organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o395-o396

Crystal structure of 3-(3,4,5-tri­meth­­oxy­phen­yl)-1,2,3,4-tetra­hydro­cyclo­penta[b]indole-2-carb­­oxy­lic acid

aLaboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154 – 13083-970, Campinas, SP, Brazil, and bLaboratory of Single Crystal X-Ray Diffraction, Institute of Chemistry, University of Campinas, PO Box 6154 – 13083-970, Campinas, SP, Brazil
*Correspondence e-mail: dsimoni@iqm.unicamp.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 May 2015; accepted 5 May 2015; online 13 May 2015)

In the title compound, C21H21NO5, obtained from a Morita–Baylis–Hillman adduct, the hydrogenated five-membered ring adopts a shallow envelope conformation, with the C atom bearing the carb­oxy­lic acid substituent deviating by 0.237 (1) Å from the mean plane of the other four atoms (r.m.s. deviation = 0.007 Å). The dihedral angle between the fused ring system (all atoms; r.m.s. deviation = 0.057 Å) and the pendant trimeth­oxy benzene ring is 66.65 (3)°. The C atoms of the meta-meth­oxy groups lie close to the plane of the benzene ring [deviations = 0.052 (1) and −0.083 (1) Å], whereas the C atom of the para-meth­oxy group is significantly displaced [deviation = −1.289 (1) Å]. In the crystal, carb­oxy­lic acid inversion dimers generate R22(8) loops. The dimers are connected by N—H⋯O hydrogen bonds, forming [011] chains. A C—H⋯O inter­action is also observed.

1. Related literature

For compounds presenting an indole skeleton unit and examples of them, see: Xu et al. (2012[Xu, B., Guo, Z. L., Jin, W. Y., Wang, Z. P., Peng, Y. G. & Guo, Q. X. (2012). Angew. Chem. Int. Ed. 51, 1059-1062.]); Humphrey & Kuethe (2006[Humphrey, G. R. & Kuethe, J. T. (2006). Chem. Rev. 106, 2875-2911.]). For methods of synthesis of indoles, see: Jordan et al. (2011[Jordan, J. A., Gribble, G. W. & Badenock, J. C. (2011). Tetrahedron Lett. 52, 6772-6774.]); Humphrey & Kuethe (2006[Humphrey, G. R. & Kuethe, J. T. (2006). Chem. Rev. 106, 2875-2911.]). For the use of Morita–Baylis–Hillman adducts as building blocks for organic synthesis, see: Basavaiah & Veeraraghavaiah (2012[Basavaiah, D. & Veeraraghavaiah, G. (2012). Chem. Soc. Rev. 41, 68-78.]); Coelho et al. (2002[Coelho, F., Almeida, W. P., Veronese, D., Mateus, C. R., Lopes, E. C. S., Rossi, R. C., Silveira, G. P. C. & Pavam, C. H. (2002). Tetrahedron, 58, 7437-7447.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H21NO5

  • Mr = 367.39

  • Triclinic, [P \overline 1]

  • a = 7.203 (1) Å

  • b = 9.5844 (12) Å

  • c = 12.9957 (17) Å

  • α = 91.939 (5)°

  • β = 97.198 (6)°

  • γ = 91.716 (5)°

  • V = 889.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.34 × 0.17 × 0.13 mm

2.2. Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.987

  • 100846 measured reflections

  • 7825 independent reflections

  • 6558 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.119

  • S = 0.94

  • 7825 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.84 1.84 2.6748 (8) 176
N1—H1⋯O1ii 0.88 2.20 2.9041 (8) 136
C12—H12B⋯O2iii 0.98 2.62 3.3905 (11) 137
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

Indole skeleton is an aromatic heterocycle possessing a benzene ring fused to a pyrrole ring which exhibits a wide range of biological and pharmacological activities. Compounds presenting this moiety have been successfully synthesized and used in medicinal chemistry (Xu et al., 2012). In spite of the number of developed methods for the preparation of indoles (Xu et al., 2012; Humphrey and Kuethe, 2006), our inter­est to use Morita–Baylis–Hillman adducts as building blocks for organic synthesis resulted in a successful stereoselective strategy to obtain compounds of this class.

Experimental top

Synthesis and crystallization top

\ The synthesis of 3-(3,4,5-tri­meth­oxy­phenyl)-1,2,3,4-tetra­hydro­cyclo­penta­[b]indole-2-\ carb­oxy­lic acid started with a mixture of 1 mmol of (±)-methyl 2-[hy­droxy­(3,4,5-tri­meth­oxy­phenyl)-methyl]­acrylate (the Morita–Baylis–Hillman adduct), 1.2 mmol of indole and 1 mmol of 2-iodoxybenzoic acid, in aceto­nitrile (5 mL). This mixture was kept under reflux to give 1,3-di­carbonyl compound, which was further reduced by sodium tetra­hydro­borate, resulting in the corresponding β-hy­droxy-carbonyl.

This was then treated with tri­fluoro­methane­sulfonic acid and submitted to basic hydrolysis. The cyclo­penta­[b]indole, obtained with excellent diastereoselectivity (>99:1) and overall yield of 70%, was purified by flash chromatography (hexane/ethyl acetate (60:40)). 3-(3,4,5-tri­meth­oxy­phenyl)-1,2,3,4-tetra­hydro­cyclo­penta­[b]indole-2-\ carb­oxy­lic acid was dissolved in 10:1 (v/v) chloro­form/methanol mixture and kept in the freezer to allow slowly formation of irregular colorless single crystals.

Refinement top

The positions of hydrogen atoms bound to carbon atoms were idealized and calculated by riding model, with C—H bond lengths of 0.95, 0.98 and 0.99 Å for phenyl, methyl and methyl­ene, respectively. The isotropic displacement parameters values (Uiso(H)) were fixed at 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other attached H atoms.

Results and discussion top

The molecules of the title compound present a tri­meth­oxy­phenyl ring bonded to a system of three rings, in which an indole skeleton unit is fused to a five-membered ring possessing a carb­oxy­lic unit (Fig. 1). It crystallized in P1 space group and has a conformational structure determined by intra and inter­molecular nonclassical (C—H—O) and inter­molecular (O—H—O and N—H—O) bonding (Table 1, Fig. 2).

All of the rings in the structure are almost planar, with r.m.s. of 0.010, 0.066, 0.006 and 0.006 Å for tri­meth­oxy­phenyl, five-membered, pyrrole and benzene rings, respectively. The three rings fused system is essentially planar (r.m.s. deviation of 0.057 Å) and make a plane-plane angle of 113.35° with the tri­meth­oxy­phenyl ring.

With respect to the pyrrole ring, the benzene ring and the five-membered ring make dihedral angles C14—C13—N1—C5 = 176.67 (7)° and C3—C4—C16—C17 = -175.72 (8)°, respectively. The dihedral angle between the five-membered ring and its tri­meth­oxy­phenyl substituent (C5—C6—C7—C8) is -164.79 (16)°, while that between the five-membered ring and the carb­oxy­lic unit (C16—C17—C18—O4) is -56.30 (8)°, which is consistent with the expected trans relative configuration of this isomer.

Related literature top

For compounds presenting an indole skeleton unit and examples of them, see: Xu et al. (2012); Humphrey & Kuethe (2006). For methods of synthesis of indoles, see: Jordan et al. (2011); Humphrey & Kuethe (2006). For the use of Morita–Baylis–Hillman adducts as building blocks for organic synthesis, see: Basavaiah & Veeraraghavaiah (2012); Coelho et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2003) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing hydrogen-bonding interactions.
3-(3,4,5-Trimethoxyphenyl)-1,2,3,4-tetrahydrocyclopenta[b]indole-2-carboxylic acid top
Crystal data top
C21H21NO5Z = 2
Mr = 367.39F(000) = 388
Triclinic, P1Dx = 1.372 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.203 (1) ÅCell parameters from 9708 reflections
b = 9.5844 (12) Åθ = 2.6–38°
c = 12.9957 (17) ŵ = 0.10 mm1
α = 91.939 (5)°T = 100 K
β = 97.198 (6)°Irregular, colourless
γ = 91.716 (5)°0.34 × 0.17 × 0.13 mm
V = 889.1 (2) Å3
Data collection top
Bruker APEX CCD
diffractometer
7825 independent reflections
Radiation source: fine-focus sealed tube6558 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.031
phi and ω scansθmax = 35.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 1111
Tmin = 0.967, Tmax = 0.987k = 1515
100846 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.079P)2 + 0.2107P]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
7825 reflectionsΔρmax = 0.58 e Å3
248 parametersΔρmin = 0.27 e Å3
Crystal data top
C21H21NO5γ = 91.716 (5)°
Mr = 367.39V = 889.1 (2) Å3
Triclinic, P1Z = 2
a = 7.203 (1) ÅMo Kα radiation
b = 9.5844 (12) ŵ = 0.10 mm1
c = 12.9957 (17) ÅT = 100 K
α = 91.939 (5)°0.34 × 0.17 × 0.13 mm
β = 97.198 (6)°
Data collection top
Bruker APEX CCD
diffractometer
7825 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
6558 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.987Rint = 0.031
100846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.94Δρmax = 0.58 e Å3
7825 reflectionsΔρmin = 0.27 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67935 (8)0.20458 (6)0.61432 (4)0.01701 (10)
O20.85593 (8)0.13066 (7)0.45301 (4)0.02026 (11)
O30.52886 (8)0.14039 (6)0.07684 (5)0.02004 (11)
O40.27178 (9)0.00009 (6)0.05008 (5)0.02346 (12)
H40.33800.04550.01310.035*
O50.36545 (8)0.34406 (6)0.59020 (4)0.01927 (11)
N10.20865 (9)0.57757 (6)0.22742 (5)0.01503 (10)
H10.29930.62850.26360.018*
C10.33636 (10)0.65445 (9)0.10853 (6)0.01960 (13)
H1A0.46330.66710.08160.024*
C20.25626 (10)0.52708 (8)0.09178 (6)0.01735 (12)
H20.32640.45380.05220.021*
C30.07052 (9)0.50802 (7)0.13406 (5)0.01394 (11)
C40.05337 (9)0.39331 (7)0.13915 (5)0.01372 (11)
C50.21619 (9)0.43919 (7)0.19636 (5)0.01331 (11)
C60.36676 (9)0.33516 (7)0.20740 (5)0.01314 (11)
H60.46700.36240.16450.016*
C70.45411 (9)0.30909 (7)0.31710 (5)0.01289 (11)
C80.62291 (9)0.24015 (7)0.33130 (5)0.01407 (11)
H80.68730.21870.27360.017*
C90.69665 (9)0.20293 (7)0.43061 (5)0.01429 (11)
C100.60455 (9)0.23835 (7)0.51579 (5)0.01402 (11)
C110.58428 (11)0.08561 (8)0.65126 (6)0.02034 (13)
H11A0.44930.10050.64380.031*
H11B0.63020.07370.72460.031*
H11C0.60860.00160.61060.031*
C120.94999 (11)0.08870 (10)0.36769 (7)0.02528 (16)
H12A0.86430.03110.31790.038*
H12B1.05870.03450.39270.038*
H12C0.99180.17160.33370.038*
C130.03194 (10)0.62141 (7)0.19116 (5)0.01434 (11)
C140.04783 (11)0.75053 (8)0.20623 (6)0.01750 (12)
H140.02230.82560.24370.021*
C150.23267 (11)0.76525 (8)0.16470 (6)0.01940 (13)
H150.29050.85170.17430.023*
C160.06472 (10)0.24706 (7)0.09663 (5)0.01538 (12)
H16A0.06820.24480.02070.018*
H16B0.04150.18700.11250.018*
C170.25541 (9)0.20188 (7)0.15655 (5)0.01396 (11)
H170.22390.14320.21460.017*
C180.36696 (10)0.11304 (7)0.09044 (5)0.01515 (12)
C190.36205 (9)0.34551 (7)0.40179 (5)0.01444 (11)
H190.24770.39310.39180.017*
C200.43904 (10)0.31162 (7)0.50143 (5)0.01433 (11)
C210.19448 (12)0.41674 (9)0.58029 (6)0.02137 (14)
H21A0.20900.50110.54110.032*
H21B0.16310.44290.64940.032*
H21C0.09390.35610.54350.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0210 (2)0.0173 (2)0.0115 (2)0.00177 (18)0.00212 (16)0.00000 (16)
O20.0164 (2)0.0267 (3)0.0175 (2)0.00815 (19)0.00017 (17)0.00044 (19)
O30.0183 (2)0.0206 (3)0.0210 (2)0.00222 (19)0.00369 (18)0.00790 (19)
O40.0243 (3)0.0181 (3)0.0283 (3)0.0019 (2)0.0082 (2)0.0119 (2)
O50.0259 (3)0.0208 (3)0.0124 (2)0.0063 (2)0.00682 (18)0.00088 (18)
N10.0170 (2)0.0125 (2)0.0146 (2)0.00230 (18)0.00148 (18)0.00317 (18)
C10.0167 (3)0.0230 (3)0.0192 (3)0.0042 (2)0.0019 (2)0.0012 (2)
C20.0155 (3)0.0197 (3)0.0166 (3)0.0007 (2)0.0015 (2)0.0002 (2)
C30.0151 (3)0.0150 (3)0.0116 (2)0.0016 (2)0.00173 (19)0.0009 (2)
C40.0155 (3)0.0137 (3)0.0118 (2)0.0010 (2)0.00152 (19)0.00208 (19)
C50.0160 (3)0.0121 (3)0.0115 (2)0.0017 (2)0.00085 (19)0.00173 (19)
C60.0153 (2)0.0127 (3)0.0113 (2)0.0017 (2)0.00156 (19)0.00173 (19)
C70.0147 (2)0.0127 (3)0.0111 (2)0.0013 (2)0.00167 (19)0.00187 (19)
C80.0146 (2)0.0153 (3)0.0123 (2)0.0017 (2)0.00190 (19)0.0019 (2)
C90.0136 (2)0.0149 (3)0.0139 (2)0.0015 (2)0.00027 (19)0.0019 (2)
C100.0163 (3)0.0142 (3)0.0109 (2)0.0002 (2)0.00008 (19)0.00137 (19)
C110.0230 (3)0.0187 (3)0.0195 (3)0.0007 (2)0.0022 (2)0.0047 (2)
C120.0191 (3)0.0344 (4)0.0229 (3)0.0105 (3)0.0035 (3)0.0029 (3)
C130.0168 (3)0.0141 (3)0.0120 (2)0.0029 (2)0.00133 (19)0.00108 (19)
C140.0212 (3)0.0152 (3)0.0158 (3)0.0046 (2)0.0008 (2)0.0018 (2)
C150.0206 (3)0.0199 (3)0.0181 (3)0.0071 (2)0.0024 (2)0.0002 (2)
C160.0169 (3)0.0139 (3)0.0148 (3)0.0006 (2)0.0008 (2)0.0035 (2)
C170.0176 (3)0.0124 (3)0.0119 (2)0.0016 (2)0.00258 (19)0.00245 (19)
C180.0195 (3)0.0134 (3)0.0124 (2)0.0028 (2)0.0016 (2)0.0023 (2)
C190.0163 (3)0.0156 (3)0.0117 (2)0.0032 (2)0.0025 (2)0.0011 (2)
C200.0179 (3)0.0139 (3)0.0115 (2)0.0014 (2)0.0033 (2)0.00188 (19)
C210.0257 (3)0.0198 (3)0.0208 (3)0.0062 (3)0.0110 (3)0.0001 (2)
Geometric parameters (Å, º) top
O1—C101.3785 (8)C7—C81.3961 (9)
O1—C111.4396 (10)C8—C91.3949 (10)
O2—C91.3632 (9)C8—H80.9500
O2—C121.4229 (10)C9—C101.3974 (9)
O3—C181.2232 (9)C10—C201.3973 (10)
O4—C181.3206 (9)C11—H11A0.9800
O4—H40.8400C11—H11B0.9800
O5—C201.3591 (8)C11—H11C0.9800
O5—C211.4269 (10)C12—H12A0.9800
N1—C51.3779 (9)C12—H12B0.9800
N1—C131.3834 (9)C12—H12C0.9800
N1—H10.8800C13—C141.3980 (10)
C1—C21.3879 (11)C14—C151.3857 (11)
C1—C151.4078 (11)C14—H140.9500
C1—H1A0.9500C15—H150.9500
C2—C31.4009 (10)C16—C171.5719 (10)
C2—H20.9500C16—H16A0.9900
C3—C131.4271 (10)C16—H16B0.9900
C3—C41.4347 (9)C17—C181.5078 (9)
C4—C51.3601 (9)C17—H171.0000
C4—C161.4975 (10)C19—C201.3961 (9)
C5—C61.4921 (9)C19—H190.9500
C6—C71.5164 (9)C21—H21A0.9800
C6—C171.5686 (10)C21—H21B0.9800
C6—H61.0000C21—H21C0.9800
C7—C191.3942 (9)
C10—O1—C11112.48 (6)H11A—C11—H11C109.5
C9—O2—C12116.77 (6)H11B—C11—H11C109.5
C18—O4—H4109.5O2—C12—H12A109.5
C20—O5—C21117.21 (6)O2—C12—H12B109.5
C5—N1—C13107.21 (6)H12A—C12—H12B109.5
C5—N1—H1126.4O2—C12—H12C109.5
C13—N1—H1126.4H12A—C12—H12C109.5
C2—C1—C15121.12 (7)H12B—C12—H12C109.5
C2—C1—H1A119.4N1—C13—C14129.41 (7)
C15—C1—H1A119.4N1—C13—C3108.66 (6)
C1—C2—C3119.10 (7)C14—C13—C3121.91 (6)
C1—C2—H2120.5C15—C14—C13117.73 (7)
C3—C2—H2120.5C15—C14—H14121.1
C2—C3—C13118.90 (6)C13—C14—H14121.1
C2—C3—C4135.29 (7)C14—C15—C1121.22 (7)
C13—C3—C4105.75 (6)C14—C15—H15119.4
C5—C4—C3107.07 (6)C1—C15—H15119.4
C5—C4—C16112.09 (6)C4—C16—C17101.36 (5)
C3—C4—C16140.65 (6)C4—C16—H16A111.5
C4—C5—N1111.28 (6)C17—C16—H16A111.5
C4—C5—C6115.13 (6)C4—C16—H16B111.5
N1—C5—C6133.48 (6)C17—C16—H16B111.5
C5—C6—C7116.44 (5)H16A—C16—H16B109.3
C5—C6—C17100.20 (5)C18—C17—C6113.56 (6)
C7—C6—C17111.15 (5)C18—C17—C16113.05 (5)
C5—C6—H6109.5C6—C17—C16109.05 (5)
C7—C6—H6109.5C18—C17—H17106.9
C17—C6—H6109.5C6—C17—H17106.9
C19—C7—C8120.56 (6)C16—C17—H17106.9
C19—C7—C6120.63 (6)O3—C18—O4123.34 (6)
C8—C7—C6118.70 (6)O3—C18—C17124.14 (6)
C9—C8—C7119.72 (6)O4—C18—C17112.51 (6)
C9—C8—H8120.1C7—C19—C20119.54 (6)
C7—C8—H8120.1C7—C19—H19120.2
O2—C9—C8124.76 (6)C20—C19—H19120.2
O2—C9—C10115.23 (6)O5—C20—C19125.19 (6)
C8—C9—C10120.01 (6)O5—C20—C10114.64 (6)
O1—C10—C20119.89 (6)C19—C20—C10120.17 (6)
O1—C10—C9120.14 (6)O5—C21—H21A109.5
C20—C10—C9119.94 (6)O5—C21—H21B109.5
O1—C11—H11A109.5H21A—C21—H21B109.5
O1—C11—H11B109.5O5—C21—H21C109.5
H11A—C11—H11B109.5H21A—C21—H21C109.5
O1—C11—H11C109.5H21B—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.841.842.6748 (8)176
N1—H1···O1ii0.882.202.9041 (8)136
C12—H12B···O2iii0.982.623.3905 (11)137
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.841.842.6748 (8)176
N1—H1···O1ii0.882.202.9041 (8)136
C12—H12B···O2iii0.982.623.3905 (11)137
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2013/07600-3 and 09/51602-5) for financial support and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a research fellowship. MTRJr and MSS thank CNPq and Fapesp for fellowships.

References

First citationBasavaiah, D. & Veeraraghavaiah, G. (2012). Chem. Soc. Rev. 41, 68–78.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoelho, F., Almeida, W. P., Veronese, D., Mateus, C. R., Lopes, E. C. S., Rossi, R. C., Silveira, G. P. C. & Pavam, C. H. (2002). Tetrahedron, 58, 7437–7447.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHumphrey, G. R. & Kuethe, J. T. (2006). Chem. Rev. 106, 2875–2911.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJordan, J. A., Gribble, G. W. & Badenock, J. C. (2011). Tetrahedron Lett. 52, 6772–6774.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, B., Guo, Z. L., Jin, W. Y., Wang, Z. P., Peng, Y. G. & Guo, Q. X. (2012). Angew. Chem. Int. Ed. 51, 1059–1062.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o395-o396
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds