organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(p-tol­yl)-6-(tri­fluoro­meth­yl)benzo[b]thio­phene-3-carbo­nitrile

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: sananda@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 April 2015; accepted 5 May 2015; online 9 May 2015)

In the title compound, C17H10F3NS, the dihedral angle between the fused benzo­thio­phene ring system (r.m.s. deviation = 0.042 Å) and the benzene ring is 29.78 (11)°. The crystal structure features C—H⋯F and very weak C—H⋯N hydrogen bonds, which generate (001) sheets.

1. Related literature

For background to benzo­thio­phene derivatives, see: Bettinetti et al. (2002[Bettinetti, L., Schlotter, K., Hübner, H. & Gmeiner, P. (2002). J. Med. Chem. 45, 4594-4597.]); Roberts & Hartley (2004[Roberts, C. F. & Hartley, R. C. (2004). J. Org. Chem. 69, 6145-6148.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H10F3NS

  • Mr = 317.33

  • Monoclinic, P 21 /c

  • a = 13.7576 (5) Å

  • b = 14.5343 (6) Å

  • c = 7.1353 (3) Å

  • β = 92.817 (3)°

  • V = 1425.03 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.29 mm−1

  • T = 293 K

  • 0.30 × 0.27 × 0.25 mm

2.2. Data collection

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.546, Tmax = 0.598

  • 7045 measured reflections

  • 2316 independent reflections

  • 1860 reflections with I > 2σ(I)

  • Rint = 0.063

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.141

  • S = 1.06

  • 2316 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N11i 0.93 2.62 3.411 (4) 143
C22—H22C⋯F15ii 0.96 2.45 3.375 (4) 162
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Benzo[b]thiophene derivatives are important heterocyclic compounds because of their various applications in medicinal chemistry. They represent an important heterocyclic core and are shown to display a range of promising pharmacological properties such as antipsychotic, antidepressive, antithrombolytic, dopamine receptor antagonist and 5-lipoxygenase inhibitor. Number of 2-arylbenzo[b]thiophene derivatives have indeed, these sulfur heterocycles are essential components of clinically important drugs such as Clopidogrel (Bettinetti et al., 2002), Raloxifene (Roberts & Hartley, 2004) and Zileuton.

Related literature top

For background to benzothiophene derivatives, see: Bettinetti et al. (2002); Roberts & Hartley (2004).

Experimental top

To a solution of 2-(2-chlorophenyl)acetonitrile (1.0 mmol), methyl benzodithioate (1.0 mmol) in DMF (2 ml), K3PO4 (2.0 mmol), pivalic acid (1.5 mmol), cuprous iodide (0.2 mmol) were added. The mixture was stirred at 80°C and progress was monitored by TLC. When the dithioesters could no longer be detected, the reaction mixture was extracted with EtOAc (3 × 10 ml). The organic layer was dried over anhydrous Na2SO4. The solvent was then removed under reduced pressure and the residue was purified by silica gel chromatography. White solid single crystals were obtained from slow evaporation of its solvent.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atom, with C–H = 0.93–0.97 Å, and with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 2 for details).
2-(p-Tolyl)-6-(trifluoromethyl)benzo[b]thiophene-3-carbonitrile top
Crystal data top
C17H10F3NSF(000) = 648
Mr = 317.33Dx = 1.479 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2316 reflections
a = 13.7576 (5) Åθ = 6.4–64.7°
b = 14.5343 (6) ŵ = 2.29 mm1
c = 7.1353 (3) ÅT = 293 K
β = 92.817 (3)°Block, colourless
V = 1425.03 (10) Å30.30 × 0.27 × 0.25 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2316 independent reflections
Radiation source: Rotating Anode1860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 18.4 pixels mm-1θmax = 64.7°, θmin = 6.4°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1516
Tmin = 0.546, Tmax = 0.598l = 86
7045 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0726P)2 + 0.2459P]
where P = (Fo2 + 2Fc2)/3
2316 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C17H10F3NSV = 1425.03 (10) Å3
Mr = 317.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.7576 (5) ŵ = 2.29 mm1
b = 14.5343 (6) ÅT = 293 K
c = 7.1353 (3) Å0.30 × 0.27 × 0.25 mm
β = 92.817 (3)°
Data collection top
Bruker X8 Proteum
diffractometer
2316 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1860 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.598Rint = 0.063
7045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
2316 reflectionsΔρmin = 0.40 e Å3
200 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51842 (5)0.17833 (5)0.23250 (10)0.0214 (2)
F130.10569 (13)0.01265 (15)0.0632 (4)0.0518 (8)
F140.14077 (13)0.11887 (16)0.0469 (3)0.0450 (7)
F150.11752 (13)0.10360 (17)0.2439 (3)0.0484 (8)
N110.64047 (19)0.14957 (19)0.3600 (4)0.0297 (9)
C20.4251 (2)0.0996 (2)0.1944 (4)0.0202 (9)
C30.3272 (2)0.1178 (2)0.1485 (4)0.0212 (9)
C40.2634 (2)0.0444 (2)0.1373 (4)0.0210 (9)
C50.2957 (2)0.0459 (2)0.1679 (4)0.0217 (9)
C60.3920 (2)0.0643 (2)0.2103 (4)0.0203 (8)
C70.4583 (2)0.0087 (2)0.2249 (4)0.0178 (8)
C80.5601 (2)0.0069 (2)0.2816 (4)0.0174 (8)
C90.6018 (2)0.0928 (2)0.2949 (4)0.0183 (8)
C100.6079 (2)0.0785 (2)0.3267 (4)0.0204 (9)
C120.1574 (2)0.0636 (2)0.0993 (4)0.0253 (9)
C160.7014 (2)0.1180 (2)0.3613 (4)0.0182 (8)
C170.7798 (2)0.0588 (2)0.3430 (4)0.0198 (9)
C180.8717 (2)0.0826 (2)0.4144 (4)0.0236 (9)
C190.8890 (2)0.1655 (2)0.5074 (4)0.0235 (9)
C200.8107 (2)0.2255 (2)0.5220 (4)0.0217 (9)
C210.7190 (2)0.2025 (2)0.4506 (4)0.0194 (8)
C220.9878 (2)0.1887 (2)0.5939 (5)0.0306 (10)
H30.305600.177600.126000.0250*
H50.251200.094100.159400.0260*
H60.413100.124500.229100.0240*
H170.770400.002600.282300.0240*
H180.923200.042100.399900.0280*
H200.820500.282000.581100.0260*
H210.668000.243900.461900.0230*
H22A0.996400.158700.713400.0460*
H22B0.993000.254100.610700.0460*
H22C1.037000.168100.512800.0460*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0194 (4)0.0164 (4)0.0281 (4)0.0001 (3)0.0009 (3)0.0010 (3)
F130.0215 (9)0.0385 (13)0.0941 (17)0.0028 (9)0.0107 (10)0.0047 (12)
F140.0293 (10)0.0607 (15)0.0442 (12)0.0123 (10)0.0052 (9)0.0178 (11)
F150.0285 (10)0.0782 (17)0.0390 (11)0.0161 (10)0.0059 (9)0.0160 (11)
N110.0321 (15)0.0196 (16)0.0369 (16)0.0022 (12)0.0027 (12)0.0019 (13)
C20.0237 (15)0.0198 (16)0.0171 (14)0.0014 (12)0.0024 (11)0.0003 (13)
C30.0214 (14)0.0211 (17)0.0210 (14)0.0051 (12)0.0011 (12)0.0005 (13)
C40.0223 (15)0.0258 (17)0.0149 (13)0.0007 (13)0.0005 (11)0.0005 (13)
C50.0244 (15)0.0211 (17)0.0196 (14)0.0038 (12)0.0001 (12)0.0010 (13)
C60.0268 (15)0.0145 (15)0.0198 (14)0.0004 (12)0.0026 (12)0.0003 (12)
C70.0216 (14)0.0207 (16)0.0111 (13)0.0011 (12)0.0023 (11)0.0016 (12)
C80.0203 (14)0.0170 (15)0.0149 (13)0.0012 (12)0.0017 (11)0.0007 (12)
C90.0220 (14)0.0191 (16)0.0142 (13)0.0006 (12)0.0041 (11)0.0006 (12)
C100.0199 (14)0.0220 (18)0.0191 (15)0.0039 (13)0.0011 (12)0.0006 (13)
C120.0240 (15)0.0254 (18)0.0265 (16)0.0002 (13)0.0002 (13)0.0017 (14)
C160.0206 (14)0.0174 (16)0.0166 (13)0.0004 (12)0.0005 (11)0.0015 (12)
C170.0219 (15)0.0169 (16)0.0209 (14)0.0001 (12)0.0034 (12)0.0013 (13)
C180.0229 (15)0.0240 (17)0.0241 (15)0.0042 (13)0.0026 (12)0.0007 (13)
C190.0237 (15)0.0293 (18)0.0175 (14)0.0019 (13)0.0003 (12)0.0033 (13)
C200.0240 (15)0.0223 (17)0.0187 (14)0.0044 (13)0.0011 (12)0.0009 (13)
C210.0204 (14)0.0186 (16)0.0195 (14)0.0003 (12)0.0032 (11)0.0022 (13)
C220.0251 (16)0.037 (2)0.0295 (16)0.0014 (14)0.0015 (13)0.0015 (16)
Geometric parameters (Å, º) top
S1—C21.731 (3)C16—C171.391 (4)
S1—C91.735 (3)C16—C211.399 (4)
F13—C121.335 (4)C17—C181.384 (4)
F14—C121.328 (4)C18—C191.390 (4)
F15—C121.326 (4)C19—C201.394 (4)
N11—C101.146 (4)C19—C221.503 (4)
C2—C31.396 (4)C20—C211.378 (4)
C2—C71.411 (4)C3—H30.9300
C3—C41.381 (4)C5—H50.9300
C4—C51.399 (4)C6—H60.9300
C4—C121.496 (4)C17—H170.9300
C5—C61.371 (4)C18—H180.9300
C6—C71.400 (4)C20—H200.9300
C7—C81.439 (4)C21—H210.9300
C8—C91.375 (4)C22—H22A0.9600
C8—C101.434 (4)C22—H22B0.9600
C9—C161.474 (4)C22—H22C0.9600
C2—S1—C992.44 (14)C17—C16—C21117.9 (3)
S1—C2—C3127.7 (2)C16—C17—C18120.6 (3)
S1—C2—C7111.3 (2)C17—C18—C19121.6 (3)
C3—C2—C7121.0 (3)C18—C19—C20117.6 (3)
C2—C3—C4118.1 (3)C18—C19—C22121.4 (3)
C3—C4—C5121.3 (3)C20—C19—C22121.0 (3)
C3—C4—C12118.5 (3)C19—C20—C21121.2 (3)
C5—C4—C12120.2 (3)C16—C21—C20121.1 (3)
C4—C5—C6120.9 (3)C2—C3—H3121.00
C5—C6—C7119.2 (3)C4—C3—H3121.00
C2—C7—C6119.6 (3)C4—C5—H5120.00
C2—C7—C8111.3 (2)C6—C5—H5120.00
C6—C7—C8129.0 (3)C5—C6—H6120.00
C7—C8—C9113.6 (3)C7—C6—H6120.00
C7—C8—C10120.6 (3)C16—C17—H17120.00
C9—C8—C10125.8 (3)C18—C17—H17120.00
S1—C9—C8111.4 (2)C17—C18—H18119.00
S1—C9—C16119.8 (2)C19—C18—H18119.00
C8—C9—C16128.7 (3)C19—C20—H20119.00
N11—C10—C8175.6 (3)C21—C20—H20119.00
F13—C12—F14106.3 (2)C16—C21—H21120.00
F13—C12—F15106.1 (2)C20—C21—H21119.00
F13—C12—C4112.7 (2)C19—C22—H22A109.00
F14—C12—F15106.5 (2)C19—C22—H22B109.00
F14—C12—C4112.6 (2)C19—C22—H22C109.00
F15—C12—C4112.2 (2)H22A—C22—H22B109.00
C9—C16—C17121.9 (3)H22A—C22—H22C110.00
C9—C16—C21120.1 (3)H22B—C22—H22C109.00
C9—S1—C2—C3175.6 (3)C2—C7—C8—C90.5 (4)
C9—S1—C2—C71.4 (2)C2—C7—C8—C10177.7 (3)
C2—S1—C9—C81.7 (2)C6—C7—C8—C9175.0 (3)
C2—S1—C9—C16175.3 (2)C6—C7—C8—C102.2 (5)
S1—C2—C3—C4175.5 (2)C7—C8—C9—S11.6 (3)
C7—C2—C3—C41.2 (4)C7—C8—C9—C16175.2 (3)
S1—C2—C7—C6176.7 (2)C10—C8—C9—S1178.6 (2)
S1—C2—C7—C80.8 (3)C10—C8—C9—C161.8 (5)
C3—C2—C7—C60.5 (4)S1—C9—C16—C17154.1 (2)
C3—C2—C7—C8176.4 (3)S1—C9—C16—C2127.8 (4)
C2—C3—C4—C51.0 (4)C8—C9—C16—C1729.4 (5)
C2—C3—C4—C12176.5 (3)C8—C9—C16—C21148.7 (3)
C3—C4—C5—C60.1 (4)C9—C16—C17—C18177.0 (3)
C12—C4—C5—C6177.4 (3)C21—C16—C17—C181.2 (4)
C3—C4—C12—F13170.3 (3)C9—C16—C21—C20176.8 (3)
C3—C4—C12—F1450.1 (4)C17—C16—C21—C201.5 (4)
C3—C4—C12—F1570.0 (3)C16—C17—C18—C190.4 (4)
C5—C4—C12—F1312.2 (4)C17—C18—C19—C201.8 (4)
C5—C4—C12—F14132.4 (3)C17—C18—C19—C22176.6 (3)
C5—C4—C12—F15107.5 (3)C18—C19—C20—C211.5 (4)
C4—C5—C6—C70.7 (4)C22—C19—C20—C21176.9 (3)
C5—C6—C7—C20.5 (4)C19—C20—C21—C160.1 (4)
C5—C6—C7—C8174.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N11i0.932.623.411 (4)143
C22—H22C···F15ii0.962.453.375 (4)162
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N11i0.932.623.411 (4)143
C22—H22C···F15ii0.962.453.375 (4)162
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors are thankful to Institution of Excellence, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility.

References

First citationBettinetti, L., Schlotter, K., Hübner, H. & Gmeiner, P. (2002). J. Med. Chem. 45, 4594–4597.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRoberts, C. F. & Hartley, R. C. (2004). J. Org. Chem. 69, 6145–6148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds