organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-carbamo­thioyl-2-methyl­benzamide

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 Georgetown, Penang, Malaysia
*Correspondence e-mail: farookdr@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 May 2015; accepted 19 May 2015; online 28 May 2015)

There are two mol­ecules in the asymmetric unit of the title compound, C9H10N2OS. In one, the dihedral angle between the aromatic ring and the carbamo­thioyl group is 52.31 (7)° and in the other it is 36.16 (6)°. Each mol­ecule features an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring and the O and S atoms have an anti disposition. In the crystal, mol­ecules are linked by N—H⋯S and N—H⋯O hydrogen bonds, generating separate [130] and [1-30] infinite chains. Weak C—H⋯O and C—H⋯S inter­actions are also observed.

1. Related literature

For related structures, see: Saeed & Flörke (2007[Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, o4259.]); Shoukat et al. (2007[Shoukat, N., Rauf, M. K., Bolte, M. & Badshah, A. (2007). Acta Cryst. E63, o3207.]); Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.],c[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.]); Ameram et al. (2015[Ameram, N., Adam, F., Fatihah, N. N. & Al-Juaid, S. (2015). Acta Cryst. E71, o356.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H10N2OS

  • Mr = 194.25

  • Monoclinic, C 2/c

  • a = 22.7886 (12) Å

  • b = 7.1133 (3) Å

  • c = 25.5388 (13) Å

  • β = 113.664 (3)°

  • V = 3791.8 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.46 × 0.33 × 0.10 mm

2.2. Data collection

  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.814, Tmax = 0.872

  • 70711 measured reflections

  • 5697 independent reflections

  • 4862 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.10

  • 5697 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯S1Ai 0.80 (2) 2.60 (2) 3.3227 (16) 151.2 (18)
N1B—H1B⋯S1Bii 0.84 (2) 2.65 (2) 3.4780 (14) 172 (2)
N2A—H2A⋯S1Biii 0.85 (2) 2.49 (2) 3.2945 (15) 157.8 (19)
N2B—H2B⋯O1B 0.83 (2) 1.98 (2) 2.6404 (18) 136 (2)
N2A—H3A⋯O1A 0.83 (2) 2.02 (2) 2.6515 (19) 133 (2)
N2B—H3B⋯S1Aiii 0.89 (2) 2.49 (2) 3.3800 (14) 177 (2)
C5B—H5BA⋯O1Aiv 0.95 2.45 3.3584 (19) 160
C9B—H9BA⋯S1Ai 0.98 2.80 3.6946 (17) 152
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) -x+1, -y+1, -z; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iv) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Introduction top

In the crystal, molecules are linked by pairs of C=O—H hydrogen bonds with the methyl group from molecule (B) is facing the group from the molecule (A) forming slabs which is parallel to the benzene ring plane (A) as the bond of C6–C7 (A and B) can free to rotate.

Experimental top

The title compound (Fig. 1) is a benzoyl thio­urea inter­mediate to a compound recently reported by us (Ameram et al., 2015) and there is no substituent at the end of thio­amide group.

Synthesis and crystallization top

Freshly prepared substituted o-benzoyl chloride (13 mmol) was added dropwise to a stirred acetone solution (30 ml) of ammonium thio­cyanate (13 mmol). The mixture was stirred for 10 min. A white side product which is ammonium chloride was filtered off. The compound was left at room temperature to crystallize, to yield colourless plates of the title compound.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H-atoms on the N atoms were located in a difference-Fourier map and were freely refined. All other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(aromatic C) or 1.5Ueq(methyl C).

Results and discussion top

Related literature top

For related structures, see: Saeed & Flörke (2007); Shoukat et al. (2007); Hassan et al. (2008a,b,c); Ameram et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom labellling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
N-Carbamothioyl-2-methylbenzamide top
Crystal data top
C9H10N2OSF(000) = 1632
Mr = 194.25Dx = 1.361 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.7886 (12) ÅCell parameters from 9948 reflections
b = 7.1133 (3) Åθ = 3.0–29.9°
c = 25.5388 (13) ŵ = 0.30 mm1
β = 113.664 (3)°T = 100 K
V = 3791.8 (3) Å3Plate, colourless
Z = 160.46 × 0.33 × 0.10 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
5697 independent reflections
Radiation source: fine-focus sealed tube4862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 30.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3232
Tmin = 0.814, Tmax = 0.872k = 1010
70711 measured reflectionsl = 3636
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0488P)2 + 4.2106P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
5697 reflectionsΔρmax = 0.45 e Å3
261 parametersΔρmin = 0.22 e Å3
Crystal data top
C9H10N2OSV = 3791.8 (3) Å3
Mr = 194.25Z = 16
Monoclinic, C2/cMo Kα radiation
a = 22.7886 (12) ŵ = 0.30 mm1
b = 7.1133 (3) ÅT = 100 K
c = 25.5388 (13) Å0.46 × 0.33 × 0.10 mm
β = 113.664 (3)°
Data collection top
Bruker APEX DUO CCD
diffractometer
5697 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4862 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.872Rint = 0.051
70711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.45 e Å3
5697 reflectionsΔρmin = 0.22 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.20453 (2)0.37036 (5)0.04623 (2)0.02123 (9)
O1A0.05447 (5)0.09550 (16)0.11126 (5)0.0285 (3)
N1A0.15344 (6)0.12795 (17)0.03834 (5)0.0195 (2)
N2A0.08336 (6)0.3410 (2)0.02644 (7)0.0264 (3)
C1A0.12721 (8)0.1174 (2)0.16760 (7)0.0255 (3)
C2A0.14877 (8)0.2742 (2)0.18702 (7)0.0290 (3)
H2AA0.14280.28010.22600.035*
C3A0.17880 (7)0.4224 (2)0.15103 (7)0.0257 (3)
H3AA0.19250.52890.16560.031*
C4A0.18880 (7)0.4154 (2)0.09401 (7)0.0239 (3)
H4AA0.20960.51650.06920.029*
C5A0.16820 (7)0.2595 (2)0.07329 (6)0.0215 (3)
H5AA0.17560.25310.03400.026*
C6A0.13688 (7)0.11301 (19)0.10979 (6)0.0190 (3)
C7A0.11026 (7)0.0452 (2)0.08773 (6)0.0202 (3)
C8A0.14215 (7)0.27880 (19)0.00939 (6)0.0186 (3)
C9A0.09650 (12)0.0421 (3)0.20800 (9)0.0462 (5)
H9AA0.11690.16080.19060.069*
H9AB0.05070.04720.21590.069*
H9AC0.10190.02220.24380.069*
S1B0.45007 (2)0.73146 (5)0.00298 (2)0.02408 (10)
O1B0.31413 (5)0.45230 (16)0.16642 (5)0.0258 (2)
N1B0.40643 (6)0.47799 (17)0.08568 (5)0.0187 (2)
N2B0.33660 (6)0.71847 (19)0.08869 (6)0.0227 (3)
C1B0.35431 (7)0.0654 (2)0.17791 (6)0.0199 (3)
C2B0.38290 (8)0.0911 (2)0.19102 (6)0.0240 (3)
H2BA0.35740.19830.20760.029*
C3B0.44736 (8)0.0943 (2)0.18057 (7)0.0278 (3)
H3BA0.46530.20250.19030.033*
C4B0.48592 (7)0.0595 (2)0.15600 (7)0.0276 (3)
H4BA0.53000.05860.14960.033*
C5B0.45933 (7)0.2151 (2)0.14083 (6)0.0231 (3)
H5BA0.48560.32030.12340.028*
C6B0.39425 (7)0.2184 (2)0.15102 (6)0.0184 (3)
C7B0.36692 (7)0.3907 (2)0.13618 (6)0.0190 (3)
C8B0.39349 (6)0.64135 (19)0.06277 (6)0.0177 (3)
C9B0.28310 (7)0.0629 (2)0.19377 (7)0.0244 (3)
H9BA0.27410.11430.16220.037*
H9BB0.26740.06670.20140.037*
H9BC0.26150.13960.22810.037*
H1B0.4428 (11)0.433 (3)0.0664 (9)0.038 (6)*
H3A0.0543 (11)0.291 (3)0.0542 (10)0.039 (6)*
H1A0.1904 (10)0.102 (3)0.0300 (8)0.028 (5)*
H3B0.3275 (10)0.827 (3)0.0763 (9)0.037 (6)*
H2B0.3111 (11)0.667 (3)0.1184 (10)0.039 (6)*
H2A0.0765 (10)0.437 (3)0.0096 (9)0.038 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.02084 (16)0.02238 (18)0.01948 (17)0.00473 (13)0.00704 (13)0.00419 (13)
O1A0.0193 (5)0.0211 (5)0.0368 (6)0.0039 (4)0.0025 (4)0.0060 (5)
N1A0.0165 (5)0.0181 (6)0.0231 (6)0.0031 (4)0.0070 (5)0.0040 (5)
N2A0.0192 (6)0.0210 (6)0.0374 (8)0.0021 (5)0.0098 (6)0.0096 (6)
C1A0.0309 (8)0.0211 (7)0.0227 (7)0.0002 (6)0.0089 (6)0.0015 (6)
C2A0.0364 (8)0.0294 (8)0.0220 (7)0.0000 (7)0.0127 (6)0.0030 (6)
C3A0.0257 (7)0.0225 (7)0.0313 (8)0.0003 (6)0.0140 (6)0.0073 (6)
C4A0.0245 (7)0.0184 (7)0.0281 (8)0.0049 (5)0.0100 (6)0.0013 (6)
C5A0.0232 (7)0.0197 (7)0.0211 (7)0.0037 (5)0.0085 (5)0.0004 (5)
C6A0.0187 (6)0.0152 (6)0.0213 (7)0.0007 (5)0.0062 (5)0.0021 (5)
C7A0.0203 (6)0.0143 (6)0.0242 (7)0.0003 (5)0.0070 (5)0.0004 (5)
C8A0.0198 (6)0.0153 (6)0.0225 (7)0.0004 (5)0.0104 (5)0.0004 (5)
C9A0.0681 (14)0.0369 (10)0.0309 (9)0.0167 (10)0.0169 (9)0.0128 (8)
S1B0.01921 (17)0.02226 (18)0.02552 (19)0.00457 (13)0.00349 (14)0.00916 (14)
O1B0.0238 (5)0.0242 (5)0.0222 (5)0.0056 (4)0.0017 (4)0.0022 (4)
N1B0.0178 (5)0.0167 (5)0.0182 (6)0.0029 (4)0.0035 (4)0.0036 (4)
N2B0.0201 (6)0.0209 (6)0.0231 (6)0.0052 (5)0.0044 (5)0.0038 (5)
C1B0.0230 (6)0.0196 (7)0.0142 (6)0.0007 (5)0.0045 (5)0.0002 (5)
C2B0.0297 (7)0.0183 (7)0.0200 (7)0.0002 (6)0.0059 (6)0.0032 (5)
C3B0.0304 (8)0.0240 (7)0.0248 (7)0.0073 (6)0.0068 (6)0.0060 (6)
C4B0.0220 (7)0.0303 (8)0.0277 (8)0.0038 (6)0.0069 (6)0.0079 (6)
C5B0.0223 (7)0.0227 (7)0.0216 (7)0.0004 (5)0.0059 (5)0.0056 (6)
C6B0.0215 (6)0.0174 (6)0.0147 (6)0.0015 (5)0.0056 (5)0.0012 (5)
C7B0.0207 (6)0.0171 (6)0.0179 (6)0.0005 (5)0.0063 (5)0.0020 (5)
C8B0.0188 (6)0.0155 (6)0.0195 (6)0.0015 (5)0.0083 (5)0.0003 (5)
C9B0.0227 (7)0.0265 (8)0.0216 (7)0.0043 (6)0.0063 (6)0.0044 (6)
Geometric parameters (Å, º) top
S1A—C8A1.6858 (15)S1B—C8B1.6806 (14)
O1A—C7A1.2215 (17)O1B—C7B1.2207 (17)
N1A—C7A1.3818 (19)N1B—C8B1.3850 (18)
N1A—C8A1.3845 (18)N1B—C7B1.3883 (18)
N1A—H1A0.80 (2)N1B—H1B0.84 (2)
N2A—C8A1.3083 (18)N2B—C8B1.3156 (18)
N2A—H3A0.83 (2)N2B—H3B0.89 (2)
N2A—H2A0.86 (2)N2B—H2B0.83 (2)
C1A—C2A1.388 (2)C1B—C2B1.397 (2)
C1A—C6A1.403 (2)C1B—C6B1.408 (2)
C1A—C9A1.504 (2)C1B—C9B1.507 (2)
C2A—C3A1.385 (2)C2B—C3B1.384 (2)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.381 (2)C3B—C4B1.386 (2)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.389 (2)C4B—C5B1.390 (2)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.389 (2)C5B—C6B1.399 (2)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.492 (2)C6B—C7B1.4909 (19)
C9A—H9AA0.9800C9B—H9BA0.9800
C9A—H9AB0.9800C9B—H9BB0.9800
C9A—H9AC0.9800C9B—H9BC0.9800
C7A—N1A—C8A126.92 (12)C8B—N1B—C7B126.81 (12)
C7A—N1A—H1A115.6 (14)C8B—N1B—H1B113.6 (15)
C8A—N1A—H1A115.7 (14)C7B—N1B—H1B119.6 (15)
C8A—N2A—H3A119.9 (16)C8B—N2B—H3B120.3 (14)
C8A—N2A—H2A118.2 (14)C8B—N2B—H2B117.4 (16)
H3A—N2A—H2A122 (2)H3B—N2B—H2B122 (2)
C2A—C1A—C6A117.74 (14)C2B—C1B—C6B117.41 (13)
C2A—C1A—C9A119.66 (15)C2B—C1B—C9B118.81 (13)
C6A—C1A—C9A122.58 (15)C6B—C1B—C9B123.77 (13)
C3A—C2A—C1A121.71 (15)C3B—C2B—C1B121.89 (14)
C3A—C2A—H2AA119.1C3B—C2B—H2BA119.1
C1A—C2A—H2AA119.1C1B—C2B—H2BA119.1
C4A—C3A—C2A120.05 (14)C2B—C3B—C4B120.35 (14)
C4A—C3A—H3AA120.0C2B—C3B—H3BA119.8
C2A—C3A—H3AA120.0C4B—C3B—H3BA119.8
C3A—C4A—C5A119.48 (14)C3B—C4B—C5B119.14 (14)
C3A—C4A—H4AA120.3C3B—C4B—H4BA120.4
C5A—C4A—H4AA120.3C5B—C4B—H4BA120.4
C4A—C5A—C6A120.29 (14)C4B—C5B—C6B120.64 (14)
C4A—C5A—H5AA119.9C4B—C5B—H5BA119.7
C6A—C5A—H5AA119.9C6B—C5B—H5BA119.7
C5A—C6A—C1A120.71 (13)C5B—C6B—C1B120.48 (13)
C5A—C6A—C7A119.33 (13)C5B—C6B—C7B119.09 (13)
C1A—C6A—C7A119.88 (13)C1B—C6B—C7B120.34 (13)
O1A—C7A—N1A122.93 (13)O1B—C7B—N1B122.28 (13)
O1A—C7A—C6A122.40 (13)O1B—C7B—C6B122.72 (13)
N1A—C7A—C6A114.67 (12)N1B—C7B—C6B115.00 (12)
N2A—C8A—N1A117.98 (13)N2B—C8B—N1B118.11 (13)
N2A—C8A—S1A123.67 (12)N2B—C8B—S1B122.68 (11)
N1A—C8A—S1A118.34 (10)N1B—C8B—S1B119.21 (10)
C1A—C9A—H9AA109.5C1B—C9B—H9BA109.5
C1A—C9A—H9AB109.5C1B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
C1A—C9A—H9AC109.5C1B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
C6A—C1A—C2A—C3A0.1 (2)C6B—C1B—C2B—C3B2.8 (2)
C9A—C1A—C2A—C3A178.34 (18)C9B—C1B—C2B—C3B176.38 (14)
C1A—C2A—C3A—C4A0.9 (3)C1B—C2B—C3B—C4B0.5 (2)
C2A—C3A—C4A—C5A0.4 (2)C2B—C3B—C4B—C5B1.4 (3)
C3A—C4A—C5A—C6A1.0 (2)C3B—C4B—C5B—C6B1.0 (2)
C4A—C5A—C6A—C1A1.9 (2)C4B—C5B—C6B—C1B1.3 (2)
C4A—C5A—C6A—C7A174.80 (13)C4B—C5B—C6B—C7B177.71 (14)
C2A—C1A—C6A—C5A1.3 (2)C2B—C1B—C6B—C5B3.2 (2)
C9A—C1A—C6A—C5A176.90 (17)C9B—C1B—C6B—C5B175.98 (14)
C2A—C1A—C6A—C7A175.35 (14)C2B—C1B—C6B—C7B179.53 (13)
C9A—C1A—C6A—C7A6.5 (2)C9B—C1B—C6B—C7B0.4 (2)
C8A—N1A—C7A—O1A2.2 (2)C8B—N1B—C7B—O1B0.6 (2)
C8A—N1A—C7A—C6A178.65 (13)C8B—N1B—C7B—C6B178.45 (13)
C5A—C6A—C7A—O1A126.72 (16)C5B—C6B—C7B—O1B139.95 (15)
C1A—C6A—C7A—O1A50.0 (2)C1B—C6B—C7B—O1B36.5 (2)
C5A—C6A—C7A—N1A52.41 (18)C5B—C6B—C7B—N1B39.13 (19)
C1A—C6A—C7A—N1A130.91 (15)C1B—C6B—C7B—N1B144.47 (13)
C7A—N1A—C8A—N2A7.1 (2)C7B—N1B—C8B—N2B4.7 (2)
C7A—N1A—C8A—S1A173.59 (12)C7B—N1B—C8B—S1B176.08 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···S1Ai0.80 (2)2.60 (2)3.3227 (16)151.2 (18)
N1B—H1B···S1Bii0.84 (2)2.65 (2)3.4780 (14)172 (2)
N2A—H2A···S1Biii0.85 (2)2.49 (2)3.2945 (15)157.8 (19)
N2B—H2B···O1B0.83 (2)1.98 (2)2.6404 (18)136 (2)
N2A—H3A···O1A0.83 (2)2.02 (2)2.6515 (19)133 (2)
N2B—H3B···S1Aiii0.89 (2)2.49 (2)3.3800 (14)177 (2)
C5B—H5BA···O1Aiv0.952.453.3584 (19)160
C9B—H9BA···S1Ai0.982.803.6946 (17)152
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1, z; (iii) x+1/2, y+3/2, z; (iv) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···S1Ai0.80 (2)2.60 (2)3.3227 (16)151.2 (18)
N1B—H1B···S1Bii0.84 (2)2.65 (2)3.4780 (14)172 (2)
N2A—H2A···S1Biii0.85 (2)2.49 (2)3.2945 (15)157.8 (19)
N2B—H2B···O1B0.83 (2)1.98 (2)2.6404 (18)136 (2)
N2A—H3A···O1A0.83 (2)2.02 (2)2.6515 (19)133 (2)
N2B—H3B···S1Aiii0.89 (2)2.49 (2)3.3800 (14)177 (2)
C5B—H5BA···O1Aiv0.952.453.3584 (19)160
C9B—H9BA···S1Ai0.982.803.6946 (17)152
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1, z; (iii) x+1/2, y+3/2, z; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank Universiti Sains Malaysia for research grants Nos. PKIMIA846017 and RU-1001/PKIMIA/811269 which partially supported this work.

References

First citationAmeram, N., Adam, F., Fatihah, N. N. & Al-Juaid, S. (2015). Acta Cryst. E71, o356.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A. & Flörke, U. (2007). Acta Cryst. E63, o4259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShoukat, N., Rauf, M. K., Bolte, M. & Badshah, A. (2007). Acta Cryst. E63, o3207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds