organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o407-o408

Crystal structure of (4Z)-4-[(2E)-3-(2-chloro­phen­yl)-1-hy­dr­oxy­prop-2-en-1-yl­­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aDepartment of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 May 2015; accepted 11 May 2015; online 20 May 2015)

In the title compound, C19H15ClN2O2, the pyrazole ring is almost planar (r.m.s. deviation = 0.002 Å) and subtends dihedral angles of 5.31 (16) and 1.86 (16)° with the phenyl and chloro­benzene rings, respectively. An intra­molecular O—H⋯O hydrogen bond closes an S(6) ring and a short C—H⋯O contact is also observed. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions to generate (001) sheets. Weak aromatic ππ inter­actions between the chloro­benzene and pyrazole rings, with a centroid–centroid distance of 3.7956 (17) Å are also observed.

1. Related literature

For related structures, see: Chaudhry et al. (2012[Chaudhry, F., Tahir, M. N., Khan, M. A., Ather, A. Q. & Asif, N. (2012). Acta Cryst. E68, o2044.]); Holzer et al. (1999[Holzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799-818.]); Malik et al. (2009[Malik, K. I., Munawar, M. A., Khan, M. A., Nadeem, S. & Mukhtar-ul-Hassan, (2009). Acta Cryst. E65, o3046.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H15ClN2O2

  • Mr = 338.78

  • Orthorhombic, P 21 21 21

  • a = 7.2348 (3) Å

  • b = 12.8737 (6) Å

  • c = 17.7843 (7) Å

  • V = 1656.41 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.34 × 0.28 × 0.16 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.923, Tmax = 0.960

  • 8199 measured reflections

  • 3593 independent reflections

  • 2455 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.091

  • S = 1.00

  • 3593 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack x determined using 771 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.06 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 1.74 2.501 (3) 154
C6—H6⋯O1 0.93 2.29 2.933 (4) 126
C10—H10B⋯O2i 0.96 2.55 3.444 (4) 155
C16—H16⋯O2ii 0.93 2.56 3.405 (4) 151
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The crystal structures of 5-methyl-2-phenyl-4-((E)-3-phenyl-2-hydroxy- prop-2-enylidene)-1,2-dihydro-3H-pyrazol-3-one (Holzer et al., 1999), (4Z)-4-((2E)-1-hydroxy-3-(4-methoxyphenyl)prop-2-en-1- ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (Malik et al., 2009) and (4Z)-4-((2E)-1-hydroxy-3-(3-nitrophenyl)prop- 2-en-1-ylidene)-3-methyl-1-(4-methylphenyl)-1H-pyrazol-5(4H)-one (Chaudhry, et al., 2012) have been published which are related to the title compound (I, Fig. 1). (I) is synthesized for the biological studies as well as for the preparation of different metal complexes.

In (I), the benzene ring A (C1–C6) and the 4-[(2E)-3-(2-chlorophenyl)-1- hydroxyprop-2-en-1-ylidene]-5-methyl-2,4-dihydro-3H-pyrazol-3-one moiety (C7 –C19/N1/N2/O1/O2/CL1) are planar with r. m. s. deviation of 0.0016 and 0.0158 Å, respectively. The dihedral angle between A/B is 4.87 (14)°. There exist intramolecular H-bonding of O—H···O type completing S (6) loop (Bernstein et al., 1995). The molecules are interlimked due to C—H···O interactions (Table 1, Fig. 2). There exist ππ interactions at a distance of 3.7956 (17) Å between the centeroids of Cg1—Cg2i and Cg2— Cg1ii [i = 1 + x, y, z and ii = -1 + x, y, z], where Cg1 and Cg2 are the centroids of heterocyclic ring C (N1/N2/C7/C8/C9) and chloro containing benzene ring D (C14–C19), respectively.

Related literature top

For related structures, see: Chaudhry et al. (2012); Holzer et al. (1999); Malik et al. (2009).

Experimental top

4-Acetyl-3-methyl-1-phenyl-5-hydroxypyrazole (0.218 g, 1 mmol), 2-chlorobenzaldehyde (0.211 g, 1.5 mmol) in glacial acetic acid (10 ml) and concentrated sulfuric acid (0.2 ml) was stirred at 353–360 K for 6 h. The reaction mixture was diluted with distilled water (50 ml). The precipitate was filtered, washed with methanol and dried. The crude product was purified by column chromatography using n-hexane and ethyl acetate mixtures as eluents. The product was recrystallized from n-hexane solution to afford yellow plates. Yield = 60%; m.p. 453 K

Refinement top

The H atoms were positioned geometrically (C–H = 0.93–0.96 Å, O—H= 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and hydroxy and x =1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing, which shows that molecules are interlinked due to O—H···O bondings.
(4Z)-4-[(2E)-3-(2-Chlorophenyl)-1-hydroxyprop-2-en-1-ylidene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C19H15ClN2O2Dx = 1.358 Mg m3
Mr = 338.78Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2455 reflections
a = 7.2348 (3) Åθ = 2.3–27.0°
b = 12.8737 (6) ŵ = 0.24 mm1
c = 17.7843 (7) ÅT = 296 K
V = 1656.41 (12) Å3Plate, yellow
Z = 40.34 × 0.28 × 0.16 mm
F(000) = 704
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3593 independent reflections
Radiation source: fine-focus sealed tube2455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 7.70 pixels mm-1θmax = 27.0°, θmin = 2.3°
ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1613
Tmin = 0.923, Tmax = 0.960l = 2220
8199 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0369P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3593 reflectionsΔρmax = 0.13 e Å3
219 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack x determined using 771 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (4)
Crystal data top
C19H15ClN2O2V = 1656.41 (12) Å3
Mr = 338.78Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2348 (3) ŵ = 0.24 mm1
b = 12.8737 (6) ÅT = 296 K
c = 17.7843 (7) Å0.34 × 0.28 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3593 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2455 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.960Rint = 0.034
8199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.13 e Å3
S = 1.00Δρmin = 0.17 e Å3
3593 reflectionsAbsolute structure: Flack x determined using 771 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
219 parametersAbsolute structure parameter: 0.06 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0397 (4)0.0392 (2)0.44274 (15)0.0467 (7)
C21.1377 (5)0.0394 (3)0.47830 (17)0.0585 (9)
H21.09270.10700.47860.070*
C31.3019 (5)0.0158 (3)0.5130 (2)0.0757 (11)
H31.36840.06840.53660.091*
C41.3695 (5)0.0835 (4)0.51358 (19)0.0788 (11)
H41.48060.09830.53760.095*
C51.2721 (5)0.1611 (3)0.47842 (19)0.0754 (11)
H51.31740.22870.47860.091*
C61.1075 (5)0.1391 (3)0.44288 (18)0.0612 (9)
H61.04210.19180.41900.073*
C70.7566 (4)0.0745 (2)0.36469 (16)0.0472 (7)
C80.6056 (4)0.0103 (2)0.34325 (16)0.0454 (7)
C90.6447 (4)0.0886 (2)0.37664 (16)0.0495 (7)
C100.5360 (5)0.1872 (2)0.37362 (19)0.0705 (10)
H10A0.59470.23870.40450.106*
H10B0.53050.21150.32260.106*
H10C0.41300.17470.39180.106*
C110.4645 (4)0.0533 (2)0.29952 (16)0.0492 (8)
C120.3000 (4)0.0007 (3)0.27371 (16)0.0512 (8)
H120.28350.07020.28640.061*
C130.1726 (4)0.0468 (3)0.23235 (17)0.0507 (8)
H130.19550.11620.22120.061*
C140.0018 (4)0.0040 (2)0.20232 (15)0.0455 (8)
C150.0492 (5)0.0993 (3)0.21263 (16)0.0572 (8)
H150.02810.14280.24000.069*
C160.2102 (5)0.1386 (3)0.18351 (18)0.0649 (10)
H160.24050.20800.19120.078*
C170.3274 (5)0.0754 (3)0.1427 (2)0.0672 (10)
H170.43680.10200.12320.081*
C180.2818 (5)0.0269 (3)0.13120 (18)0.0625 (9)
H180.35980.06990.10360.075*
C190.1203 (4)0.0655 (2)0.16072 (15)0.0481 (8)
Cl10.06694 (12)0.19522 (6)0.14234 (5)0.0687 (3)
N10.8699 (3)0.01404 (19)0.40719 (13)0.0472 (6)
N20.7992 (4)0.0870 (2)0.41388 (14)0.0539 (7)
O10.7814 (3)0.16964 (16)0.34743 (13)0.0638 (6)
O20.4797 (3)0.15046 (17)0.28011 (14)0.0659 (7)
H2A0.57250.17540.29950.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0501 (18)0.0511 (19)0.0389 (15)0.0025 (16)0.0027 (14)0.0056 (14)
C20.065 (2)0.060 (2)0.0516 (18)0.0003 (18)0.0134 (17)0.0015 (16)
C30.078 (3)0.083 (3)0.065 (2)0.009 (2)0.030 (2)0.005 (2)
C40.067 (2)0.097 (3)0.072 (2)0.009 (2)0.028 (2)0.000 (2)
C50.076 (3)0.075 (3)0.076 (2)0.018 (2)0.020 (2)0.003 (2)
C60.063 (2)0.059 (2)0.062 (2)0.0041 (17)0.0131 (18)0.0029 (17)
C70.0489 (18)0.0464 (19)0.0461 (16)0.0063 (15)0.0043 (15)0.0001 (15)
C80.0464 (18)0.0436 (18)0.0463 (16)0.0051 (14)0.0026 (14)0.0017 (14)
C90.0484 (18)0.0452 (18)0.0549 (18)0.0022 (15)0.0027 (15)0.0021 (15)
C100.071 (2)0.048 (2)0.093 (3)0.0056 (19)0.021 (2)0.0053 (19)
C110.0522 (19)0.0455 (19)0.0500 (17)0.0059 (16)0.0014 (15)0.0019 (14)
C120.0507 (19)0.049 (2)0.0538 (17)0.0027 (16)0.0040 (16)0.0020 (16)
C130.049 (2)0.051 (2)0.0522 (17)0.0037 (16)0.0020 (15)0.0016 (15)
C140.0431 (18)0.051 (2)0.0422 (15)0.0051 (15)0.0016 (13)0.0021 (14)
C150.060 (2)0.056 (2)0.0559 (19)0.0020 (19)0.0010 (17)0.0079 (16)
C160.067 (2)0.060 (2)0.068 (2)0.015 (2)0.007 (2)0.0019 (18)
C170.051 (2)0.079 (3)0.072 (2)0.009 (2)0.0011 (18)0.016 (2)
C180.053 (2)0.070 (2)0.064 (2)0.0112 (18)0.0118 (17)0.0112 (19)
C190.0488 (18)0.045 (2)0.0500 (17)0.0073 (15)0.0004 (15)0.0081 (15)
Cl10.0766 (6)0.0463 (5)0.0832 (6)0.0147 (5)0.0178 (5)0.0019 (5)
N10.0470 (15)0.0445 (16)0.0502 (14)0.0025 (12)0.0078 (12)0.0009 (12)
N20.0547 (16)0.0438 (16)0.0631 (17)0.0022 (14)0.0102 (13)0.0033 (13)
O10.0687 (14)0.0432 (13)0.0794 (15)0.0022 (11)0.0151 (13)0.0083 (12)
O20.0594 (15)0.0523 (15)0.0860 (17)0.0026 (11)0.0196 (13)0.0104 (13)
Geometric parameters (Å, º) top
C1—C61.377 (4)C10—H10C0.9600
C1—C21.387 (4)C11—O21.302 (3)
C1—N11.419 (4)C11—C121.453 (4)
C2—C31.372 (4)C12—C131.328 (4)
C2—H20.9300C12—H120.9300
C3—C41.370 (5)C13—C141.454 (4)
C3—H30.9300C13—H130.9300
C4—C51.373 (5)C14—C151.392 (4)
C4—H40.9300C14—C191.398 (4)
C5—C61.377 (4)C15—C161.372 (5)
C5—H50.9300C15—H150.9300
C6—H60.9300C16—C171.381 (5)
C7—O11.276 (3)C16—H160.9300
C7—N11.360 (3)C17—C181.373 (5)
C7—C81.421 (4)C17—H170.9300
C8—C111.397 (4)C18—C191.374 (4)
C8—C91.433 (4)C18—H180.9300
C9—N21.299 (4)C19—Cl11.745 (3)
C9—C101.494 (4)N1—N21.403 (3)
C10—H10A0.9600O2—H2A0.8200
C10—H10B0.9600
C6—C1—C2119.9 (3)O2—C11—C8117.8 (3)
C6—C1—N1121.5 (3)O2—C11—C12116.4 (3)
C2—C1—N1118.6 (3)C8—C11—C12125.8 (3)
C3—C2—C1119.1 (3)C13—C12—C11121.6 (3)
C3—C2—H2120.4C13—C12—H12119.2
C1—C2—H2120.4C11—C12—H12119.2
C4—C3—C2121.2 (4)C12—C13—C14128.2 (3)
C4—C3—H3119.4C12—C13—H13115.9
C2—C3—H3119.4C14—C13—H13115.9
C3—C4—C5119.5 (4)C15—C14—C19116.3 (3)
C3—C4—H4120.2C15—C14—C13122.6 (3)
C5—C4—H4120.2C19—C14—C13121.1 (3)
C4—C5—C6120.2 (4)C16—C15—C14121.9 (3)
C4—C5—H5119.9C16—C15—H15119.1
C6—C5—H5119.9C14—C15—H15119.1
C1—C6—C5120.0 (3)C15—C16—C17120.1 (3)
C1—C6—H6120.0C15—C16—H16119.9
C5—C6—H6120.0C17—C16—H16119.9
O1—C7—N1126.8 (3)C18—C17—C16119.8 (3)
O1—C7—C8127.0 (3)C18—C17—H17120.1
N1—C7—C8106.3 (3)C16—C17—H17120.1
C11—C8—C7118.8 (3)C17—C18—C19119.6 (3)
C11—C8—C9136.6 (3)C17—C18—H18120.2
C7—C8—C9104.7 (3)C19—C18—H18120.2
N2—C9—C8111.5 (3)C18—C19—C14122.4 (3)
N2—C9—C10118.9 (3)C18—C19—Cl1117.5 (2)
C8—C9—C10129.5 (3)C14—C19—Cl1120.1 (2)
C9—C10—H10A109.5C7—N1—N2111.0 (2)
C9—C10—H10B109.5C7—N1—C1129.7 (3)
H10A—C10—H10B109.5N2—N1—C1119.3 (2)
C9—C10—H10C109.5C9—N2—N1106.5 (2)
H10A—C10—H10C109.5C11—O2—H2A109.5
H10B—C10—H10C109.5
C6—C1—C2—C30.2 (5)C12—C13—C14—C19178.7 (3)
N1—C1—C2—C3179.9 (3)C19—C14—C15—C160.1 (4)
C1—C2—C3—C40.5 (5)C13—C14—C15—C16179.6 (3)
C2—C3—C4—C50.4 (6)C14—C15—C16—C170.1 (5)
C3—C4—C5—C60.0 (6)C15—C16—C17—C180.3 (5)
C2—C1—C6—C50.1 (5)C16—C17—C18—C190.3 (5)
N1—C1—C6—C5179.5 (3)C17—C18—C19—C140.3 (5)
C4—C5—C6—C10.2 (5)C17—C18—C19—Cl1178.5 (2)
O1—C7—C8—C111.1 (5)C15—C14—C19—C180.2 (4)
N1—C7—C8—C11179.1 (2)C13—C14—C19—C18179.5 (3)
O1—C7—C8—C9179.7 (3)C15—C14—C19—Cl1178.3 (2)
N1—C7—C8—C90.1 (3)C13—C14—C19—Cl11.3 (4)
C11—C8—C9—N2179.1 (3)O1—C7—N1—N2179.5 (3)
C7—C8—C9—N20.1 (3)C8—C7—N1—N20.3 (3)
C11—C8—C9—C101.1 (6)O1—C7—N1—C10.2 (5)
C7—C8—C9—C10179.8 (3)C8—C7—N1—C1180.0 (2)
C7—C8—C11—O20.5 (4)C6—C1—N1—C75.6 (5)
C9—C8—C11—O2179.4 (3)C2—C1—N1—C7174.8 (3)
C7—C8—C11—C12179.1 (3)C6—C1—N1—N2174.8 (3)
C9—C8—C11—C120.2 (5)C2—C1—N1—N24.9 (4)
O2—C11—C12—C130.2 (5)C8—C9—N2—N10.3 (3)
C8—C11—C12—C13179.8 (3)C10—C9—N2—N1179.9 (2)
C11—C12—C13—C14180.0 (3)C7—N1—N2—C90.4 (3)
C12—C13—C14—C151.7 (5)C1—N1—N2—C9179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.742.501 (3)154
C6—H6···O10.932.292.933 (4)126
C10—H10B···O2i0.962.553.444 (4)155
C16—H16···O2ii0.932.563.405 (4)151
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.742.501 (3)154
C6—H6···O10.932.292.933 (4)126
C10—H10B···O2i0.962.553.444 (4)155
C16—H16···O2ii0.932.563.405 (4)151
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhry, F., Tahir, M. N., Khan, M. A., Ather, A. Q. & Asif, N. (2012). Acta Cryst. E68, o2044.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799–818.  CrossRef CAS Google Scholar
First citationMalik, K. I., Munawar, M. A., Khan, M. A., Nadeem, S. & Mukhtar-ul-Hassan, (2009). Acta Cryst. E65, o3046.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o407-o408
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds