organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-4-ethyl-2-(4-meth­­oxy­benzyl­­idene)-3,4-di­hydro­naphthalen-1(2H)-one

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: elyazidimohamed@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 May 2015; accepted 23 May 2015; online 30 May 2015)

In the title compound, C20H20O2, the exocyclic C=C double bond has an E conformation. The ethyl substituent on the cyclo­hexa­none ring is in an axial orientation. The cyclo­hexa­none ring adopts a screw-boat conformation, with the methyl­ene C atom and the C atom bearing the 4-meth­oxy­benzyl­idene group displaced from the other atoms by 0.812 (1) and 0.334 (1) Å, respectively. The dihedral angle between the planes of the benzene rings is 42.20 (8)°. In the crystal, no directional inter­actions beyond van der Waals contacts are observed.

1. Related literature

For general background to dipolar 1,3-cyclo­addition reactions, see: Bennani et al. (2007[Bennani, B., Kerbal, A., Daoudi, M., Filali Baba, B., Al Houari, G., Jalbout, A. F., Mimouni, M., Benazza, M., Demailly, G., Akkurt, M., Öztürk Yildirim, S. & Ben Hadda, T. (2007). ARKIVOC, xvi, 19-40.]); Kerbal et al. (1988[Kerbal, A., Tshiamala, K., Vebrel, J. & Laude, B. (1988). Bull. Soc. Chim. Belg. 97, 149-161.]); Al Houari et al. (2008[Al Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). ARKIVOC, xii, 42-50.]). For a related structure, see: Akhazzane et al. (2010[Akhazzane, M., Zouihri, H., Daran, J.-C., Kerbal, A. & Al Houari, G. (2010). Acta Cryst. E66, o3067.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H20O2

  • Mr = 292.36

  • Monoclinic, P 21 /c

  • a = 12.0411 (13) Å

  • b = 8.9698 (9) Å

  • c = 15.5832 (18) Å

  • β = 110.721 (3)°

  • V = 1574.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.38 × 0.16 × 0.12 mm

2.2. Data collection

  • Bruker X8 APEX CCD diffractometer

  • 25378 measured reflections

  • 4068 independent reflections

  • 2552 reflections with I > 2σ(I)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.01

  • 4068 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Knowledge of the configuration and conformation of the title compound is necessary to understand its behaviour in dipolar-1,3 cycloaddition reactions (Bennani et al., 2007; Al Houari et al., 2008). To confirm the (E) conformation of the exocyclic C=C double bond, an X-ray crystal structure determination has been carried out. The present work is a continuation of the investigation of the dihydronaphthalene derivatives published recently by Akhazzane et al., 2010.

The molecule of the title compound is formed by two fused rings linked to an ethyl group and to a 4-methoxybenzylidene moities as shown in Fig.1. The cyclohexanone ring adopts a screw-boat conformation as indicated by the total puckering amplitude QT = 0.477 (2) Å and spherical polar angle θ = 115.9 (2)° with ϕ = 35.6 (2)°. The benzene rings form a dihedral angle of 42.20 (8)°.

Related literature top

For general background to dipolar 1,3-cycloaddition reactions, see: Bennani et al. (2007); Kerbal et al. (1988); Al Houari et al. (2008). For a related structure, see: Akhazzane et al. (2010).

Experimental top

The synthesis of the title compound was achieved using the method reported by Kerbal et al., 1988. By a condensation of para anisaldehyde with 4-ethyl-3,4-dihydronaphthalen- 1(2H)-one in an alkaline medium in ethanol. The resulting residue was recrystallized from ethanol solution by slow evaporation to afford the title compound as colourless needles.

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.97 Å, and C–H = 0.93 Å for methyl, methylene and aromatic, respectively. All hydrogen with Uiso(H) = 1.2 Ueq for methylene, aromatic and Uiso(H) = 1.5 Ueq for methyl.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Plot of the molecule of the title compound with displacement ellipsoids drawn at the 50% probability level.
(E)-4-Ethyl-2-(4-methoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-\ one top
Crystal data top
C20H20O2Dx = 1.234 Mg m3
Mr = 292.36Melting point: 383 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.0411 (13) ÅCell parameters from 4068 reflections
b = 8.9698 (9) Åθ = 2.7–28.7°
c = 15.5832 (18) ŵ = 0.08 mm1
β = 110.721 (3)°T = 296 K
V = 1574.2 (3) Å3Needles, colourless
Z = 40.38 × 0.16 × 0.12 mm
F(000) = 624
Data collection top
Bruker X8 APEX CCD
diffractometer
2552 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 28.7°, θmin = 2.7°
ϕ and ω scansh = 1416
25378 measured reflectionsk = 1212
4068 independent reflectionsl = 2021
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.2497P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.16 e Å3
4068 reflectionsΔρmin = 0.15 e Å3
200 parametersExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0088 (16)
Crystal data top
C20H20O2V = 1574.2 (3) Å3
Mr = 292.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0411 (13) ŵ = 0.08 mm1
b = 8.9698 (9) ÅT = 296 K
c = 15.5832 (18) Å0.38 × 0.16 × 0.12 mm
β = 110.721 (3)°
Data collection top
Bruker X8 APEX CCD
diffractometer
2552 reflections with I > 2σ(I)
25378 measured reflectionsRint = 0.046
4068 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
4068 reflectionsΔρmin = 0.15 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64653 (13)0.60708 (16)0.83826 (9)0.0452 (3)
C20.52292 (13)0.64122 (14)0.83030 (9)0.0415 (3)
C30.49026 (15)0.62928 (17)0.90761 (10)0.0520 (4)
H30.54680.60170.96360.062*
C40.37607 (17)0.65769 (19)0.90212 (11)0.0614 (4)
H40.35520.64860.95390.074*
C50.29205 (16)0.6999 (2)0.81910 (12)0.0621 (4)
H50.21440.71910.81500.075*
C60.32321 (14)0.71366 (17)0.74230 (10)0.0514 (4)
H60.26620.74290.68700.062*
C70.43793 (12)0.68471 (14)0.74609 (9)0.0405 (3)
C80.47260 (12)0.69755 (15)0.66233 (9)0.0415 (3)
H80.42050.77170.62130.050*
C90.60029 (13)0.75335 (16)0.68939 (10)0.0466 (4)
H9A0.62310.75420.63560.056*
H9B0.60470.85490.71180.056*
C100.68618 (12)0.65723 (15)0.76252 (9)0.0432 (3)
C110.79269 (12)0.60980 (17)0.76459 (10)0.0485 (4)
H110.83150.54790.81400.058*
C120.85911 (12)0.63703 (16)0.70394 (10)0.0464 (3)
C130.84423 (13)0.75855 (17)0.64532 (11)0.0521 (4)
H130.78840.83100.64400.063*
C140.91024 (13)0.77445 (17)0.58897 (11)0.0530 (4)
H140.89780.85610.54990.064*
C150.99443 (13)0.66918 (18)0.59086 (11)0.0525 (4)
C161.01364 (15)0.5491 (2)0.65050 (12)0.0643 (5)
H161.07150.47880.65310.077*
C170.94721 (14)0.53437 (19)0.70550 (12)0.0602 (4)
H170.96120.45340.74520.072*
C180.45730 (13)0.55031 (17)0.60935 (10)0.0509 (4)
H18A0.48940.56270.56080.061*
H18B0.50420.47440.65080.061*
C190.33144 (15)0.4944 (2)0.56723 (12)0.0692 (5)
H19A0.33030.40520.53290.104*
H19C0.28330.56920.52710.104*
H19B0.30060.47320.61490.104*
O21.06414 (11)0.67254 (15)0.53835 (9)0.0708 (4)
C201.05297 (19)0.7950 (2)0.47844 (14)0.0811 (6)
H20A1.10710.78280.44620.122*
H20B1.07110.88570.51340.122*
H20C0.97310.79950.43520.122*
O10.71294 (10)0.54013 (13)0.90568 (7)0.0630 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0520 (8)0.0409 (7)0.0352 (7)0.0027 (6)0.0061 (6)0.0005 (6)
C20.0554 (8)0.0349 (7)0.0328 (7)0.0029 (6)0.0138 (6)0.0014 (5)
C30.0705 (11)0.0487 (8)0.0354 (7)0.0050 (7)0.0167 (7)0.0013 (6)
C40.0812 (12)0.0662 (11)0.0471 (9)0.0006 (9)0.0356 (9)0.0030 (8)
C50.0641 (10)0.0721 (11)0.0578 (10)0.0081 (8)0.0311 (9)0.0022 (9)
C60.0540 (9)0.0578 (9)0.0428 (8)0.0075 (7)0.0179 (7)0.0000 (7)
C70.0511 (8)0.0347 (7)0.0354 (7)0.0002 (6)0.0150 (6)0.0028 (6)
C80.0475 (8)0.0427 (7)0.0324 (7)0.0081 (6)0.0119 (6)0.0052 (6)
C90.0515 (8)0.0464 (8)0.0421 (8)0.0026 (6)0.0170 (7)0.0080 (6)
C100.0461 (8)0.0407 (7)0.0377 (7)0.0043 (6)0.0086 (6)0.0005 (6)
C110.0450 (8)0.0477 (8)0.0435 (8)0.0032 (6)0.0043 (6)0.0020 (6)
C120.0367 (7)0.0495 (8)0.0461 (8)0.0051 (6)0.0060 (6)0.0018 (7)
C130.0423 (8)0.0444 (8)0.0663 (10)0.0017 (6)0.0151 (7)0.0018 (7)
C140.0443 (8)0.0502 (9)0.0592 (9)0.0053 (7)0.0119 (7)0.0068 (7)
C150.0413 (8)0.0611 (9)0.0507 (9)0.0044 (7)0.0110 (7)0.0033 (7)
C160.0520 (10)0.0674 (11)0.0740 (11)0.0157 (8)0.0227 (9)0.0117 (9)
C170.0490 (9)0.0637 (10)0.0617 (10)0.0096 (7)0.0120 (8)0.0167 (8)
C180.0550 (9)0.0558 (9)0.0396 (8)0.0073 (7)0.0138 (7)0.0057 (7)
C190.0635 (11)0.0683 (11)0.0614 (10)0.0017 (9)0.0042 (9)0.0173 (9)
O20.0642 (7)0.0829 (9)0.0717 (8)0.0064 (6)0.0320 (6)0.0094 (7)
C200.0813 (14)0.0945 (15)0.0748 (13)0.0010 (11)0.0367 (11)0.0165 (11)
O10.0627 (7)0.0745 (8)0.0423 (6)0.0079 (6)0.0068 (5)0.0166 (5)
Geometric parameters (Å, º) top
C1—O11.2285 (16)C11—H110.9300
C1—C21.481 (2)C12—C131.392 (2)
C1—C101.491 (2)C12—C171.398 (2)
C2—C31.3975 (19)C13—C141.385 (2)
C2—C71.4040 (19)C13—H130.9300
C3—C41.371 (2)C14—C151.378 (2)
C3—H30.9300C14—H140.9300
C4—C51.384 (2)C15—O21.3644 (19)
C4—H40.9300C15—C161.387 (2)
C5—C61.381 (2)C16—C171.370 (2)
C5—H50.9300C16—H160.9300
C6—C71.386 (2)C17—H170.9300
C6—H60.9300C18—C191.508 (2)
C7—C81.5089 (18)C18—H18A0.9700
C8—C91.528 (2)C18—H18B0.9700
C8—C181.5337 (19)C19—H19A0.9600
C8—H80.9800C19—H19C0.9600
C9—C101.5092 (19)C19—H19B0.9600
C9—H9A0.9700O2—C201.417 (2)
C9—H9B0.9700C20—H20A0.9600
C10—C111.341 (2)C20—H20B0.9600
C11—C121.459 (2)C20—H20C0.9600
O1—C1—C2120.23 (13)C12—C11—H11114.0
O1—C1—C10122.05 (14)C13—C12—C17116.60 (14)
C2—C1—C10117.72 (12)C13—C12—C11125.69 (14)
C3—C2—C7119.51 (14)C17—C12—C11117.70 (14)
C3—C2—C1119.53 (13)C14—C13—C12121.82 (15)
C7—C2—C1120.95 (12)C14—C13—H13119.1
C4—C3—C2120.93 (14)C12—C13—H13119.1
C4—C3—H3119.5C15—C14—C13119.92 (15)
C2—C3—H3119.5C15—C14—H14120.0
C3—C4—C5119.65 (15)C13—C14—H14120.0
C3—C4—H4120.2O2—C15—C14125.17 (15)
C5—C4—H4120.2O2—C15—C16115.27 (15)
C6—C5—C4120.12 (16)C14—C15—C16119.56 (15)
C6—C5—H5119.9C17—C16—C15119.89 (15)
C4—C5—H5119.9C17—C16—H16120.1
C5—C6—C7121.25 (15)C15—C16—H16120.1
C5—C6—H6119.4C16—C17—C12122.17 (15)
C7—C6—H6119.4C16—C17—H17118.9
C6—C7—C2118.54 (13)C12—C17—H17118.9
C6—C7—C8121.70 (12)C19—C18—C8115.56 (13)
C2—C7—C8119.76 (13)C19—C18—H18A108.4
C7—C8—C9110.23 (11)C8—C18—H18A108.4
C7—C8—C18112.49 (12)C19—C18—H18B108.4
C9—C8—C18110.38 (11)C8—C18—H18B108.4
C7—C8—H8107.9H18A—C18—H18B107.5
C9—C8—H8107.9C18—C19—H19A109.5
C18—C8—H8107.9C18—C19—H19C109.5
C10—C9—C8112.04 (11)H19A—C19—H19C109.5
C10—C9—H9A109.2C18—C19—H19B109.5
C8—C9—H9A109.2H19A—C19—H19B109.5
C10—C9—H9B109.2H19C—C19—H19B109.5
C8—C9—H9B109.2C15—O2—C20118.51 (14)
H9A—C9—H9B107.9O2—C20—H20A109.5
C11—C10—C1117.18 (13)O2—C20—H20B109.5
C11—C10—C9126.41 (13)H20A—C20—H20B109.5
C1—C10—C9116.38 (12)O2—C20—H20C109.5
C10—C11—C12132.10 (14)H20A—C20—H20C109.5
C10—C11—H11114.0H20B—C20—H20C109.5

Experimental details

Crystal data
Chemical formulaC20H20O2
Mr292.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.0411 (13), 8.9698 (9), 15.5832 (18)
β (°) 110.721 (3)
V3)1574.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.16 × 0.12
Data collection
DiffractometerBruker X8 APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25378, 4068, 2552
Rint0.046
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.01
No. of reflections4068
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAkhazzane, M., Zouihri, H., Daran, J.-C., Kerbal, A. & Al Houari, G. (2010). Acta Cryst. E66, o3067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). ARKIVOC, xii, 42–50.  Google Scholar
First citationBennani, B., Kerbal, A., Daoudi, M., Filali Baba, B., Al Houari, G., Jalbout, A. F., Mimouni, M., Benazza, M., Demailly, G., Akkurt, M., Öztürk Yildirim, S. & Ben Hadda, T. (2007). ARKIVOC, xvi, 19–40.  CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKerbal, A., Tshiamala, K., Vebrel, J. & Laude, B. (1988). Bull. Soc. Chim. Belg. 97, 149–161.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds