organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-{[(5-nitro­thio­phen-2-yl)methyl­­idene]amino}­phenol

aDepartment of Physics, Faculty of Arts & Science, Amasya University, TR-05100 Amasya, Turkey, bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, 55139 Samsun, Turkey, cDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and dDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: hasantanak@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 May 2015; accepted 14 May 2015; online 23 May 2015)

The title compound, C11H8N2O3S, is roughly planar; the di­hedral angle between the planes of the thio­phene and benzene rings is 8.38 (10)°. An intra­molecular O—H⋯N hydrogen bond generates an S(5) ring motif. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of O—H⋯O hydrogen bonds with an R22(22) graph-set motif. Aromatic ππ stacking inter­actions [centroid–centroid sep­ar­ations = 3.653 (3) and 3.852 (3) Å] link the dimers into a three-dimensional network.

1. Related literature

For Schiff bases as ligands, see: Aydoğan et al. (2001[Aydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]); Tanak et al. (2009[Tanak, H., Erşahin, F., Ağar, E., Yavuz, M. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2291.]). For related structures, see: Tanak et al. (2013[Tanak, H., Agar, A. A. & Büyükgüngör, O. (2013). J. Mol. Struct. 1048, 41-50.], 2014[Tanak, H., Agar, A. A. & Büyükgüngör, O. (2014). Spectrochim. Acta Part A, 118, 672-682.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H8N2O3S

  • Mr = 248.25

  • Monoclinic, P 21 /c

  • a = 10.642 (5) Å

  • b = 7.043 (5) Å

  • c = 14.535 (5) Å

  • β = 93.566 (5)°

  • V = 1087.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.68 × 0.37 × 0.15 mm

2.2. Data collection

  • Stoe IPDS diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.877, Tmax = 0.965

  • 7883 measured reflections

  • 2254 independent reflections

  • 1696 reflections with I > 2σ(I)

  • Rint = 0.114

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.100

  • S = 0.98

  • 2254 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O2i 0.78 (3) 2.54 (3) 3.192 (3) 141 (3)
O3—H1⋯N2 0.78 (3) 2.23 (3) 2.711 (2) 121 (3)
Symmetry code: (i) -x+1, -y, -z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA ; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Schiff bases have long been employed as ligands for the complexation of metal ions (Aydoğan et al., 2001; Tanak et al., 2009).

In the title compound (Fig. 1), the molecular structure is almost planar. The dihedral angle between the C1—C4/S1 thiophene and the C6—C11 phenyl rings is 8.38 (10)°. The imino group is coplanar with the nitrothiophene ring as it can be shown by the C3–C4–C5–N2 torsion angle is 178.60 (19)°. The length of the C5=N2 double bond is 1.264 (2) Å, it is slightly shorter than standart 1.28 Å value of C=N double bond and consistent with the related stuructures (Tanak et al., 2013; Tanak et al., 2014). The C1–S1 and C4–S1 bond lengths of the thiophene ring are slightly different than the accepted value for an Csp2–S single bond (1.76 Å), resulting from the conjugation of the electrons of atom S1 with atoms C1 and C4 (Tanak et al., 2014).

The crystal structure is stabilized by O–H···N and O–H···O type intra and intermolecular hydrogen bonds. An intramolecular O3—H1···N2 interaction (Table 1 and Fig. 1) generates an S(5) ring motif, 1995). In the crystal structure, pairs of O3—H1···O2 hydrogen bond link the molecules to form inversion dimer (Fig. 2) with an R22(22) ring motif. The crystal structure also feaures ππ stacking interactions with distances of Cg1···Cg2 = 3.653 (3) Å [symmetry code = 1 - x,-1/2 + y,1/2 - z] and Cg1···Cg2 = 3.852 (3) Å [symmetry code = 1 - x,1/2 + y,1/2 - z], where Cg1 and Cg2 are the centroids of C1—C4/S1 and C6—C11 rings, respectively. The details of the hydrogen bonds are summarized in Table 1. A packing diagram of the title compound is shown in Fig. 3.

Related literature top

For Schiff bases as ligands, see: Aydoğan et al. (2001); Tanak et al. (2009). For related structures, see: Tanak et al. (2013, 2014).

Experimental top

The title compound was prepared by refluxing a mixture of a solution containing 5-nitrothiophene-2-carbaldehyde (18.4 mg, 0.117 mmol) in ethanol (20 ml) and a solution containing 2-aminophenol (12.8 mg, 0.117 mmol) in ethanol (20 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 60%; m.p. 430–432 K).

Refinement top

C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The position of the H1 atom was obtained from a difference map of the electron density in the unit-cell and was refined freely.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability diplacement ellipsoids.
[Figure 2] Fig. 2. Centrosymmetric dimer with a central R22(22) ring motif. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. Packing diagram of the title compound.
2-{[(5-Nitrothiophen-2-yl)methylidene]amino}phenol top
Crystal data top
C11H8N2O3SF(000) = 512
Mr = 248.25Dx = 1.516 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 9881 reflections
a = 10.642 (5) Åθ = 1.9–29.0°
b = 7.043 (5) ŵ = 0.29 mm1
c = 14.535 (5) ÅT = 293 K
β = 93.566 (5)°Prism, dark brown
V = 1087.3 (10) Å30.68 × 0.37 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
2254 independent reflections
Radiation source: fine-focus sealed tube1696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.114
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.9°
rotation method scansh = 1313
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 88
Tmin = 0.877, Tmax = 0.965l = 1818
7883 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0675P)2]
where P = (Fo2 + 2Fc2)/3
2254 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C11H8N2O3SV = 1087.3 (10) Å3
Mr = 248.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.642 (5) ŵ = 0.29 mm1
b = 7.043 (5) ÅT = 293 K
c = 14.535 (5) Å0.68 × 0.37 × 0.15 mm
β = 93.566 (5)°
Data collection top
Stoe IPDS
diffractometer
2254 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1696 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.965Rint = 0.114
7883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.89 e Å3
2254 reflectionsΔρmin = 0.45 e Å3
186 parameters
Special details top

Experimental. 360 frames, detector distance = 80 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58190 (4)0.11508 (6)0.11107 (3)0.04605 (16)
N20.41409 (13)0.10939 (19)0.27382 (9)0.0449 (3)
N10.77113 (14)0.1231 (2)0.00532 (10)0.0532 (4)
C10.73710 (15)0.1181 (2)0.08813 (11)0.0453 (4)
C40.62428 (15)0.1069 (2)0.22648 (11)0.0460 (4)
C60.32806 (15)0.1149 (2)0.34380 (11)0.0438 (4)
O20.68543 (14)0.1159 (2)0.06611 (9)0.0733 (4)
C50.53109 (16)0.1040 (3)0.29481 (12)0.0496 (4)
C70.35846 (18)0.1360 (3)0.43745 (12)0.0512 (4)
C30.75216 (17)0.1053 (3)0.24363 (13)0.0625 (5)
O10.88152 (13)0.1329 (3)0.02073 (10)0.0807 (5)
C20.81816 (17)0.1119 (3)0.16344 (13)0.0581 (5)
O30.16507 (15)0.0835 (3)0.22346 (11)0.0904 (6)
C80.26579 (19)0.1470 (3)0.49960 (13)0.0574 (5)
C110.20103 (17)0.1045 (3)0.31379 (13)0.0584 (5)
C90.1415 (2)0.1387 (3)0.46888 (15)0.0665 (5)
C100.1095 (2)0.1179 (4)0.37699 (17)0.0748 (6)
H20.904 (2)0.113 (3)0.1586 (14)0.068 (6)*
H30.787 (2)0.107 (3)0.2986 (17)0.073 (7)*
H50.564 (2)0.096 (3)0.3560 (17)0.079 (7)*
H70.447 (2)0.150 (3)0.4606 (13)0.063 (6)*
H100.028 (3)0.112 (4)0.3543 (19)0.100 (9)*
H90.080 (2)0.151 (3)0.5109 (16)0.078 (7)*
H80.288 (2)0.167 (3)0.5609 (16)0.069 (6)*
H10.227 (3)0.069 (4)0.198 (2)0.097 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0373 (2)0.0531 (3)0.0481 (2)0.00158 (18)0.00516 (15)0.00117 (19)
N20.0434 (7)0.0456 (8)0.0468 (7)0.0009 (6)0.0106 (5)0.0022 (6)
N10.0513 (8)0.0589 (9)0.0506 (8)0.0077 (7)0.0128 (6)0.0009 (7)
C10.0413 (8)0.0481 (9)0.0475 (8)0.0043 (7)0.0102 (6)0.0017 (7)
C40.0415 (8)0.0509 (10)0.0463 (8)0.0008 (7)0.0083 (6)0.0016 (7)
C60.0416 (8)0.0412 (8)0.0496 (8)0.0020 (7)0.0113 (6)0.0011 (7)
O20.0625 (8)0.1093 (12)0.0482 (7)0.0094 (8)0.0035 (6)0.0076 (7)
C50.0433 (9)0.0598 (11)0.0463 (9)0.0000 (8)0.0086 (7)0.0012 (8)
C70.0498 (9)0.0535 (11)0.0510 (9)0.0034 (8)0.0087 (7)0.0005 (8)
C30.0435 (9)0.0957 (16)0.0482 (10)0.0015 (9)0.0028 (7)0.0021 (10)
O10.0533 (8)0.1232 (14)0.0681 (9)0.0151 (8)0.0234 (7)0.0032 (9)
C20.0368 (8)0.0814 (13)0.0567 (10)0.0030 (9)0.0072 (7)0.0037 (9)
O30.0490 (8)0.160 (2)0.0621 (9)0.0045 (10)0.0003 (7)0.0177 (10)
C80.0652 (11)0.0581 (12)0.0506 (10)0.0055 (9)0.0174 (9)0.0026 (8)
C110.0448 (9)0.0739 (13)0.0572 (10)0.0007 (9)0.0077 (7)0.0046 (9)
C90.0600 (11)0.0721 (14)0.0707 (13)0.0035 (10)0.0295 (10)0.0010 (10)
C100.0410 (10)0.1066 (19)0.0783 (14)0.0021 (11)0.0147 (9)0.0058 (13)
Geometric parameters (Å, º) top
S1—C11.7054 (18)C7—C81.380 (3)
S1—C41.7107 (18)C7—H70.99 (2)
N2—C51.264 (2)C3—C21.399 (3)
N2—C61.411 (2)C3—H30.86 (2)
N1—O11.212 (2)C2—H20.92 (2)
N1—O21.231 (2)O3—C111.353 (2)
N1—C11.428 (2)O3—H10.78 (3)
C1—C21.352 (3)C8—C91.370 (3)
C4—C31.368 (3)C8—H80.92 (2)
C4—C51.447 (2)C11—C101.383 (3)
C6—C71.387 (3)C9—C101.366 (3)
C6—C111.396 (2)C9—H90.93 (2)
C5—H50.94 (2)C10—H100.91 (3)
C1—S1—C489.58 (8)C4—C3—C2113.16 (17)
C5—N2—C6120.03 (15)C4—C3—H3122.7 (16)
O1—N1—O2123.60 (15)C2—C3—H3124.1 (16)
O1—N1—C1118.92 (15)C1—C2—C3110.35 (16)
O2—N1—C1117.48 (15)C1—C2—H2121.6 (13)
C2—C1—N1125.76 (16)C3—C2—H2128.0 (13)
C2—C1—S1114.73 (13)C11—O3—H1106 (2)
N1—C1—S1119.50 (13)C9—C8—C7119.92 (19)
C3—C4—C5126.26 (16)C9—C8—H8120.7 (14)
C3—C4—S1112.18 (13)C7—C8—H8119.3 (14)
C5—C4—S1121.56 (13)O3—C11—C10118.94 (18)
C7—C6—C11118.31 (16)O3—C11—C6121.26 (17)
C7—C6—N2126.03 (16)C10—C11—C6119.80 (18)
C11—C6—N2115.62 (15)C10—C9—C8120.01 (18)
N2—C5—C4122.75 (16)C10—C9—H9120.7 (14)
N2—C5—H5122.4 (15)C8—C9—H9119.3 (14)
C4—C5—H5114.9 (15)C9—C10—C11120.9 (2)
C8—C7—C6121.03 (18)C9—C10—H10122.2 (18)
C8—C7—H7118.6 (12)C11—C10—H10116.8 (18)
C6—C7—H7120.3 (12)
O1—N1—C1—C24.2 (3)C5—C4—C3—C2179.07 (19)
O2—N1—C1—C2175.3 (2)S1—C4—C3—C20.4 (2)
O1—N1—C1—S1177.06 (14)N1—C1—C2—C3179.06 (17)
O2—N1—C1—S13.4 (2)S1—C1—C2—C30.3 (2)
C4—S1—C1—C20.44 (16)C4—C3—C2—C10.0 (3)
C4—S1—C1—N1179.27 (14)C6—C7—C8—C90.6 (3)
C1—S1—C4—C30.44 (16)C7—C6—C11—O3179.9 (2)
C1—S1—C4—C5179.02 (15)N2—C6—C11—O32.3 (3)
C5—N2—C6—C77.5 (3)C7—C6—C11—C100.9 (3)
C5—N2—C6—C11174.84 (17)N2—C6—C11—C10176.96 (19)
C6—N2—C5—C4177.11 (16)C7—C8—C9—C100.6 (3)
C3—C4—C5—N2178.60 (19)C8—C9—C10—C110.1 (4)
S1—C4—C5—N20.8 (3)O3—C11—C10—C9179.8 (2)
C11—C6—C7—C80.1 (3)C6—C11—C10—C90.9 (4)
N2—C6—C7—C8177.44 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2i0.78 (3)2.54 (3)3.192 (3)141 (3)
O3—H1···N20.78 (3)2.23 (3)2.711 (2)121 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2i0.78 (3)2.54 (3)3.192 (3)141 (3)
O3—H1···N20.78 (3)2.23 (3)2.711 (2)121 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This study was supported financially by the Research Center of Amasya University (Project No. FMB-BAP 15-091).

References

First citationAydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTanak, H., Agar, A. A. & Büyükgüngör, O. (2013). J. Mol. Struct. 1048, 41–50.  CSD CrossRef CAS Google Scholar
First citationTanak, H., Agar, A. A. & Büyükgüngör, O. (2014). Spectrochim. Acta Part A, 118, 672–682.  CSD CrossRef CAS Google Scholar
First citationTanak, H., Erşahin, F., Ağar, E., Yavuz, M. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds