stadler, W. S., Palchak, D., Marshall, E., Wilding, G., Petrylak, D. & Holland, C. (2004). Cancer, 101, 2202-2208.]). For studies as selective inhibitors of diverse enzymes, see: Goldman et al. (2003[Goldman, J. M. F. R. C. P. & Melo, J. V. (2003). N. Engl. J. Med. pp. 1451-1464.]); Weisberg et al. (2006[Weisberg, E., Manley, P., Mestan, J., Cowan-Jacob, S., Ray, A. & Griffin, J. D. (2006). Br. J. Cancer, 94, 1765-1769.]). For related structures, see: Sun et al. (2009[Sun, Y., Wang, G. & Guo, W. (2009). Tetrahedron, 65, 3480-3485.]); Saeed & Simpson (2009[Saeed, A. & Simpson, J. (2009). Acta Cryst. E65, o1845.]); Moreno-Fuquen et al. (2014[Moreno-Fuquen, R., Melo, V. & Ellena, J. (2014). Acta Cryst. E70, o1261-o1262.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H9N3O5

  • Mr = 287.23

  • Orthorhombic, P 21 21 21

  • a = 7.7564 (2) Å

  • b = 12.1142 (4) Å

  • c = 12.9355 (4) Å

  • V = 1215.45 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.06 mm−1

  • T = 123 K

  • 0.35 × 0.05 × 0.02 mm

2.2. Data collection

  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.657, Tmax = 1.000

  • 4952 measured reflections

  • 2367 independent reflections

  • 2259 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.06

  • 2367 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.93 (3) 2.00 (3) 2.859 (2) 154 (2)
C5—H5⋯O5ii 0.95 2.57 3.427 (3) 150
C10—H10⋯O1iii 0.95 2.46 3.271 (3) 144
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The crystal structure determination of 2-nitro-N-(2-nitrophenyl)benzamide (I), is part of a study on phenylbenzamides carried out in our research group, and it was synthesized from the reaction between of 2-nitrobenzoic acid and 2-nitroaniline mediated by the presence of thionyl chloride. Benzanilides are versatile intermediate towards a diversity of heterocyclic compounds. Benzanilide systems as ameltolid, very similar to the molecule under study, have different properties ranging from anticonvulsant (Leander, 1992); antimicrobial drug (suramin) or as treatment in patients with prostate carcinoma (Alhes et al., 2004); as inhibitor of tyrosine-kinase, (imatinib) (Goldman et al., 2003) or a selective inhibitor of BCR-ABL, (nilotinib) (Weisberg et al., 2006). Similar compounds to (I) have been reported in the literature: N-(2,4-Dinitrophenyl)-4-nitrobenzamide (II) (Sun et al., 2009), N-(2-Nitrophenyl)benzamide (III) (Saed & Simpson, 2009) and 4-Bromo-N-(2-nitrophenyl)benzamide (IV) (Moreno-Fuquen et al., 2014). The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8—N1-C7(O1)—C1, is essentially planar (r.m.s. deviation for all non-H atoms = 0.0442 Å) and it forms dihedral angles of 71.76 (6)° with the C1-C6 and 24.29 (10)° with the C8-C13 rings respectively. Bond lengths and bond angles in the molecule are in a good agreement with those found in the related compounds (II), (III) and (IV). A small lengthening of C7-N1 bond in (III) is observed [N1-C7= 1.3742 (11)Å], possibly caused by the formation of intramolecular S rings (6) in that structure. In the crystal structure (Fig. 2), molecules are linked by N-H···O hydrogen bonds of medium-strength and weak C-H···O intermolecular contacts (see Table 1). The N1-H1···O1 hydrogen bond interactions are responsible for crystal growth in [100]. In this interaction, the N-H in the molecule at (x,y,z) acts as a hydrogen-bond donor to O1 atom of the carbonyl group at (x-1/2,-y+3/2,-z+1). These interactions generate C(4) chains of molecules along [100]. Two C-H···O weak intermolecular contacts are further observed that run parallel to the bc plane in this structure (see Fig. 3). The group C5-H5 in the molecule at (x,y,z) acts as hydrogen bond donor to O5 atom of the nitro group in the molecule at (-x+3/2,-y+2,+z-1/2) and the C10-H10 group in the molecule at (x,y,z) acts as a hydrogen bond donor to O1 atom of the carbonyl group in the molecule at (-x+3/2,-y+1,+z-1/2). The combination of these interactions generate edge-fused R44(30) rings.

Related literature top

For anticonvulsant and antimicrobial properties of benzanilide compounds, see: Leander (1992); Ahles et al. (2004). For studies as selective inhibitors of diverse enzymes, see: Goldman et al. (2003); Weisberg et al. (2006). For related structures, see: Sun et al. (2009); Saeed & Simpson (2009); Moreno-Fuquen et al. (2014).

Experimental top

A mass of 0.200 g (1.197 mmol) of 2-nitrobenzoic acid was refluxed with 2 ml of thionyl chloride for one hour. Then an equimolar amount of 2-nitroaniline was added and dissolved in 10 ml of acetonitrile and it was placed under reflux and constant stirring for 3 hours. Subsequently, the final solvent was slowly evaporated to obtain yellow needles of the title compound. [m.p. 431 (1)K].

Refinement top

All H-atoms were positioned in geometrically idealized positions, C—H = 0.95 Å, and were refined using a riding-model approximation with Uiso(H) constrained to 1.2 times Ueq of the respective parent atom. H1N atom was found from the Fourier maps and its coordinates were refined freely.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of C(4) chains along [100] [symmetry code: (i) x - 1/2, -y + 3/2, -z + 1].
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of R44(30) rings within a 2-D hydrogen-bonded network (dashed lines) running parallel to (100) [Symmetry codes: (ii) -x + 3/2, -y + 2, z - 1/2; (iii) -x + 3/2, -y + 1, z - 1/2].
2-Nitro-N-(2-nitrophenyl)benzamide top
Crystal data top
C13H9N3O5Dx = 1.570 Mg m3
Mr = 287.23Melting point: 431(1) K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
a = 7.7564 (2) ÅCell parameters from 2546 reflections
b = 12.1142 (4) Åθ = 5.0–72.8°
c = 12.9355 (4) ŵ = 1.06 mm1
V = 1215.45 (6) Å3T = 123 K
Z = 4Needle, yellow
F(000) = 5920.35 × 0.05 × 0.02 mm
Data collection top
Oxford Diffraction Gemini S
diffractometer
2367 independent reflections
Radiation source: fine-focus sealed tube2259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 72.9°, θmin = 6.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 79
Tmin = 0.657, Tmax = 1.000k = 1314
4952 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.2131P]
where P = (Fo2 + 2Fc2)/3
2367 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H9N3O5V = 1215.45 (6) Å3
Mr = 287.23Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.7564 (2) ŵ = 1.06 mm1
b = 12.1142 (4) ÅT = 123 K
c = 12.9355 (4) Å0.35 × 0.05 × 0.02 mm
Data collection top
Oxford Diffraction Gemini S
diffractometer
2367 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2259 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 1.000Rint = 0.019
4952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
2367 reflectionsΔρmin = 0.22 e Å3
195 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.34.46 (release 25-11-2010 CrysAlis171 .NET) (compiled Nov 25 2010,17:55:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8757 (2)0.69891 (13)0.59755 (12)0.0235 (4)
O20.6495 (2)0.70531 (14)0.25441 (12)0.0304 (4)
O30.4638 (3)0.58573 (16)0.20009 (14)0.0363 (5)
O40.5324 (2)0.71871 (14)0.68775 (13)0.0297 (4)
O50.5249 (3)0.84234 (16)0.80856 (13)0.0348 (5)
N10.6852 (2)0.69018 (17)0.46280 (14)0.0215 (4)
N20.5754 (2)0.61585 (17)0.26036 (15)0.0240 (4)
N30.5572 (2)0.81237 (17)0.71999 (15)0.0248 (4)
C10.7127 (3)0.85927 (19)0.55862 (17)0.0207 (5)
C20.6264 (3)0.89486 (19)0.64730 (17)0.0212 (5)
C30.5993 (3)1.0050 (2)0.66891 (18)0.0250 (5)
H30.54101.02650.73030.030*
C40.6585 (3)1.0837 (2)0.5998 (2)0.0282 (5)
H40.64181.16000.61360.034*
C50.7424 (3)1.0505 (2)0.51017 (19)0.0274 (5)
H50.78181.10450.46230.033*
C60.7695 (3)0.9394 (2)0.48978 (18)0.0226 (5)
H60.82730.91800.42820.027*
H1N0.607 (4)0.734 (2)0.427 (2)0.030 (7)*
C70.7639 (3)0.74034 (19)0.54308 (17)0.0202 (5)
C80.6909 (3)0.57706 (19)0.43817 (18)0.0214 (5)
C90.6276 (3)0.5389 (2)0.34294 (17)0.0223 (5)
C100.6114 (3)0.4274 (2)0.32093 (19)0.0275 (5)
H100.56330.40420.25700.033*
C110.6657 (3)0.3505 (2)0.3926 (2)0.0294 (5)
H110.65740.27380.37800.035*
C120.7325 (3)0.3865 (2)0.4863 (2)0.0290 (5)
H120.77110.33380.53560.035*
C130.7437 (3)0.4977 (2)0.50897 (18)0.0254 (5)
H130.78820.52030.57400.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0236 (8)0.0239 (8)0.0231 (8)0.0009 (7)0.0027 (6)0.0021 (7)
O20.0379 (10)0.0292 (9)0.0242 (8)0.0038 (8)0.0001 (7)0.0028 (7)
O30.0408 (10)0.0401 (11)0.0278 (10)0.0036 (9)0.0132 (8)0.0007 (8)
O40.0346 (9)0.0225 (9)0.0321 (9)0.0046 (7)0.0051 (7)0.0003 (8)
O50.0417 (10)0.0421 (11)0.0205 (9)0.0040 (8)0.0053 (8)0.0024 (8)
N10.0251 (9)0.0206 (10)0.0188 (9)0.0031 (8)0.0020 (8)0.0000 (8)
N20.0258 (10)0.0289 (10)0.0173 (9)0.0020 (8)0.0012 (8)0.0017 (8)
N30.0228 (9)0.0288 (11)0.0227 (9)0.0009 (8)0.0014 (8)0.0017 (8)
C10.0198 (10)0.0231 (12)0.0191 (11)0.0015 (9)0.0041 (9)0.0006 (9)
C20.0206 (10)0.0243 (12)0.0186 (11)0.0014 (9)0.0039 (9)0.0005 (9)
C30.0246 (10)0.0262 (12)0.0241 (11)0.0001 (10)0.0020 (9)0.0047 (10)
C40.0292 (12)0.0205 (11)0.0347 (13)0.0005 (10)0.0061 (11)0.0037 (10)
C50.0284 (12)0.0254 (13)0.0285 (12)0.0023 (10)0.0047 (10)0.0056 (11)
C60.0229 (11)0.0246 (13)0.0204 (11)0.0002 (9)0.0003 (9)0.0001 (10)
C70.0205 (10)0.0238 (12)0.0164 (10)0.0024 (8)0.0030 (9)0.0015 (9)
C80.0195 (10)0.0226 (11)0.0221 (11)0.0004 (9)0.0026 (9)0.0013 (9)
C90.0210 (11)0.0255 (12)0.0204 (11)0.0027 (9)0.0029 (9)0.0004 (9)
C100.0295 (11)0.0288 (13)0.0244 (12)0.0017 (10)0.0019 (10)0.0052 (10)
C110.0354 (13)0.0186 (11)0.0341 (13)0.0006 (10)0.0024 (12)0.0052 (10)
C120.0326 (13)0.0243 (13)0.0300 (13)0.0013 (10)0.0017 (10)0.0032 (11)
C130.0287 (11)0.0249 (13)0.0225 (11)0.0010 (9)0.0022 (10)0.0004 (10)
Geometric parameters (Å, º) top
O1—C71.225 (3)C4—C51.389 (4)
O2—N21.229 (3)C4—H40.9500
O3—N21.221 (3)C5—C61.388 (3)
O4—N31.224 (3)C5—H50.9500
O5—N31.228 (3)C6—H60.9500
N1—C71.349 (3)C8—C131.389 (3)
N1—C81.408 (3)C8—C91.405 (3)
N1—H1N0.93 (3)C9—C101.385 (3)
N2—C91.475 (3)C10—C111.381 (4)
N3—C21.473 (3)C10—H100.9500
C1—C61.389 (3)C11—C121.388 (4)
C1—C21.396 (3)C11—H110.9500
C1—C71.508 (3)C12—C131.382 (4)
C2—C31.379 (3)C12—H120.9500
C3—C41.386 (4)C13—H130.9500
C3—H30.9500
C7—N1—C8126.7 (2)C5—C6—C1120.5 (2)
C7—N1—H1N115.1 (18)C5—C6—H6119.7
C8—N1—H1N117.5 (17)C1—C6—H6119.7
O3—N2—O2123.7 (2)O1—C7—N1125.4 (2)
O3—N2—C9117.9 (2)O1—C7—C1120.1 (2)
O2—N2—C9118.33 (19)N1—C7—C1114.4 (2)
O4—N3—O5124.1 (2)C13—C8—C9117.0 (2)
O4—N3—C2117.94 (19)C13—C8—N1122.2 (2)
O5—N3—C2118.0 (2)C9—C8—N1120.5 (2)
C6—C1—C2117.6 (2)C10—C9—C8122.2 (2)
C6—C1—C7119.9 (2)C10—C9—N2116.3 (2)
C2—C1—C7122.1 (2)C8—C9—N2121.5 (2)
C3—C2—C1122.6 (2)C11—C10—C9119.5 (2)
C3—C2—N3118.1 (2)C11—C10—H10120.3
C1—C2—N3119.3 (2)C9—C10—H10120.3
C2—C3—C4119.0 (2)C10—C11—C12119.2 (2)
C2—C3—H3120.5C10—C11—H11120.4
C4—C3—H3120.5C12—C11—H11120.4
C3—C4—C5119.6 (2)C13—C12—C11121.0 (2)
C3—C4—H4120.2C13—C12—H12119.5
C5—C4—H4120.2C11—C12—H12119.5
C6—C5—C4120.7 (2)C12—C13—C8121.1 (2)
C6—C5—H5119.7C12—C13—H13119.5
C4—C5—H5119.7C8—C13—H13119.5
C6—C1—C2—C31.2 (3)C6—C1—C7—N172.2 (3)
C7—C1—C2—C3171.1 (2)C2—C1—C7—N1115.7 (2)
C6—C1—C2—N3177.28 (19)C7—N1—C8—C1316.9 (3)
C7—C1—C2—N310.5 (3)C7—N1—C8—C9169.1 (2)
O4—N3—C2—C3157.7 (2)C13—C8—C9—C102.5 (3)
O5—N3—C2—C320.9 (3)N1—C8—C9—C10171.9 (2)
O4—N3—C2—C120.8 (3)C13—C8—C9—N2177.2 (2)
O5—N3—C2—C1160.5 (2)N1—C8—C9—N28.4 (3)
C1—C2—C3—C40.6 (3)O3—N2—C9—C1028.9 (3)
N3—C2—C3—C4177.9 (2)O2—N2—C9—C10149.3 (2)
C2—C3—C4—C50.4 (3)O3—N2—C9—C8151.5 (2)
C3—C4—C5—C60.8 (4)O2—N2—C9—C830.4 (3)
C4—C5—C6—C10.1 (4)C8—C9—C10—C112.8 (3)
C2—C1—C6—C50.8 (3)N2—C9—C10—C11176.8 (2)
C7—C1—C6—C5171.6 (2)C9—C10—C11—C121.2 (4)
C8—N1—C7—O112.8 (4)C10—C11—C12—C130.7 (4)
C8—N1—C7—C1171.3 (2)C11—C12—C13—C81.0 (4)
C6—C1—C7—O1103.9 (3)C9—C8—C13—C120.5 (3)
C2—C1—C7—O168.2 (3)N1—C8—C13—C12173.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.93 (3)2.00 (3)2.859 (2)154 (2)
C5—H5···O5ii0.952.573.427 (3)150
C10—H10···O1iii0.952.463.271 (3)144
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+3/2, y+2, z1/2; (iii) x+3/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.93 (3)2.00 (3)2.859 (2)154 (2)
C5—H5···O5ii0.952.573.427 (3)150
C10—H10···O1iii0.952.463.271 (3)144
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+3/2, y+2, z1/2; (iii) x+3/2, y+1, z1/2.
 

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

References

First citationAhles, T. A., Herndon, J. E., Small, E. J., Vogelzang, N. J., Kornblith, A. B., Ratain, M. J., Stadler, W. S., Palchak, D., Marshall, E., Wilding, G., Petrylak, D. & Holland, C. (2004). Cancer, 101, 2202–2208.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldman, J. M. F. R. C. P. & Melo, J. V. (2003). N. Engl. J. Med. pp. 1451–1464.  Web of Science CrossRef Google Scholar
First citationLeander, J. D. (1992). Epilepsia, 33, 705–711.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Melo, V. & Ellena, J. (2014). Acta Cryst. E70, o1261–o1262.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, A. & Simpson, J. (2009). Acta Cryst. E65, o1845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Wang, G. & Guo, W. (2009). Tetrahedron, 65, 3480–3485.  Web of Science CSD CrossRef CAS Google Scholar
First citationWeisberg, E., Manley, P., Mestan, J., Cowan-Jacob, S., Ray, A. & Griffin, J. D. (2006). Br. J. Cancer, 94, 1765–1769.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o389-o390
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds