organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o419-o420

Crystal structure of 2,2-di­methyl-N-(5-methyl­pyridin-2-yl)propanamide

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 May 2015; accepted 17 May 2015; online 23 May 2015)

There are two mol­ecules in the asymmetric unit of the title compound, C11H16N2O. The pyridine rings and amide groups overlap almost perfectly (r.m.s. overlay fit = 0.053 Å), but the tertiary butyl groups have different orientations: in one mol­ecule, one of the methyl C atoms is syn to the amide O atom [O—C—C—C = −0.8 (3)°] and in the other the equivalent torsion angle is 31.0 (2)°. In the crystal, the two independent mol­ecules are linked by a pair of N—H⋯N hydrogen bonds in the form of an R22(8) loop to form a dimer. A C—H⋯O inter­action connects the dimers into [100] chains.

1. Related literature

For the synthesis and spectroscopic data, see: Turner (1983[Turner, J. A. (1983). J. Org. Chem. 48, 3401-3408.]). For related compounds, see: El-Hiti et al. (2015a[El-Hiti, A., Smith, G. & Hegazy, K. (2015a). Heterocycles, 91, 479-504.],b[El-Hiti, G. A., Smith, K., Hegazy, A. S., Alanazi, S. A. & Kariuki, B. M. (2015b). Acta Cryst. E71, o246-o247.]); de Candia et al. (2013[Candia, M. de, Fiorella, F., Lopopolo, G., Carotti, A., Romano, M. R., Lograno, M. D., Martel, S., Carrupt, P.-A., Belviso, B. D., Caliandro, R. & Altomare, C. (2013). J. Med. Chem. 56, 8696-8711.]); Smith et al. (2013[Smith, K., El-Hiti, G. A., Alshammari, M. B. & Fekri, A. (2013). Synthesis, 45, 3426-3434.], 2012[Smith, K. A., El-Hiti, G. A., Fekri, A. & Alshammari, B. (2012). Heterocycles, 86, 391-410.]); Abdel-Megeed et al. (2012[Abdel-Megeed, M. F., Badr, B. E., Azaam, M. M. & El-Hiti, G. A. (2012). Bioorg. Med. Chem. 20, 2252-2258.]); Joule & Mills (2000[Joule, J. A. & Mills, K. (2000). Heterocyclic Chemistry, 4th ed. England: Blackwell Science Publishers.]). For the crystal structures of related compounds, see: El-Hiti et al. (2014[El-Hiti, G. A., Smith, K., Balakit, A. A., Hegazy, A. S. & Kariuki, B. M. (2014). Acta Cryst. E70, o351-o352.]); Seidler et al. (2011[Seidler, T., Gryl, M., Trzewik, B. & Stadnicka, K. (2011). Acta Cryst. E67, o1507.]); Koch et al. (2008[Koch, P., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o2216.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H16N2O

  • Mr = 192.26

  • Monoclinic, P 21 /n

  • a = 11.1969 (2) Å

  • b = 8.6439 (2) Å

  • c = 23.8844 (5) Å

  • β = 94.549 (2)°

  • V = 2304.37 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.47 × 0.33 × 0.11 mm

2.2. Data collection

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.925, Tmax = 0.975

  • 8391 measured reflections

  • 4503 independent reflections

  • 3684 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.148

  • S = 1.04

  • 4503 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3 0.86 2.31 3.1192 (16) 156
N4—H4A⋯N1 0.86 2.25 3.0837 (16) 163
C4—H4⋯O2i 0.93 2.43 3.3262 (19) 160
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Introduction top

Substituted pyridines are important compounds (Joule & Mills, 2000) and show a range of biological activities (de Candia et al., 2013; Abdel-Megeed et al., 2012). The pyridine ring system has been modified using various efficient and simple procedures that include the use of lithium reagents as inter­mediates (El-Hiti et al., 2015; Smith et al., 2013, Smith et al., 2012; Turner, 1983). The X-ray crystal structures of related compounds have been reported (El-Hiti et al., 2015; El-Hiti et al., 2014; Seidler et al., 2011; Koch et al., 2008).

Experimental top

Synthesis and crystallization top

2,2-Di­methyl-N-(5-methyl­pyridin-2-yl)propanamide was obtained in 83% yield from reaction of 2-amino-5-methyl­pyridine with tri­methyl­acetyl chloride in the presence of tri­ethyl­amine in di­chloro­methane at 0 °C for 15 minutes and then at room temperature for 2 h (Turner, 1983). The crude product was purified by column chromatography (silica gel; di­chloro­methane) followed by crystallization from hexane to give colourless crystals of the title compound. The NMR spectral data and elemental analyses for the title compound were identical with those previously reported (Turner, 1983).

Refinement top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond.

Results and discussion top

The asymmetric unit (Figure 1) consists of two independent molecules of C11H16N2O. The amide group and pyridine ring within the molecule are not co-planar as indicated by the torsion angles [N1—C1—N2—C7 = 142.20 (14), N3—C12—N4—C18 = 148.58 (15)]. The two independent molecules are linked by a pair of N—H···N hydrogen bonds (Table 1, Figure 2) to form an R22(8) ring.

Related literature top

For the synthesis and spectroscopic data, see: Turner (1983). For related compounds, see: El-Hiti et al. (2015a,b); de Candia et al. (2013); Smith et al. (2013, 2012); Abdel-Megeed et al. (2012). Joule & Mills (2000). For the crystal structures of related compounds, see: El-Hiti et al. (2014); Seidler et al. (2011); Koch et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of C11H16N2O with 50% probability displacement ellipsoids for nonhydrogen atoms.
[Figure 2] Fig. 2. The asymmetric unit showing N—H···N interactions as dotted lines.
2,2-Dimethyl-N-(5-methylpyridin-2-yl)propanamide top
Crystal data top
C11H16N2OF(000) = 832
Mr = 192.26Dx = 1.108 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 11.1969 (2) ÅCell parameters from 3890 reflections
b = 8.6439 (2) Åθ = 3.9–73.6°
c = 23.8844 (5) ŵ = 0.57 mm1
β = 94.549 (2)°T = 296 K
V = 2304.37 (8) Å3Plate, colourless
Z = 80.47 × 0.33 × 0.11 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
4503 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source3684 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
ω scansθmax = 74.0°, θmin = 3.7°
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
h = 1313
Tmin = 0.925, Tmax = 0.975k = 910
8391 measured reflectionsl = 2924
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.081P)2 + 0.208P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.27 e Å3
4503 reflectionsΔρmin = 0.21 e Å3
262 parametersExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0075 (6)
Crystal data top
C11H16N2OV = 2304.37 (8) Å3
Mr = 192.26Z = 8
Monoclinic, P21/nCu Kα radiation
a = 11.1969 (2) ŵ = 0.57 mm1
b = 8.6439 (2) ÅT = 296 K
c = 23.8844 (5) Å0.47 × 0.33 × 0.11 mm
β = 94.549 (2)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
4503 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
3684 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.975Rint = 0.021
8391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
4503 reflectionsΔρmin = 0.21 e Å3
262 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20122 (11)0.54209 (16)0.13526 (5)0.0525 (3)
C20.19343 (14)0.77138 (18)0.08875 (7)0.0650 (4)
H20.14800.85350.07360.097*
C30.31560 (14)0.77581 (19)0.08401 (7)0.0670 (4)
C40.38057 (13)0.6528 (2)0.10739 (7)0.0701 (4)
H40.46320.64990.10550.105*
C50.32450 (12)0.5351 (2)0.13327 (7)0.0654 (4)
H50.36810.45240.14920.098*
C60.3730 (2)0.9087 (3)0.05543 (12)0.1036 (7)
H6A0.45660.91320.06770.155*
H6B0.33491.00370.06490.155*
H6C0.36390.89390.01550.155*
C70.15945 (14)0.27433 (18)0.16115 (6)0.0618 (4)
C80.07563 (15)0.16852 (19)0.19135 (7)0.0689 (4)
C90.1450 (2)0.0226 (2)0.21008 (9)0.0942 (6)
H9A0.17770.02430.17820.141*
H9B0.09200.04900.22630.141*
H9C0.20900.04960.23750.141*
C100.0273 (2)0.2443 (2)0.24272 (9)0.0918 (6)
H10A0.01630.16920.26260.138*
H10B0.02500.32800.23090.138*
H10C0.09290.28320.26700.138*
C110.0263 (2)0.1254 (3)0.14762 (12)0.1106 (8)
H11A0.00660.08380.11490.166*
H11B0.07260.21600.13740.166*
H11C0.07680.04940.16310.166*
C120.12246 (11)0.71207 (16)0.19991 (6)0.0520 (3)
C130.02137 (14)0.65237 (19)0.28397 (6)0.0650 (4)
H130.04090.59950.30370.098*
C140.09434 (14)0.74294 (19)0.31429 (6)0.0634 (4)
C150.18413 (15)0.8222 (2)0.28376 (7)0.0710 (4)
H150.23500.88610.30230.106*
C160.19970 (14)0.8082 (2)0.22610 (7)0.0660 (4)
H160.26030.86180.20540.099*
C170.0774 (2)0.7526 (3)0.37741 (7)0.0909 (6)
H17A0.09970.85380.38940.136*
H17B0.00510.73350.38950.136*
H17C0.12680.67650.39360.136*
C180.22818 (13)0.6925 (2)0.10586 (6)0.0671 (4)
C190.21118 (14)0.6626 (2)0.04398 (6)0.0714 (4)
C200.1518 (2)0.5048 (3)0.03776 (9)0.1036 (7)
H20A0.07360.50540.05750.155*
H20B0.14450.48380.00130.155*
H20C0.19990.42600.05320.155*
C210.1325 (2)0.7892 (3)0.02172 (9)0.1074 (8)
H21A0.16590.88870.02930.161*
H21B0.12910.77670.01810.161*
H21C0.05320.78190.04000.161*
C220.33408 (17)0.6641 (3)0.01113 (8)0.0955 (7)
H22A0.38100.57900.02300.143*
H22B0.32420.65460.02830.143*
H22C0.37420.75960.01800.143*
N10.13561 (10)0.65829 (14)0.11338 (5)0.0578 (3)
N20.13689 (10)0.42840 (14)0.16285 (5)0.0577 (3)
H2A0.07950.45890.18210.086*
N30.03374 (10)0.63507 (14)0.22795 (5)0.0589 (3)
N40.12739 (10)0.69100 (15)0.14133 (5)0.0585 (3)
H4A0.06060.67580.12670.088*
O10.23876 (14)0.22212 (15)0.13479 (7)0.0942 (4)
O20.32545 (10)0.7145 (3)0.12290 (6)0.1234 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0471 (6)0.0604 (7)0.0506 (6)0.0005 (5)0.0069 (5)0.0061 (5)
C20.0609 (8)0.0606 (8)0.0750 (9)0.0020 (6)0.0152 (7)0.0019 (7)
C30.0619 (8)0.0670 (9)0.0739 (9)0.0103 (7)0.0180 (7)0.0082 (7)
C40.0458 (7)0.0872 (11)0.0783 (10)0.0058 (7)0.0111 (6)0.0054 (8)
C50.0476 (7)0.0792 (10)0.0695 (9)0.0046 (7)0.0061 (6)0.0024 (7)
C60.0929 (14)0.0845 (13)0.139 (2)0.0182 (11)0.0419 (13)0.0105 (12)
C70.0633 (8)0.0634 (8)0.0595 (8)0.0033 (7)0.0093 (6)0.0058 (6)
C80.0743 (10)0.0600 (8)0.0730 (9)0.0017 (7)0.0096 (8)0.0039 (7)
C90.1260 (17)0.0716 (11)0.0864 (12)0.0159 (11)0.0172 (12)0.0096 (9)
C100.1089 (15)0.0753 (11)0.0977 (13)0.0020 (10)0.0486 (12)0.0135 (10)
C110.0982 (15)0.1086 (17)0.1210 (18)0.0325 (13)0.0168 (14)0.0207 (14)
C120.0441 (6)0.0584 (7)0.0541 (7)0.0037 (5)0.0082 (5)0.0028 (5)
C130.0649 (8)0.0748 (9)0.0553 (8)0.0084 (7)0.0041 (6)0.0003 (7)
C140.0628 (8)0.0718 (9)0.0566 (8)0.0045 (7)0.0101 (6)0.0074 (6)
C150.0643 (9)0.0830 (10)0.0672 (9)0.0103 (8)0.0145 (7)0.0160 (8)
C160.0574 (8)0.0769 (9)0.0643 (8)0.0125 (7)0.0078 (6)0.0056 (7)
C170.0947 (13)0.1195 (16)0.0590 (9)0.0039 (12)0.0092 (9)0.0124 (10)
C180.0479 (7)0.0957 (11)0.0581 (8)0.0060 (7)0.0062 (6)0.0059 (7)
C190.0574 (8)0.1030 (12)0.0540 (8)0.0056 (8)0.0058 (6)0.0037 (8)
C200.1021 (15)0.1323 (18)0.0765 (12)0.0172 (14)0.0078 (10)0.0312 (12)
C210.0894 (13)0.161 (2)0.0718 (11)0.0318 (14)0.0046 (10)0.0262 (13)
C220.0681 (10)0.153 (2)0.0636 (10)0.0080 (12)0.0058 (8)0.0082 (11)
N10.0483 (6)0.0612 (6)0.0649 (7)0.0024 (5)0.0111 (5)0.0014 (5)
N20.0517 (6)0.0616 (7)0.0612 (6)0.0020 (5)0.0141 (5)0.0003 (5)
N30.0564 (6)0.0654 (7)0.0555 (6)0.0082 (5)0.0078 (5)0.0030 (5)
N40.0464 (6)0.0772 (8)0.0526 (6)0.0019 (5)0.0081 (5)0.0045 (5)
O10.1027 (10)0.0738 (8)0.1127 (10)0.0100 (7)0.0496 (8)0.0114 (7)
O20.0451 (6)0.250 (2)0.0754 (8)0.0005 (9)0.0067 (5)0.0370 (11)
Geometric parameters (Å, º) top
C1—N11.3269 (18)C12—C161.384 (2)
C1—C51.3862 (19)C12—N41.4077 (17)
C1—N21.4122 (17)C13—N31.3427 (19)
C2—N11.3346 (19)C13—C141.378 (2)
C2—C31.382 (2)C13—H130.9300
C2—H20.9300C14—C151.377 (2)
C3—C41.381 (2)C14—C171.507 (2)
C3—C61.506 (2)C15—C161.380 (2)
C4—C51.368 (2)C15—H150.9300
C4—H40.9300C16—H160.9300
C5—H50.9300C17—H17A0.9600
C6—H6A0.9600C17—H17B0.9600
C6—H6B0.9600C17—H17C0.9600
C6—H6C0.9600C18—O21.208 (2)
C7—O11.2155 (19)C18—N41.3565 (19)
C7—N21.3567 (19)C18—C191.527 (2)
C7—C81.531 (2)C19—C211.526 (3)
C8—C101.527 (3)C19—C221.529 (2)
C8—C91.529 (3)C19—C201.531 (3)
C8—C111.531 (3)C20—H20A0.9600
C9—H9A0.9600C20—H20B0.9600
C9—H9B0.9600C20—H20C0.9600
C9—H9C0.9600C21—H21A0.9600
C10—H10A0.9600C21—H21B0.9600
C10—H10B0.9600C21—H21C0.9600
C10—H10C0.9600C22—H22A0.9600
C11—H11A0.9600C22—H22B0.9600
C11—H11B0.9600C22—H22C0.9600
C11—H11C0.9600N2—H2A0.8600
C12—N31.3314 (18)N4—H4A0.8600
N1—C1—C5122.76 (13)N3—C13—H13117.7
N1—C1—N2115.06 (11)C14—C13—H13117.7
C5—C1—N2122.13 (13)C15—C14—C13116.30 (14)
N1—C2—C3125.05 (15)C15—C14—C17122.08 (15)
N1—C2—H2117.5C13—C14—C17121.62 (16)
C3—C2—H2117.5C14—C15—C16120.94 (14)
C4—C3—C2116.01 (14)C14—C15—H15119.5
C4—C3—C6122.73 (16)C16—C15—H15119.5
C2—C3—C6121.25 (17)C15—C16—C12118.01 (14)
C5—C4—C3120.60 (14)C15—C16—H16121.0
C5—C4—H4119.7C12—C16—H16121.0
C3—C4—H4119.7C14—C17—H17A109.5
C4—C5—C1118.49 (15)C14—C17—H17B109.5
C4—C5—H5120.8H17A—C17—H17B109.5
C1—C5—H5120.8C14—C17—H17C109.5
C3—C6—H6A109.5H17A—C17—H17C109.5
C3—C6—H6B109.5H17B—C17—H17C109.5
H6A—C6—H6B109.5O2—C18—N4121.25 (14)
C3—C6—H6C109.5O2—C18—C19122.54 (14)
H6A—C6—H6C109.5N4—C18—C19116.20 (13)
H6B—C6—H6C109.5C21—C19—C18109.61 (16)
O1—C7—N2121.70 (15)C21—C19—C22109.63 (17)
O1—C7—C8121.50 (15)C18—C19—C22108.60 (14)
N2—C7—C8116.72 (13)C21—C19—C20109.78 (18)
C10—C8—C9108.82 (16)C18—C19—C20109.45 (16)
C10—C8—C11111.11 (19)C22—C19—C20109.75 (18)
C9—C8—C11109.45 (17)C19—C20—H20A109.5
C10—C8—C7113.06 (14)C19—C20—H20B109.5
C9—C8—C7108.31 (15)H20A—C20—H20B109.5
C11—C8—C7106.00 (15)C19—C20—H20C109.5
C8—C9—H9A109.5H20A—C20—H20C109.5
C8—C9—H9B109.5H20B—C20—H20C109.5
H9A—C9—H9B109.5C19—C21—H21A109.5
C8—C9—H9C109.5C19—C21—H21B109.5
H9A—C9—H9C109.5H21A—C21—H21B109.5
H9B—C9—H9C109.5C19—C21—H21C109.5
C8—C10—H10A109.5H21A—C21—H21C109.5
C8—C10—H10B109.5H21B—C21—H21C109.5
H10A—C10—H10B109.5C19—C22—H22A109.5
C8—C10—H10C109.5C19—C22—H22B109.5
H10A—C10—H10C109.5H22A—C22—H22B109.5
H10B—C10—H10C109.5C19—C22—H22C109.5
C8—C11—H11A109.5H22A—C22—H22C109.5
C8—C11—H11B109.5H22B—C22—H22C109.5
H11A—C11—H11B109.5C1—N1—C2117.08 (12)
C8—C11—H11C109.5C7—N2—C1124.47 (12)
H11A—C11—H11C109.5C7—N2—H2A117.8
H11B—C11—H11C109.5C1—N2—H2A117.8
N3—C12—C16122.75 (13)C12—N3—C13117.35 (12)
N3—C12—N4113.83 (11)C18—N4—C12125.79 (12)
C16—C12—N4123.38 (13)C18—N4—H4A117.1
N3—C13—C14124.64 (14)C12—N4—H4A117.1
N1—C2—C3—C40.6 (3)O2—C18—C19—C21119.0 (2)
N1—C2—C3—C6179.97 (18)N4—C18—C19—C2161.9 (2)
C2—C3—C4—C50.2 (2)O2—C18—C19—C220.8 (3)
C6—C3—C4—C5179.56 (18)N4—C18—C19—C22178.35 (18)
C3—C4—C5—C10.3 (2)O2—C18—C19—C20120.6 (2)
N1—C1—C5—C40.3 (2)N4—C18—C19—C2058.5 (2)
N2—C1—C5—C4177.72 (14)C5—C1—N1—C20.0 (2)
O1—C7—C8—C10151.67 (19)N2—C1—N1—C2177.54 (12)
N2—C7—C8—C1031.6 (2)C3—C2—N1—C10.5 (2)
O1—C7—C8—C931.0 (2)O1—C7—N2—C10.2 (2)
N2—C7—C8—C9152.30 (15)C8—C7—N2—C1176.94 (13)
O1—C7—C8—C1186.4 (2)N1—C1—N2—C7142.20 (14)
N2—C7—C8—C1190.33 (19)C5—C1—N2—C740.2 (2)
N3—C13—C14—C151.3 (3)C16—C12—N3—C130.6 (2)
N3—C13—C14—C17177.95 (17)N4—C12—N3—C13178.41 (13)
C13—C14—C15—C160.9 (3)C14—C13—N3—C120.5 (2)
C17—C14—C15—C16178.27 (18)O2—C18—N4—C120.7 (3)
C14—C15—C16—C120.1 (3)C19—C18—N4—C12178.44 (15)
N3—C12—C16—C150.9 (2)N3—C12—N4—C18148.58 (15)
N4—C12—C16—C15178.46 (15)C16—C12—N4—C1833.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.862.313.1192 (16)156
N4—H4A···N10.862.253.0837 (16)163
C4—H4···O2i0.932.433.3262 (19)160
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.862.313.1192 (16)156
N4—H4A···N10.862.253.0837 (16)163
C4—H4···O2i0.932.433.3262 (19)160
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors extend their appreciation to the Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, for funding this research.

References

First citationAbdel-Megeed, M. F., Badr, B. E., Azaam, M. M. & El-Hiti, G. A. (2012). Bioorg. Med. Chem. 20, 2252–2258.  Web of Science CAS PubMed Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCandia, M. de, Fiorella, F., Lopopolo, G., Carotti, A., Romano, M. R., Lograno, M. D., Martel, S., Carrupt, P.-A., Belviso, B. D., Caliandro, R. & Altomare, C. (2013). J. Med. Chem. 56, 8696–8711.  Web of Science PubMed Google Scholar
First citationEl-Hiti, G. A., Smith, K., Balakit, A. A., Hegazy, A. S. & Kariuki, B. M. (2014). Acta Cryst. E70, o351–o352.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEl-Hiti, A., Smith, G. & Hegazy, K. (2015a). Heterocycles, 91, 479–504.  Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Alanazi, S. A. & Kariuki, B. M. (2015b). Acta Cryst. E71, o246–o247.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoule, J. A. & Mills, K. (2000). Heterocyclic Chemistry, 4th ed. England: Blackwell Science Publishers.  Google Scholar
First citationKoch, P., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o2216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeidler, T., Gryl, M., Trzewik, B. & Stadnicka, K. (2011). Acta Cryst. E67, o1507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A., Alshammari, M. B. & Fekri, A. (2013). Synthesis, 45, 3426–3434.  Web of Science CrossRef CAS Google Scholar
First citationSmith, K. A., El-Hiti, G. A., Fekri, A. & Alshammari, B. (2012). Heterocycles, 86, 391–410.  CrossRef CAS Google Scholar
First citationTurner, J. A. (1983). J. Org. Chem. 48, 3401–3408.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o419-o420
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds