organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (4Z)-4-[(2E)-1-hy­droxy-3-(naphthalen-2-yl)prop-2-en-1-yl­­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aDepartment of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 May 2015; accepted 4 May 2015; online 9 May 2015)

In the title compound, C23H18N2O2, the pyrazole ring subtends dihedral angles of 2.01 (13) and 1.55 (10)° with the pendant benzene ring and the naphthalene ring system, respectively. The mol­ecule is almost planar (r.m.s. deviation for the 27 non-H atoms = 0.025 Å) and intra­molecular O—H⋯O and C—H⋯O hydrogen bonds both close S(6) loops. In the crystal, very weak aromatic ππ stacking inter­actions between the benzene and the pyrazole rings, with centroid–centroid distances of 3.8913 (14) and 3.9285 (15) Å, are observed.

1. Related literature

For related structures, see: Chaudhry et al. (2012[Chaudhry, F., Tahir, M. N., Khan, M. A., Ather, A. Q. & Asif, N. (2012). Acta Cryst. E68, o2044.]); Holzer et al. (1999[Holzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799-818.]); Malik et al. (2009[Malik, K. I., Munawar, M. A., Khan, M. A., Nadeem, S. & Mukhtar-ul-Hassan (2009). Acta Cryst. E65, o3046.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H18N2O2

  • Mr = 354.39

  • Monoclinic, P 21 /n

  • a = 6.7067 (8) Å

  • b = 17.525 (2) Å

  • c = 15.784 (2) Å

  • β = 101.152 (6)°

  • V = 1820.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.40 × 0.16 × 0.14 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.986

  • 13979 measured reflections

  • 3574 independent reflections

  • 1855 reflections with I > 2σ(I)

  • Rint = 0.055

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.140

  • S = 0.99

  • 3574 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 1.80 2.555 (2) 153
C6—H6⋯O1 0.93 2.30 2.940 (3) 126

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The crystal structures of 5-methyl-2-phenyl-4-((E)-3-phenyl-2-hydroxy- prop-2-enylidene)-1,2-dihydro-3H-pyrazol-3-one (Holzer et al., 1999), (4Z)-4-((2E)-1-hydroxy-3-(4-methoxyphenyl)prop-2-en-1- ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (Malik et al., 2009) and (4Z)-4-((2E)-1-hydroxy-3-(3-nitrophenyl)prop- 2-en-1-ylidene)-3-methyl-1-(4-methylphenyl)-1H-pyrazol-5(4H)-one (Chaudhry, et al., 2012) have been published which are related to the title compound (I, Fig. 1). (I) is synthesized for the biological studies as well as for the preparation of different metal complexes.

In (I), the benzene ring A (C1–C6) and the (4Z)-4-[(2E)-1- hydroxy-3-(naphthalen-2-yl)prop-2-en-1-ylidene]-5-methyl-2,4-dihydro-3H -pyrazol-3-one moiety B (C7 –C23/N1/N2/O1/O2) are almost planar with r.m.s. deviations of 0.0022 and 0.0179 Å, respectively. The dihedral angle between A/B is 2.30 (13)°. There exist intramolecular H-bonding of O—H···O type completing S (6) loop. There exist ππ interactions at a distance of 3.9285 (15) Å between the centroids of Cg1—Cg2i and Cg2— Cg1ii [i = 1 + x, y, z and ii = -1 + x, y, z], where Cg1 and Cg2 are the centroids of heterocyclic ring C (N1/N2/C7/C8/C9) and benzene ring A (Fig. 2). Similarly, there exist ππ interactions at a distance of 3.8913 (14) Å between the centroids of Cg3—Cg1i and Cg1— Cg3ii [i = 1 + x, y, z and ii = -1 + x, y, z], where Cg3 is the centroids of ring D (C14/C15/C16/C17/C22/C23).

Related literature top

For related structures, see: Chaudhry et al. (2012); Holzer et al. (1999); Malik et al. (2009).

Experimental top

4-Acetyl-3-methyl-1-phenyl-5-hydroxy pyrazole (0.218 g, 1 mmol), 2-naphthaldehyde (0.234 g, 1.5 mmol) in glacial acetic acid (10 ml) and concentrated sulfuric acid (0.2 ml) was stirred at 353–360 K for 8 h. The reaction mixture was diluted with distilled water (50 ml). The precipitate was filtered, washed with methanol and dried. The crude product was purified by column chromatography using n-hexane and ethyl acetate mixtures as eluents. The product was recrystallized form n-hexane solution to afford purple needle. Yield = 56%, m.p. = 491 K

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å, O—H= 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and hydroxy and x =1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing, showing ππ interactions.
(4Z)-4-[(2E)-1-Hydroxy-3-(naphthalen-2-yl)prop-2-en-1-ylidene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C23H18N2O2F(000) = 744
Mr = 354.39Dx = 1.293 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.7067 (8) ÅCell parameters from 1855 reflections
b = 17.525 (2) Åθ = 2.6–26.0°
c = 15.784 (2) ŵ = 0.08 mm1
β = 101.152 (6)°T = 296 K
V = 1820.1 (4) Å3Needle, purple
Z = 40.40 × 0.16 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3574 independent reflections
Radiation source: fine-focus sealed tube1855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 7.80 pixels mm-1θmax = 26.0°, θmin = 2.6°
ω scansh = 85
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2121
Tmin = 0.968, Tmax = 0.986l = 1919
13979 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0552P)2]
where P = (Fo2 + 2Fc2)/3
3574 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C23H18N2O2V = 1820.1 (4) Å3
Mr = 354.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7067 (8) ŵ = 0.08 mm1
b = 17.525 (2) ÅT = 296 K
c = 15.784 (2) Å0.40 × 0.16 × 0.14 mm
β = 101.152 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3574 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1855 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.986Rint = 0.055
13979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 0.99Δρmax = 0.13 e Å3
3574 reflectionsΔρmin = 0.16 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1673 (2)0.54343 (9)0.17724 (11)0.0684 (5)
O20.4599 (3)0.49546 (9)0.10912 (11)0.0672 (5)
H2A0.36510.52150.11860.101*
N10.1223 (3)0.46669 (10)0.29460 (12)0.0527 (5)
N20.2155 (3)0.40098 (11)0.33743 (12)0.0593 (6)
C10.0446 (3)0.49941 (13)0.32414 (15)0.0510 (6)
C20.1094 (4)0.46827 (15)0.39423 (17)0.0714 (8)
H20.04300.42600.42210.086*
C30.2734 (4)0.49985 (18)0.42332 (19)0.0851 (9)
H30.31520.47880.47110.102*
C40.3740 (4)0.56112 (17)0.3831 (2)0.0800 (8)
H40.48430.58180.40280.096*
C50.3108 (4)0.59203 (15)0.3130 (2)0.0764 (8)
H50.37940.63390.28510.092*
C60.1459 (4)0.56188 (14)0.28280 (16)0.0639 (7)
H60.10400.58350.23530.077*
C70.2133 (3)0.48753 (12)0.22764 (15)0.0508 (6)
C80.3725 (3)0.43280 (12)0.22720 (14)0.0462 (6)
C90.3620 (3)0.38203 (12)0.29714 (15)0.0533 (6)
C100.4899 (4)0.31336 (14)0.32827 (16)0.0743 (8)
H10A0.47880.27670.28240.111*
H10B0.44340.29100.37640.111*
H10C0.62930.32860.34580.111*
C110.4960 (3)0.43911 (13)0.16670 (15)0.0503 (6)
C120.6639 (3)0.38941 (12)0.15888 (15)0.0535 (6)
H120.69320.34890.19740.064*
C130.7796 (3)0.39858 (13)0.09910 (15)0.0532 (6)
H130.74810.43970.06170.064*
C140.9479 (3)0.35123 (12)0.08677 (15)0.0490 (6)
C151.0124 (4)0.28705 (13)0.13931 (16)0.0590 (7)
H150.94610.27500.18410.071*
C161.1694 (4)0.24273 (13)0.12549 (17)0.0607 (7)
H161.20710.20050.16060.073*
C171.2762 (3)0.25934 (13)0.05903 (16)0.0519 (6)
C181.4400 (4)0.21453 (14)0.04322 (18)0.0667 (7)
H181.47920.17160.07710.080*
C191.5422 (4)0.23311 (16)0.02099 (19)0.0730 (8)
H191.64920.20280.03080.088*
C201.4857 (4)0.29768 (17)0.07192 (18)0.0735 (8)
H201.55710.31040.11490.088*
C211.3268 (4)0.34231 (15)0.05928 (16)0.0632 (7)
H211.29050.38490.09390.076*
C221.2170 (3)0.32398 (13)0.00630 (14)0.0491 (6)
C231.0518 (3)0.36872 (13)0.02178 (14)0.0518 (6)
H231.01210.41110.01280.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0733 (12)0.0593 (11)0.0730 (12)0.0127 (9)0.0152 (9)0.0219 (9)
O20.0714 (14)0.0630 (12)0.0694 (12)0.0042 (9)0.0190 (9)0.0172 (10)
N10.0513 (13)0.0557 (12)0.0505 (12)0.0075 (10)0.0082 (10)0.0075 (10)
N20.0575 (14)0.0632 (13)0.0577 (13)0.0130 (11)0.0125 (10)0.0150 (11)
C10.0440 (16)0.0540 (15)0.0523 (15)0.0045 (12)0.0028 (11)0.0076 (12)
C20.066 (2)0.0815 (19)0.0692 (19)0.0154 (16)0.0189 (15)0.0112 (16)
C30.079 (2)0.103 (2)0.079 (2)0.0145 (19)0.0293 (17)0.0075 (18)
C40.067 (2)0.086 (2)0.089 (2)0.0127 (18)0.0177 (17)0.0186 (19)
C50.073 (2)0.0635 (18)0.088 (2)0.0187 (15)0.0044 (16)0.0115 (17)
C60.0651 (18)0.0612 (16)0.0645 (17)0.0099 (14)0.0105 (13)0.0034 (14)
C70.0488 (16)0.0475 (14)0.0535 (15)0.0038 (12)0.0029 (12)0.0040 (12)
C80.0389 (14)0.0490 (14)0.0491 (14)0.0021 (12)0.0051 (11)0.0045 (11)
C90.0494 (16)0.0521 (14)0.0568 (15)0.0034 (12)0.0065 (12)0.0079 (13)
C100.0706 (19)0.0756 (18)0.0787 (19)0.0235 (15)0.0194 (14)0.0298 (15)
C110.0480 (16)0.0451 (14)0.0533 (15)0.0085 (12)0.0013 (12)0.0003 (12)
C120.0501 (16)0.0504 (14)0.0584 (16)0.0051 (13)0.0064 (12)0.0034 (12)
C130.0521 (16)0.0483 (14)0.0581 (16)0.0096 (12)0.0081 (12)0.0002 (12)
C140.0445 (15)0.0464 (14)0.0552 (15)0.0089 (12)0.0076 (12)0.0017 (12)
C150.0578 (17)0.0536 (15)0.0682 (17)0.0082 (13)0.0185 (13)0.0080 (13)
C160.0576 (17)0.0504 (15)0.0726 (18)0.0062 (14)0.0088 (13)0.0127 (13)
C170.0431 (15)0.0480 (14)0.0632 (17)0.0093 (12)0.0070 (12)0.0082 (12)
C180.0623 (19)0.0541 (16)0.082 (2)0.0060 (14)0.0104 (15)0.0042 (14)
C190.0643 (19)0.0697 (19)0.087 (2)0.0030 (15)0.0187 (16)0.0200 (17)
C200.070 (2)0.089 (2)0.0660 (19)0.0130 (17)0.0261 (15)0.0147 (17)
C210.0609 (18)0.0693 (17)0.0593 (17)0.0065 (15)0.0113 (13)0.0028 (14)
C220.0466 (16)0.0519 (15)0.0475 (14)0.0113 (13)0.0057 (11)0.0056 (12)
C230.0496 (16)0.0482 (14)0.0554 (16)0.0064 (12)0.0042 (12)0.0039 (12)
Geometric parameters (Å, º) top
O1—C71.262 (2)C10—H10C0.9600
O2—C111.332 (2)C11—C121.447 (3)
O2—H2A0.8200C12—C131.342 (3)
N1—C71.368 (3)C12—H120.9300
N1—C11.415 (3)C13—C141.444 (3)
N1—N21.418 (2)C13—H130.9300
N2—C91.312 (3)C14—C231.381 (3)
C1—C21.377 (3)C14—C151.414 (3)
C1—C61.383 (3)C15—C161.360 (3)
C2—C31.387 (3)C15—H150.9300
C2—H20.9300C16—C171.410 (3)
C3—C41.359 (4)C16—H160.9300
C3—H30.9300C17—C181.412 (3)
C4—C51.371 (4)C17—C221.416 (3)
C4—H40.9300C18—C191.368 (3)
C5—C61.390 (3)C18—H180.9300
C5—H50.9300C19—C201.397 (3)
C6—H60.9300C19—H190.9300
C7—C81.436 (3)C20—C211.368 (3)
C8—C111.385 (3)C20—H200.9300
C8—C91.430 (3)C21—C221.418 (3)
C9—C101.504 (3)C21—H210.9300
C10—H10A0.9600C22—C231.417 (3)
C10—H10B0.9600C23—H230.9300
C11—O2—H2A109.5O2—C11—C12115.5 (2)
C7—N1—C1130.2 (2)C8—C11—C12126.1 (2)
C7—N1—N2111.32 (18)C13—C12—C11123.6 (2)
C1—N1—N2118.43 (19)C13—C12—H12118.2
C9—N2—N1106.08 (18)C11—C12—H12118.2
C2—C1—C6119.4 (2)C12—C13—C14126.8 (2)
C2—C1—N1119.8 (2)C12—C13—H13116.6
C6—C1—N1120.8 (2)C14—C13—H13116.6
C1—C2—C3120.1 (3)C23—C14—C15118.1 (2)
C1—C2—H2119.9C23—C14—C13119.5 (2)
C3—C2—H2119.9C15—C14—C13122.4 (2)
C4—C3—C2121.0 (3)C16—C15—C14121.2 (2)
C4—C3—H3119.5C16—C15—H15119.4
C2—C3—H3119.5C14—C15—H15119.4
C3—C4—C5119.1 (3)C15—C16—C17121.5 (2)
C3—C4—H4120.4C15—C16—H16119.3
C5—C4—H4120.4C17—C16—H16119.3
C4—C5—C6121.1 (3)C16—C17—C18122.8 (2)
C4—C5—H5119.4C16—C17—C22118.5 (2)
C6—C5—H5119.4C18—C17—C22118.7 (2)
C1—C6—C5119.3 (3)C19—C18—C17121.1 (3)
C1—C6—H6120.3C19—C18—H18119.4
C5—C6—H6120.3C17—C18—H18119.4
O1—C7—N1127.1 (2)C18—C19—C20120.0 (3)
O1—C7—C8127.3 (2)C18—C19—H19120.0
N1—C7—C8105.57 (19)C20—C19—H19120.0
C11—C8—C9135.0 (2)C21—C20—C19120.8 (3)
C11—C8—C7119.6 (2)C21—C20—H20119.6
C9—C8—C7105.3 (2)C19—C20—H20119.6
N2—C9—C8111.71 (19)C20—C21—C22120.4 (2)
N2—C9—C10118.5 (2)C20—C21—H21119.8
C8—C9—C10129.8 (2)C22—C21—H21119.8
C9—C10—H10A109.5C17—C22—C23118.8 (2)
C9—C10—H10B109.5C17—C22—C21118.9 (2)
H10A—C10—H10B109.5C23—C22—C21122.3 (2)
C9—C10—H10C109.5C14—C23—C22121.9 (2)
H10A—C10—H10C109.5C14—C23—H23119.0
H10B—C10—H10C109.5C22—C23—H23119.0
O2—C11—C8118.4 (2)
C7—N1—N2—C90.1 (2)C7—C8—C11—O21.4 (3)
C1—N1—N2—C9179.18 (19)C9—C8—C11—C120.3 (4)
C7—N1—C1—C2179.6 (2)C7—C8—C11—C12178.99 (19)
N2—N1—C1—C21.5 (3)O2—C11—C12—C130.8 (3)
C7—N1—C1—C61.2 (4)C8—C11—C12—C13179.6 (2)
N2—N1—C1—C6177.66 (19)C11—C12—C13—C14179.44 (19)
C6—C1—C2—C30.6 (4)C12—C13—C14—C23180.0 (2)
N1—C1—C2—C3179.7 (2)C12—C13—C14—C150.2 (4)
C1—C2—C3—C40.7 (4)C23—C14—C15—C161.3 (3)
C2—C3—C4—C50.3 (4)C13—C14—C15—C16179.0 (2)
C3—C4—C5—C60.2 (4)C14—C15—C16—C170.8 (4)
C2—C1—C6—C50.1 (3)C15—C16—C17—C18179.8 (2)
N1—C1—C6—C5179.3 (2)C15—C16—C17—C220.2 (3)
C4—C5—C6—C10.3 (4)C16—C17—C18—C19178.9 (2)
C1—N1—C7—O11.4 (4)C22—C17—C18—C190.7 (3)
N2—N1—C7—O1179.63 (19)C17—C18—C19—C200.4 (4)
C1—N1—C7—C8178.9 (2)C18—C19—C20—C211.0 (4)
N2—N1—C7—C80.0 (2)C19—C20—C21—C220.4 (4)
O1—C7—C8—C110.5 (3)C16—C17—C22—C230.7 (3)
N1—C7—C8—C11179.13 (19)C18—C17—C22—C23179.63 (19)
O1—C7—C8—C9179.5 (2)C16—C17—C22—C21178.4 (2)
N1—C7—C8—C90.1 (2)C18—C17—C22—C211.3 (3)
N1—N2—C9—C80.2 (2)C20—C21—C22—C170.7 (3)
N1—N2—C9—C10179.94 (18)C20—C21—C22—C23179.8 (2)
C11—C8—C9—N2179.0 (2)C15—C14—C23—C220.7 (3)
C7—C8—C9—N20.2 (3)C13—C14—C23—C22179.51 (18)
C11—C8—C9—C101.3 (4)C17—C22—C23—C140.2 (3)
C7—C8—C9—C10179.9 (2)C21—C22—C23—C14178.8 (2)
C9—C8—C11—O2179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.802.555 (2)153
C6—H6···O10.932.302.940 (3)126
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.802.555 (2)153
C6—H6···O10.932.302.940 (3)126
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhry, F., Tahir, M. N., Khan, M. A., Ather, A. Q. & Asif, N. (2012). Acta Cryst. E68, o2044.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799–818.  CrossRef CAS Google Scholar
First citationMalik, K. I., Munawar, M. A., Khan, M. A., Nadeem, S. & Mukhtar-ul-Hassan (2009). Acta Cryst. E65, o3046.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds