metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages m131-m132

Crystal structure of poly[[μ-1,1′-(butane-1,4-di­yl)bis­­(1H-benzimidazole)-κ2N3:N3′]{μ-4,4′-[1,4-phenyl­enebis(­­oxy)]di­ben­zo­ato-κ4O,O′:O′′,O′′′}cobalt(II)]

aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: cgzheng@jiangnan.edu.cn

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 4 April 2015; accepted 27 April 2015; online 20 May 2015)

In the title compound, [Co(C20H12O6)(C18H18N4)]n, the CoII atom, located on a twofold rotation axis, is hexa­coordinated to four O from two bis-bidentate 4,4′-[phenyl­enebis(­oxy)]dibenzoate (L) ligands and two N atoms from two 1,1′-(butane-1,4-di­yl)bis­(1H-benzimidazole) (bbbm) ligands, forming a distorted octahedral cis-N2O4 coordination environment. Polymeric zigzag chains along [102] are built up by the bridging L ligands. These chains are additionally connected by the bbbm ligands to produce a two-dimensional coordination polymer parallel too (010).

1. Related literature

As a result of their intriguing variety of architectures and topologies, metal–organic frameworks (MOFs) with transition metal Co have received extensive inter­est. Bis-benzimidazole ligands bearing with butyl spacers are a good choice for the assembly of versatile entangled structures, see: Liu et al. (2008[Liu, Y. Y., Ma, J. F., Yang, J., Ma, J. C. & Ping, G. J. (2008). CrystEngComm, 10, 565-572.]). Complexes with di­carboxyl­ate ligands represent the most reliable and typical building blocks which can be jointly applied to synthesize a wide range of compounds with coord­ination networks, see: Du et al. (2013[Du, M., Li, C. P., Liu, C. S. & Fang, S. M. (2013). Coord. Chem. Rev. 257, 1282-1305.]). For the potential properties of metal–organic complexes involving polycarboxyl­ate ligands or bis-benzimidazole, see: Li et al. (2011[Li, X. X., Wei, Z. Q., Yue, S. T., Wang, N., Mo, H. H. & Liu, Y. L. (2011). J. Chem. Crystallogr. 41, 757-761.]); Wang et al. (2004[Wang, Y. B., Wang, Z. M., Yan, C. H. & Jin, L. P. (2004). J. Mol. Struct. 692, 177-186.]); Sun et al. (2009[Sun, C. Y., Zheng, X. B., Chen, X., Li, L. & Jin, L. (2009). Inorg. Chim. Acta, 362, 325-330.]); Wang et al. (2005[Wang, Y. B., Sun, C. Y., Zheng, X. J., Gao, S., Lu, S. Z. & Jin, L. P. (2005). Polyhedron, 24, 823-830.]); Łyszczek & Mazur (2012[Łyszczek, R. & Mazur, L. (2012). Inorg. Chem. Commun. 15, 121-125.]); Meng et al. (2003[Meng, X. R., Song, Y. L., Hou, H. W., Fan, Y. T., Li, G. & Zhu, Y. (2003). Inorg. Chem. 42, 1306-1315.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co(C20H12O6)(C18H18N4)]

  • Mr = 697.59

  • Monoclinic, C 2/c

  • a = 16.961 (4) Å

  • b = 16.446 (3) Å

  • c = 12.987 (3) Å

  • β = 117.022 (3)°

  • V = 3227.1 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 K

  • 0.27 × 0.24 × 0.19 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.858, Tmax = 0.897

  • 7207 measured reflections

  • 2836 independent reflections

  • 2385 reflections with I > 2σ(I)

  • Rint = 0.052

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.140

  • S = 1.02

  • 2836 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Because of the intriguing varieties of architectures and topologies, metal-organic frameworks (MOFs) with transition-metal Co have received extensive inter­ests. The bis-benzimidazole ligands bearing with butyl spacers are a good choice for the assembly of versatile entangled structures. (Ying-Ying Liu et al., 2008) Complexes with the di­carboxyl­ate ligands represent the most reliable and typical building blocks which can be jointly applied to synthesize a wide range of desired coordination networks (Du et al., 2013).

Single-crystal X-ray diffraction analyses reveal that Co(II) is six-coordinate. The asymmetric unit contains one Co(II) atom, a di­carboxyl­ate ligand and a bbbm ligand. Two carboxyl­ate groups adopt a chelating bidentate mode to connect one Co(II) atoms. The Co—O bond length is 2.3705 (24)Å (O1) and 2.0422 (21)Å (O2), the Co—N bond length is 2.0797 (26)Å.

Synthesis and crystallization top

A mixture of 1,4-bis­(4-carboxyl­phen­oxy)­benzene (0.035 g, 0.1 mmol), 1,1'-(1,4-butyl) bis-benzimidazole (0.029 g, 0.1 mmol), Co(NO3)2 H2O (0.029 g, 0.1 mmol), and deionized water (9 mL) was stired for 10 min at ambient temperature. Then the mixture was sealed in a Teflon-lined stainless vessel(25 mL) and heated at 160 °C for 3 days. The vessel was cooled to 50 °C by 9 °C decrease per hour, then cooled to ambient temperature directly. Amaranth transparent block-like crystal were obtained by fitretion and washed with deionized water. Yield: 34.2 mg(49 %, based on Co) Elemental analysis (%) calcd. for CoC38H30N4O6: C 65.33, H 4.3, N 8.02. Found: C 65.38, H 4.39, N 8.11.

Refinement top

The H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and C–H distances of 0.93–0.97 Å.

Related literature top

As a result of their intriguing variety of architectures and topologies, metal–organic frameworks (MOFs) with transition metal Co have received extensive interest. Bis-benzimidazole ligands bearing with butyl spacers are a good choice for the assembly of versatile entangled structures, see: Liu et al. (2008). Complexes with dicarboxylate ligands represent the most reliable and typical building blocks which can be jointly applied to synthesize a wide range of desired coordination networks, see: Du et al. (2013). For the potential properties of metal–organic complexes involving polycarboxylate ligands or bis-benzimidazole, see: Li et al. (2011); Wang et al. (2004); Sun et al. (2009); Wang et al. (2005); Łyszczek & Mazur (2012); Meng et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Co(C20H12O6)(C18H18N4)]n, with the non-H atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Three-dimensional network structure of [Co(C20H12O6)(C18H18N4)]n formed by C—H–O interaction.
Poly[[µ-1,1'-(butane-1,4-diyl)bis(1H-benzimidazole)-κ2N3:N3']{µ-4,4'-[1,4-phenylenebis(oxy)]dibenzoato-κ4O,O':O'',O'''}cobalt(II)] top
Crystal data top
[Co(C20H12O6)(C18H18N4)]F(000) = 1444
Mr = 697.59Dx = 1.436 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2720 reflections
a = 16.961 (4) Åθ = 2.7–26.5°
b = 16.446 (3) ŵ = 0.59 mm1
c = 12.987 (3) ÅT = 296 K
β = 117.022 (3)°Block, purple
V = 3227.1 (12) Å30.27 × 0.24 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2836 independent reflections
Radiation source: fine-focus sealed tube2385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1520
Tmin = 0.858, Tmax = 0.897k = 1719
7207 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0857P)2 + 2.0556P]
where P = (Fo2 + 2Fc2)/3
2836 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Co(C20H12O6)(C18H18N4)]V = 3227.1 (12) Å3
Mr = 697.59Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.961 (4) ŵ = 0.59 mm1
b = 16.446 (3) ÅT = 296 K
c = 12.987 (3) Å0.27 × 0.24 × 0.19 mm
β = 117.022 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2836 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2385 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.897Rint = 0.052
7207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.02Δρmax = 0.61 e Å3
2836 reflectionsΔρmin = 0.65 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.10089 (3)0.75000.0377 (2)
N10.46215 (15)0.17924 (14)0.84527 (17)0.0426 (5)
O20.37200 (15)0.07207 (16)0.63915 (18)0.0635 (6)
O10.46556 (13)0.00024 (14)0.60520 (19)0.0591 (6)
N20.42235 (15)0.21416 (15)0.98059 (18)0.0437 (5)
C160.36476 (17)0.25422 (16)0.8810 (2)0.0424 (6)
C10.38817 (18)0.02076 (17)0.5798 (2)0.0432 (6)
C20.31148 (17)0.01457 (15)0.4757 (2)0.0378 (6)
C30.32303 (18)0.03657 (17)0.3804 (2)0.0422 (6)
H30.37860.03170.38300.051*
C170.47733 (18)0.17001 (18)0.9539 (2)0.0438 (6)
H170.52140.13651.00640.053*
O30.10093 (17)0.10366 (14)0.1800 (2)0.0759 (8)
C110.39104 (18)0.23265 (16)0.7975 (2)0.0417 (6)
C40.2531 (2)0.06546 (17)0.2819 (2)0.0477 (7)
H40.26100.08010.21810.057*
C190.5047 (2)0.2089 (2)1.1943 (2)0.0537 (7)
H19A0.54040.25501.19450.064*
H19B0.53510.15981.19080.064*
C70.22884 (19)0.0219 (2)0.4712 (2)0.0512 (7)
H70.22050.00640.53440.061*
C130.2759 (2)0.3149 (2)0.6626 (3)0.0696 (10)
H130.24480.33610.58850.084*
C80.05289 (18)0.04860 (18)0.0917 (2)0.0508 (7)
C100.0458 (2)0.0333 (2)0.1086 (2)0.0576 (8)
H100.07710.05570.18190.069*
C50.1718 (2)0.07240 (18)0.2787 (2)0.0510 (7)
C120.3458 (2)0.26448 (19)0.6859 (3)0.0572 (8)
H120.36280.25170.62910.069*
C180.4176 (2)0.2131 (2)1.0912 (2)0.0584 (8)
H18A0.38250.16671.09160.070*
H18B0.38730.26181.09610.070*
C150.2935 (2)0.30607 (19)0.8577 (3)0.0579 (8)
H150.27660.32000.91420.069*
C90.0075 (2)0.08197 (19)0.0168 (3)0.0540 (8)
H90.01270.13710.02820.065*
C140.2497 (2)0.3356 (2)0.7465 (3)0.0712 (10)
H140.20150.37000.72700.085*
C60.15846 (19)0.0521 (2)0.3733 (3)0.0591 (8)
H60.10320.05860.37080.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0393 (3)0.0508 (4)0.0221 (3)0.0000.0133 (2)0.000
N10.0524 (13)0.0490 (13)0.0281 (11)0.0031 (10)0.0198 (10)0.0016 (9)
O20.0606 (13)0.0822 (16)0.0457 (12)0.0111 (12)0.0223 (10)0.0246 (11)
O10.0415 (11)0.0632 (14)0.0567 (13)0.0011 (10)0.0083 (10)0.0031 (10)
N20.0495 (12)0.0512 (14)0.0342 (11)0.0018 (10)0.0224 (10)0.0083 (10)
C160.0454 (14)0.0390 (15)0.0415 (14)0.0052 (12)0.0185 (12)0.0062 (11)
C10.0465 (15)0.0505 (16)0.0281 (13)0.0015 (12)0.0130 (12)0.0040 (11)
C20.0410 (13)0.0369 (14)0.0307 (13)0.0026 (11)0.0122 (11)0.0039 (10)
C30.0439 (14)0.0455 (15)0.0342 (13)0.0032 (12)0.0152 (12)0.0033 (11)
C170.0487 (15)0.0527 (17)0.0289 (13)0.0023 (12)0.0167 (11)0.0044 (11)
O30.0741 (16)0.0512 (13)0.0501 (13)0.0189 (11)0.0175 (12)0.0059 (10)
C110.0491 (14)0.0376 (14)0.0340 (13)0.0043 (11)0.0150 (12)0.0022 (10)
C40.0630 (18)0.0448 (16)0.0292 (13)0.0035 (14)0.0155 (13)0.0015 (11)
C190.0625 (18)0.069 (2)0.0373 (15)0.0063 (15)0.0293 (14)0.0003 (14)
C70.0501 (16)0.065 (2)0.0415 (15)0.0023 (14)0.0236 (13)0.0036 (13)
C130.074 (2)0.056 (2)0.059 (2)0.0119 (18)0.0134 (18)0.0121 (16)
C80.0381 (14)0.0515 (18)0.0407 (15)0.0122 (12)0.0016 (12)0.0025 (12)
C100.0562 (17)0.0547 (18)0.0371 (15)0.0159 (15)0.0004 (13)0.0108 (13)
C50.0519 (16)0.0420 (15)0.0364 (15)0.0090 (13)0.0001 (12)0.0038 (12)
C120.0714 (19)0.0513 (18)0.0424 (16)0.0000 (15)0.0203 (15)0.0041 (13)
C180.0693 (19)0.076 (2)0.0417 (16)0.0016 (17)0.0352 (15)0.0120 (15)
C150.0546 (17)0.0518 (18)0.069 (2)0.0027 (14)0.0294 (16)0.0109 (15)
C90.0506 (16)0.0442 (16)0.0478 (17)0.0096 (13)0.0055 (14)0.0062 (13)
C140.0576 (19)0.055 (2)0.084 (3)0.0104 (16)0.0178 (19)0.0052 (18)
C60.0381 (14)0.068 (2)0.064 (2)0.0069 (14)0.0170 (14)0.0044 (16)
Geometric parameters (Å, º) top
Co1—O22.042 (2)C4—H40.9300
Co1—O2i2.042 (2)C19—C181.477 (4)
Co1—N12.080 (2)C19—C19ii1.526 (5)
Co1—N1i2.080 (2)C19—H19A0.9700
Co1—O12.371 (2)C19—H19B0.9700
Co1—O1i2.371 (2)C7—C61.382 (4)
N1—C171.322 (3)C7—H70.9300
N1—C111.390 (3)C13—C121.363 (5)
O2—C11.255 (4)C13—C141.392 (5)
O1—C11.246 (3)C13—H130.9300
N2—C171.346 (3)C8—C91.377 (4)
N2—C161.383 (4)C8—C101.378 (5)
N2—C181.474 (3)C10—C9iii1.378 (4)
C16—C151.395 (4)C10—H100.9300
C16—C111.393 (4)C5—C61.387 (4)
C1—C21.503 (4)C12—H120.9300
C2—C71.381 (4)C18—H18A0.9700
C2—C31.387 (4)C18—H18B0.9700
C3—C41.375 (4)C15—C141.378 (5)
C3—H30.9300C15—H150.9300
C17—H170.9300C9—C10iii1.378 (4)
O3—C81.396 (4)C9—H90.9300
O3—C51.397 (3)C14—H140.9300
C11—C121.398 (4)C6—H60.9300
C4—C51.365 (4)
O2—Co1—O2i153.16 (15)C3—C4—H4120.3
O2—Co1—N192.67 (9)C18—C19—C19ii111.6 (3)
O2i—Co1—N1103.95 (9)C18—C19—H19A109.3
O2—Co1—N1i103.95 (9)C19ii—C19—H19A109.3
O2i—Co1—N1i92.67 (9)C18—C19—H19B109.3
N1—Co1—N1i103.44 (13)C19ii—C19—H19B109.3
O2—Co1—O158.59 (8)H19A—C19—H19B108.0
O2i—Co1—O1101.36 (9)C2—C7—C6120.4 (3)
N1—Co1—O1150.83 (8)C2—C7—H7119.8
N1i—Co1—O189.54 (8)C6—C7—H7119.8
O2—Co1—O1i101.36 (9)C12—C13—C14122.0 (3)
O2i—Co1—O1i58.59 (8)C12—C13—H13119.0
N1—Co1—O1i89.54 (8)C14—C13—H13119.0
N1i—Co1—O1i150.83 (8)C9—C8—C10120.3 (3)
O1—Co1—O1i91.42 (11)C9—C8—O3115.4 (3)
C17—N1—C11104.9 (2)C10—C8—O3124.3 (3)
C17—N1—Co1126.90 (19)C9iii—C10—C8120.0 (3)
C11—N1—Co1124.46 (17)C9iii—C10—H10120.0
C1—O2—Co197.48 (18)C8—C10—H10120.0
C1—O1—Co182.61 (17)C4—C5—C6121.4 (3)
C17—N2—C16107.1 (2)C4—C5—O3119.6 (3)
C17—N2—C18126.5 (2)C6—C5—O3118.9 (3)
C16—N2—C18126.1 (2)C13—C12—C11118.0 (3)
N2—C16—C15131.9 (3)C13—C12—H12121.0
N2—C16—C11105.5 (2)C11—C12—H12121.0
C15—C16—C11122.6 (3)N2—C18—C19114.2 (2)
O1—C1—O2121.2 (3)N2—C18—H18A108.7
O1—C1—C2120.7 (2)C19—C18—H18A108.7
O2—C1—C2118.1 (2)N2—C18—H18B108.7
C7—C2—C3119.4 (2)C19—C18—H18B108.7
C7—C2—C1121.3 (2)H18A—C18—H18B107.6
C3—C2—C1119.2 (2)C14—C15—C16116.4 (3)
C4—C3—C2120.5 (3)C14—C15—H15121.8
C4—C3—H3119.7C16—C15—H15121.8
C2—C3—H3119.7C10iii—C9—C8119.7 (3)
N1—C17—N2113.0 (2)C10iii—C9—H9120.1
N1—C17—H17123.5C8—C9—H9120.1
N2—C17—H17123.5C15—C14—C13121.4 (3)
C8—O3—C5116.9 (2)C15—C14—H14119.3
N1—C11—C16109.5 (2)C13—C14—H14119.3
N1—C11—C12131.0 (3)C7—C6—C5118.8 (3)
C16—C11—C12119.5 (3)C7—C6—H6120.6
C5—C4—C3119.4 (3)C5—C6—H6120.6
C5—C4—H4120.3
O2—Co1—N1—C17114.1 (2)C16—N2—C17—N11.6 (3)
O2i—Co1—N1—C1744.6 (3)C18—N2—C17—N1175.4 (3)
N1i—Co1—N1—C17140.8 (3)C17—N1—C11—C160.2 (3)
O1—Co1—N1—C17104.9 (3)Co1—N1—C11—C16159.27 (18)
O1i—Co1—N1—C1712.8 (2)C17—N1—C11—C12179.7 (3)
O2—Co1—N1—C1140.8 (2)Co1—N1—C11—C1220.2 (4)
O2i—Co1—N1—C11160.4 (2)N2—C16—C11—N11.1 (3)
N1i—Co1—N1—C1164.21 (19)C15—C16—C11—N1178.7 (3)
O1—Co1—N1—C1150.1 (3)N2—C16—C11—C12179.3 (2)
O1i—Co1—N1—C11142.2 (2)C15—C16—C11—C120.9 (4)
O2i—Co1—O2—C148.23 (18)C2—C3—C4—C50.0 (4)
N1—Co1—O2—C1177.02 (19)C3—C2—C7—C61.0 (4)
N1i—Co1—O2—C178.4 (2)C1—C2—C7—C6177.9 (3)
O1—Co1—O2—C12.29 (17)C5—O3—C8—C9156.8 (3)
O1i—Co1—O2—C186.95 (19)C5—O3—C8—C1026.4 (5)
O2—Co1—O1—C12.31 (17)C9—C8—C10—C9iii0.6 (6)
O2i—Co1—O1—C1162.98 (16)O3—C8—C10—C9iii176.1 (3)
N1—Co1—O1—C113.2 (3)C3—C4—C5—C61.0 (4)
N1i—Co1—O1—C1104.39 (17)C3—C4—C5—O3178.4 (2)
O1i—Co1—O1—C1104.77 (18)C8—O3—C5—C486.4 (4)
C17—N2—C16—C15178.2 (3)C8—O3—C5—C696.1 (4)
C18—N2—C16—C154.4 (5)C14—C13—C12—C110.6 (5)
C17—N2—C16—C111.6 (3)N1—C11—C12—C13178.3 (3)
C18—N2—C16—C11175.4 (3)C16—C11—C12—C131.1 (4)
Co1—O1—C1—O23.8 (3)C17—N2—C18—C1940.2 (4)
Co1—O1—C1—C2175.3 (2)C16—N2—C18—C19147.2 (3)
Co1—O2—C1—O14.4 (3)C19ii—C19—C18—N2179.41 (19)
Co1—O2—C1—C2174.77 (19)N2—C16—C15—C14179.9 (3)
O1—C1—C2—C7152.1 (3)C11—C16—C15—C140.1 (4)
O2—C1—C2—C728.8 (4)C10—C8—C9—C10iii0.6 (6)
O1—C1—C2—C331.1 (4)O3—C8—C9—C10iii176.4 (3)
O2—C1—C2—C3148.1 (3)C16—C15—C14—C130.4 (5)
C7—C2—C3—C40.0 (4)C12—C13—C14—C150.2 (5)
C1—C2—C3—C4176.9 (2)C2—C7—C6—C52.0 (5)
C11—N1—C17—N20.8 (3)C4—C5—C6—C72.0 (5)
Co1—N1—C17—N2159.67 (18)O3—C5—C6—C7179.4 (3)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+5/2; (iii) x, y, z.

Experimental details

Crystal data
Chemical formula[Co(C20H12O6)(C18H18N4)]
Mr697.59
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)16.961 (4), 16.446 (3), 12.987 (3)
β (°) 117.022 (3)
V3)3227.1 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.27 × 0.24 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.858, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
7207, 2836, 2385
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.140, 1.02
No. of reflections2836
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.65

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authers thank NanJing University for the single-crystal X-ray diffraction determination.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M., Li, C. P., Liu, C. S. & Fang, S. M. (2013). Coord. Chem. Rev. 257, 1282–1305.  Web of Science CrossRef CAS Google Scholar
First citationLi, X. X., Wei, Z. Q., Yue, S. T., Wang, N., Mo, H. H. & Liu, Y. L. (2011). J. Chem. Crystallogr. 41, 757–761.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y. Y., Ma, J. F., Yang, J., Ma, J. C. & Ping, G. J. (2008). CrystEngComm, 10, 565–572.  CSD CrossRef CAS Google Scholar
First citationŁyszczek, R. & Mazur, L. (2012). Inorg. Chem. Commun. 15, 121–125.  Google Scholar
First citationMeng, X. R., Song, Y. L., Hou, H. W., Fan, Y. T., Li, G. & Zhu, Y. (2003). Inorg. Chem. 42, 1306–1315.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C. Y., Zheng, X. B., Chen, X., Li, L. & Jin, L. (2009). Inorg. Chim. Acta, 362, 325–330.  CSD CrossRef CAS Google Scholar
First citationWang, Y. B., Sun, C. Y., Zheng, X. J., Gao, S., Lu, S. Z. & Jin, L. P. (2005). Polyhedron, 24, 823–830.  Web of Science CSD CrossRef Google Scholar
First citationWang, Y. B., Wang, Z. M., Yan, C. H. & Jin, L. P. (2004). J. Mol. Struct. 692, 177–186.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages m131-m132
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds