organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tert-butyl­di­phenyl­phosphine oxide

a1601 E Market St., Department of Chemistry, North Carolina A & T State University, Greensboro, NC 27411, USA, and bUniversity of South Alabama, Department of Chemistry, Mobile, AL 36688-0002, USA
*Correspondence e-mail: zassefa@ncat.edu

Edited by P. C. Healy, Griffith University, Australia (Received 18 April 2015; accepted 7 May 2015; online 13 May 2015)

In the structure of the title triorganophosphine oxide, C16H19OP, the P—O bond is 1.490 (1) Å. The P atom has a distorted tetrahedral geometry. The O atom inter­acts with both phenyl groups of a neighboring mol­ecule [C⋯O = 2.930 (3) and 2.928 (4) Å]. The C—O interaction directs an extended supramolecular arrangement along the a-axis.

1. Related literature

For the structures of related phosphine oxides Ph3P=O, EtPh2P=O and BuPh2P=O, see: Al-Farhan (1992[Al-Farhan, K. A. (1992). J. Crystallogr. Spectrosc. Res. 22, 687-689.]), Orama & Koskinen (1994[Orama, O. & Koskinen, J. T. (1994). Acta Cryst. C50, 608-609.]) and Caddy et al. (2007[Caddy, J., Coyanis, E. M., Lemmerer, A., Khanye, S. D. & Omondi, B. (2007). Acta Cryst. E63, o1032-o1033.]), respectively.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H19OP

  • Mr = 258.28

  • Monoclinic, P 21

  • a = 6.3432 (6) Å

  • b = 9.5219 (9) Å

  • c = 12.4556 (15) Å

  • β = 101.665 (10)°

  • V = 736.78 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.4 × 0.15 × 0.04 mm

2.2. Data collection

  • Agilent Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.842, Tmax = 1.000

  • 11029 measured reflections

  • 2713 independent reflections

  • 2203 reflections with I > 2σ(I)

  • Rint = 0.049

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.086

  • S = 1.05

  • 2713 reflections

  • 166 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.19 (10)

Table 1
Selected bond lengths (Å)

P1—O1 1.4897 (14)
P1—C1 1.821 (3)
P1—C7 1.825 (3)
P1—C13 1.841 (3)

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

The tert-butyl­diphenyl­phosphine oxide was unintentionally obtained during the reaction used to coordinate the unoxidized ligand to gold(I). The product was obtained after mixing tert-butyl­diphenyl­phosphine (0.0600 g, 0.24 mmol) with a solution of (C4H8S)AuCl (0.0264 g, 0.08 mmol) in tetra­hydro­furan (20 mL) at -80oC. The reaction solution was stirred for 3 hours and the solvent removed totally by purging nitro­gen gas into the solution. The residue was then recrystallized from CH2Cl2/n-hexane mixture within six days. Partial evaporation of the solvent provided quality crystals of the title compound. Yield 90%. Melting point 137oC (decomposition). 1H NMR (CD2Cl2) [δ (ppm)]: 1.3(s),7.3(m), 7.6(m), 7.9(m). For 31P NMR in CD2Cl2 [δ (ppm)]: 38.96. Infrared data (cm-1): 3032 (C–H, Ar), 2908 (C–H, CH3), 1597 (C=C, Ar), 1165 (P=O), 1126 (P–Ar).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H-atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for ring hydrogens and with Uiso(H) = 1.5Ueq(O) and C—H distances of 0.96 Å for methyl hydrogens.

Related literature top

For the structures of related phophine oxides Ph3PO, EtPh2PO and BuPh2PO, see: Al-Farhan (1992); Orama & Koskinen (1994); Caddy et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014)); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A ball-and-stick representation of the molecular structure of I.
[Figure 2] Fig. 2. Molecular packing with short C—H···O contacts indicated by dashed lines
tert-Butyldiphenylphosphine oxide top
Crystal data top
C16H19OPF(000) = 276
Mr = 258.28Dx = 1.164 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.3432 (6) ÅCell parameters from 2279 reflections
b = 9.5219 (9) Åθ = 3.3–23.1°
c = 12.4556 (15) ŵ = 0.17 mm1
β = 101.665 (10)°T = 293 K
V = 736.78 (13) Å3Plate, colourless
Z = 20.4 × 0.15 × 0.04 mm
Data collection top
Agilent Xcalibur, Eos
diffractometer
2713 independent reflections
Radiation source: Enhance (Mo) X-ray Source2203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 16.0514 pixels mm-1θmax = 25.4°, θmin = 2.7°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1111
Tmin = 0.842, Tmax = 1.000l = 1414
11029 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.0459P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2713 reflectionsΔρmax = 0.18 e Å3
166 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: heavy-atom methodAbsolute structure parameter: 0.19 (10)
Crystal data top
C16H19OPV = 736.78 (13) Å3
Mr = 258.28Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.3432 (6) ŵ = 0.17 mm1
b = 9.5219 (9) ÅT = 293 K
c = 12.4556 (15) Å0.4 × 0.15 × 0.04 mm
β = 101.665 (10)°
Data collection top
Agilent Xcalibur, Eos
diffractometer
2713 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
2203 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 1.000Rint = 0.049
11029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.18 e Å3
S = 1.05Δρmin = 0.24 e Å3
2713 reflectionsAbsolute structure: Flack (1983)
166 parametersAbsolute structure parameter: 0.19 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.87488 (9)0.74951 (7)0.71978 (5)0.03371 (18)
O11.1119 (2)0.7455 (2)0.72615 (15)0.0475 (5)
C20.5797 (4)0.5351 (3)0.7611 (2)0.0437 (7)
H20.47920.60450.76640.052*
C10.7771 (4)0.5727 (3)0.7363 (2)0.0349 (7)
C140.7903 (5)0.7211 (4)0.4984 (2)0.0631 (10)
H14A0.94400.71520.50770.095*
H14B0.73100.75860.42710.095*
H14C0.73230.62910.50500.095*
C60.9206 (5)0.4655 (3)0.7265 (2)0.0485 (8)
H61.05270.48760.70930.058*
C40.6771 (5)0.2920 (3)0.7685 (3)0.0565 (9)
H40.64430.19880.78020.068*
C30.5318 (5)0.3973 (3)0.7776 (2)0.0499 (8)
H30.40030.37450.79510.060*
C70.8146 (4)0.8617 (3)0.8285 (2)0.0375 (7)
C80.6180 (4)0.8754 (3)0.8609 (3)0.0513 (8)
H80.49850.82570.82460.062*
C100.7712 (5)1.0408 (4)1.0008 (2)0.0609 (9)
H100.75621.09981.05830.073*
C90.6004 (5)0.9632 (4)0.9473 (3)0.0615 (10)
H90.46920.96970.96940.074*
C120.9867 (4)0.9407 (3)0.8838 (3)0.0543 (9)
H121.11970.93340.86370.065*
C110.9640 (5)1.0303 (4)0.9686 (3)0.0671 (10)
H111.08071.08361.00360.081*
C50.8706 (5)0.3264 (3)0.7418 (3)0.0590 (9)
H50.96820.25600.73410.071*
C130.7324 (4)0.8175 (3)0.5864 (2)0.0361 (6)
C160.8231 (5)0.9656 (3)0.5733 (3)0.0646 (10)
H16A0.78061.02810.62550.097*
H16B0.76780.99940.50040.097*
H16C0.97740.96130.58580.097*
C150.4891 (4)0.8239 (4)0.5752 (3)0.0577 (9)
H15A0.43560.73230.58760.087*
H15B0.42400.85520.50280.087*
H15C0.45430.88850.62830.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0276 (3)0.0354 (4)0.0388 (4)0.0001 (4)0.0084 (3)0.0003 (4)
O10.0296 (8)0.0516 (11)0.0634 (12)0.0015 (12)0.0142 (8)0.0006 (14)
C20.0414 (16)0.0407 (17)0.0509 (19)0.0010 (14)0.0138 (13)0.0036 (15)
C10.0355 (15)0.0370 (17)0.0306 (16)0.0023 (12)0.0031 (12)0.0032 (12)
C140.081 (2)0.068 (3)0.0415 (18)0.0185 (19)0.0145 (16)0.0007 (17)
C60.0436 (17)0.0429 (19)0.060 (2)0.0050 (13)0.0127 (16)0.0019 (15)
C40.070 (2)0.036 (2)0.059 (2)0.0047 (15)0.0044 (17)0.0081 (14)
C30.0496 (18)0.047 (2)0.054 (2)0.0094 (15)0.0141 (15)0.0064 (15)
C70.0312 (14)0.0432 (17)0.0368 (17)0.0002 (13)0.0036 (12)0.0016 (13)
C80.0411 (17)0.067 (2)0.0468 (19)0.0115 (15)0.0110 (14)0.0145 (16)
C100.063 (2)0.078 (2)0.0397 (19)0.005 (2)0.0079 (16)0.0177 (19)
C90.050 (2)0.086 (3)0.052 (2)0.0016 (18)0.0181 (17)0.0197 (19)
C120.0380 (17)0.071 (2)0.052 (2)0.0032 (16)0.0048 (15)0.0153 (18)
C110.055 (2)0.081 (3)0.061 (2)0.010 (2)0.0004 (18)0.028 (2)
C50.060 (2)0.0360 (19)0.081 (3)0.0131 (16)0.0143 (18)0.0008 (17)
C130.0351 (14)0.0347 (16)0.0405 (17)0.0010 (12)0.0128 (12)0.0037 (13)
C160.078 (2)0.041 (2)0.073 (3)0.0094 (17)0.0122 (19)0.0163 (17)
C150.0439 (16)0.075 (2)0.051 (2)0.0054 (16)0.0026 (15)0.0143 (18)
Geometric parameters (Å, º) top
P1—O11.4897 (14)C7—C121.388 (3)
P1—C11.821 (3)C8—H80.9300
P1—C71.825 (3)C8—C91.385 (4)
P1—C131.841 (3)C10—H100.9300
C2—H20.9300C10—C91.368 (4)
C2—C11.395 (3)C10—C111.366 (4)
C2—C31.372 (4)C9—H90.9300
C1—C61.390 (3)C12—H120.9300
C14—H14A0.9600C12—C111.388 (4)
C14—H14B0.9600C11—H110.9300
C14—H14C0.9600C5—H50.9300
C14—C131.530 (4)C13—C161.544 (4)
C6—H60.9300C13—C151.523 (3)
C6—C51.384 (4)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C4—C31.382 (4)C16—H16C0.9600
C4—C51.374 (4)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C7—C81.393 (3)C15—H15C0.9600
O1—P1—C1109.48 (12)C9—C10—H10120.5
O1—P1—C7109.63 (12)C11—C10—H10120.5
O1—P1—C13111.29 (10)C11—C10—C9119.0 (3)
C1—P1—C7109.29 (12)C8—C9—H9119.2
C1—P1—C13108.10 (12)C10—C9—C8121.6 (3)
C7—P1—C13109.02 (12)C10—C9—H9119.2
C1—C2—H2119.5C7—C12—H12119.4
C3—C2—H2119.5C11—C12—C7121.2 (3)
C3—C2—C1120.9 (3)C11—C12—H12119.4
C2—C1—P1127.1 (2)C10—C11—C12120.4 (3)
C6—C1—P1115.15 (19)C10—C11—H11119.8
C6—C1—C2117.7 (3)C12—C11—H11119.8
H14A—C14—H14B109.5C6—C5—H5119.9
H14A—C14—H14C109.5C4—C5—C6120.1 (3)
H14B—C14—H14C109.5C4—C5—H5119.9
C13—C14—H14A109.5C14—C13—P1106.90 (19)
C13—C14—H14B109.5C14—C13—C16108.9 (2)
C13—C14—H14C109.5C16—C13—P1106.9 (2)
C1—C6—H6119.4C15—C13—P1113.58 (18)
C5—C6—C1121.2 (3)C15—C13—C14110.2 (2)
C5—C6—H6119.4C15—C13—C16110.2 (2)
C3—C4—H4120.3C13—C16—H16A109.5
C5—C4—H4120.3C13—C16—H16B109.5
C5—C4—C3119.3 (3)C13—C16—H16C109.5
C2—C3—C4120.7 (3)H16A—C16—H16B109.5
C2—C3—H3119.7H16A—C16—H16C109.5
C4—C3—H3119.7H16B—C16—H16C109.5
C8—C7—P1127.2 (2)C13—C15—H15A109.5
C12—C7—P1115.06 (19)C13—C15—H15B109.5
C12—C7—C8117.8 (3)C13—C15—H15C109.5
C7—C8—H8120.0H15A—C15—H15B109.5
C9—C8—C7120.0 (3)H15A—C15—H15C109.5
C9—C8—H8120.0H15B—C15—H15C109.5
P1—C1—C6—C5177.2 (3)C3—C2—C1—C61.5 (4)
P1—C7—C8—C9178.4 (3)C3—C4—C5—C61.3 (5)
P1—C7—C12—C11179.9 (3)C7—P1—C1—C243.6 (3)
O1—P1—C1—C2163.7 (2)C7—P1—C1—C6134.0 (2)
O1—P1—C1—C614.0 (2)C7—P1—C13—C14179.33 (18)
O1—P1—C7—C8169.2 (3)C7—P1—C13—C1662.9 (2)
O1—P1—C7—C1210.6 (3)C7—P1—C13—C1558.9 (2)
O1—P1—C13—C1458.3 (2)C7—C8—C9—C101.7 (5)
O1—P1—C13—C1658.2 (2)C7—C12—C11—C101.2 (5)
O1—P1—C13—C15180.0 (2)C8—C7—C12—C110.0 (5)
C2—C1—C6—C50.6 (4)C9—C10—C11—C121.0 (5)
C1—P1—C7—C849.2 (3)C12—C7—C8—C91.4 (4)
C1—P1—C7—C12130.6 (2)C11—C10—C9—C80.5 (5)
C1—P1—C13—C1462.0 (2)C5—C4—C3—C20.4 (5)
C1—P1—C13—C16178.44 (19)C13—P1—C1—C275.0 (2)
C1—P1—C13—C1559.8 (2)C13—P1—C1—C6107.4 (2)
C1—C2—C3—C41.0 (4)C13—P1—C7—C868.7 (3)
C1—C6—C5—C40.7 (5)C13—P1—C7—C12111.4 (2)
C3—C2—C1—P1176.1 (2)
Selected bond lengths (Å) top
P1—O11.4897 (14)P1—C71.825 (3)
P1—C11.821 (3)P1—C131.841 (3)
 

Acknowledgements

The authors kindly acknowledge support from the National Science Foundation, CHE-0959406 (ZA) and CHE-0846680 (RES).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAl-Farhan, K. A. (1992). J. Crystallogr. Spectrosc. Res. 22, 687–689.  CSD CrossRef CAS Web of Science Google Scholar
First citationCaddy, J., Coyanis, E. M., Lemmerer, A., Khanye, S. D. & Omondi, B. (2007). Acta Cryst. E63, o1032–o1033.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOrama, O. & Koskinen, J. T. (1994). Acta Cryst. C50, 608–609.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds