organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o414-o415

Crystal structure of (4E)-4-(8-meth­­oxy-2H-chromen-2-yl­­idene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aDepartment of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 6 May 2015; accepted 18 May 2015; online 23 May 2015)

In the title compound, C20H16N2O3, the phenyl substituent attached to the pyrazole ring makes a dihedral angle of 4.87 (7)° with the rest of the mol­ecule. In the crystal, mol­ecules are connected into inversion dimers of the R22(14) type by pairs of C—H⋯O inter­actions. ππ inter­actions exist between the benzene and pyrazole rings at a distance of 3.701 (1) Å. Similarly, ππ inter­actions are present at a centroid–centroid distance of 3.601 (1) Å between the oxygen-containing heterocyclic ring and meth­oxy substituted aromatic ring of a neighbouring mol­ecule. Additional C—H⋯π and C=O⋯π inter­actions are also observed.

1. Related literature

For related structures, see: Chaudhry et al. (2012[Chaudhry, F., Tahir, M. N., Khan, M. A., Ather, A. Q. & Asif, N. (2012). Acta Cryst. E68, o2044.]); Holzer et al. (1999[Holzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799-818.]); Malik et al. (2009[Malik, K. I., Munawar, M. A., Khan, M. A., Nadeem, S. & Mukhtar-ul-Hassan (2009). Acta Cryst. E65, o3046.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H16N2O3

  • Mr = 332.35

  • Monoclinic, C 2/c

  • a = 28.179 (5) Å

  • b = 4.7108 (8) Å

  • c = 23.819 (5) Å

  • β = 92.957 (7)°

  • V = 3157.7 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.40 × 0.22 × 0.18 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.985

  • 13056 measured reflections

  • 3419 independent reflections

  • 2389 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.127

  • S = 1.06

  • 3419 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry and C—H⋯π and C=O⋯π inter­actions (Å, °)

Cg1 and Cg2 are the centroids of the N1/N2/C7–C9 and C11–C14/C19/O2 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.93 2.28 2.911 (2) 124
C12—H12⋯O1 0.93 2.38 3.004 (2) 124
C13—H13⋯O1i 0.93 2.53 3.2577 (19) 136
C10—H10ACg1ii 0.96 2.79 3.6812 (17) 155
C7—O1⋯Cg2iii 1.23 (1) 3.65 (1) 3.9797 (18) 96 (1)
Symmetry codes: (i) -x, -y+2, -z; (ii) x, y-1, z; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The crystal structures of 5-methyl-2-phenyl-4-((E)-3-phenyl-2-hydroxy- prop-2-enylidene)-1,2-dihydro-3H-pyrazol-3-one (Holzer et al., 1999), (4Z)-4-((2E)-1-hydroxy-3-(4-methoxyphenyl)prop-2-en-1- ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (Malik et al., 2009) and (4Z)-4-((2E)-1-hydroxy-3-(3-nitrophenyl)prop- 2-en-1-ylidene)-3-methyl-1-(4-methylphenyl)-1H-pyrazol-5(4H)-one (Chaudhry, et al., 2012) have been published which are related to the title compound (I, Fig. 1). No crystal structure has been found containing a 8-methoxy-2H-chromene subunit. (I) is synthesized for the biological studies etc.

In (I), the benzene ring A (C1–C6) and the (4E)-4-(8-methoxy-2H-chromen-2-ylidene)-5-methyl-2,4-dihydro-3H-pyrazol-3-one (C7 –C20/N1/N2/O1/O2/O3) part of the molecule are planar with r. m. s. deviations of 0.0053 and 0.0108 Å, respectively. The dihedral angle between A/B is 4.87 (7)°. The molecules are dimerized due to C—H···O interactions completing R22 (14) Molecules are connected to inversion dimers dimerized of the R22 (14) type by C—H···O interactions. There exist ππ interactions at a distance of 3.7011 (12) Å between the centeroids of Cg1—Cg3i and Cg3—Cg1ii [i = x, - 1 + y, z and ii = x, 1 + y, z], where Cg1 and Cg3 are the centroids of heterocyclic ring C (N1/N2/C7/C8/C9) and benzene ring A, respectively. Similarly, there exist ππ interaction at a distance of 3.6012 (11) Å between the centeroids of Cg2—Cg4ii and Cg4—Cg2i [i = x, - 1 + y, z and ii = x, 1 + y, z], where Cg2 and Cg4 are the centroids of heterocyclic ring D (C11—C14/C19/O2) and methoxy containing benzene ring E (C14—C19), respectively. There exist C—H···π and C=O···π interactions (Table 1).

Related literature top

For related structures, see: Chaudhry et al. (2012); Holzer et al. (1999); Malik et al. (2009).

Experimental top

For the preparation of title compound (I), a mixture of 4-acetyl-3-methyl-1-phenyl-5-hydroxy pyrazole (0.218 g, 1 mmoL), 2-methoxybenzaldehyde (0.205 g, 1.5 mmoL) was refluxed for 8 h in glacial acetic acid (15 ml) and concentrated sulfuric acid (0.2 ml). The reaction mixture was diluted with distilled water (60 ml). The precipitate was filtered, washed with methanol and dried. The crude product was purified by column chromatography using n-hexane and ethyl acetate mixtures as eluents. The product was recrystallized using n-hexane to afford red needles (yield = 63%, m.p. 503 K)

Refinement top

H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and x =1.2 for aromatic H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. Partial packing (PLATON; Spek, 2009) which shows that molecules are dimerized due to C—H···O bondings.
(4E)-4-(8-Methoxy-2H-chromen-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C20H16N2O3F(000) = 1392
Mr = 332.35Dx = 1.398 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.179 (5) ÅCell parameters from 2389 reflections
b = 4.7108 (8) Åθ = 2.9–27.0°
c = 23.819 (5) ŵ = 0.10 mm1
β = 92.957 (7)°T = 296 K
V = 3157.7 (10) Å3Needle, red
Z = 80.40 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3419 independent reflections
Radiation source: fine-focus sealed tube2389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 7.70 pixels mm-1θmax = 27.0°, θmin = 2.9°
ω scansh = 3535
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 65
Tmin = 0.961, Tmax = 0.985l = 2430
13056 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.6123P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3419 reflectionsΔρmax = 0.22 e Å3
229 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (4)
Crystal data top
C20H16N2O3V = 3157.7 (10) Å3
Mr = 332.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.179 (5) ŵ = 0.10 mm1
b = 4.7108 (8) ÅT = 296 K
c = 23.819 (5) Å0.40 × 0.22 × 0.18 mm
β = 92.957 (7)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3419 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2389 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.985Rint = 0.033
13056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
3419 reflectionsΔρmin = 0.16 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06562 (4)1.0410 (2)0.06364 (5)0.0601 (4)
O20.11680 (3)0.3975 (2)0.05229 (4)0.0405 (3)
O30.16619 (4)0.0352 (2)0.10799 (5)0.0504 (3)
N10.14466 (4)0.9876 (2)0.09568 (5)0.0407 (3)
N20.18451 (4)0.8288 (2)0.08158 (6)0.0417 (3)
C10.14967 (6)1.1800 (3)0.14142 (6)0.0410 (4)
C20.19424 (6)1.2193 (3)0.16813 (7)0.0501 (4)
H20.22021.11800.15630.060*
C30.19992 (7)1.4086 (4)0.21225 (8)0.0575 (5)
H30.22981.43290.23010.069*
C40.16197 (8)1.5617 (4)0.23019 (8)0.0593 (5)
H40.16611.69130.25950.071*
C50.11808 (7)1.5206 (4)0.20427 (8)0.0619 (5)
H50.09231.62220.21640.074*
C60.11134 (7)1.3295 (3)0.16006 (7)0.0541 (5)
H60.08121.30250.14310.065*
C70.10494 (5)0.9304 (3)0.06052 (7)0.0410 (4)
C80.12183 (5)0.7169 (3)0.02175 (6)0.0372 (4)
C90.17098 (5)0.6713 (3)0.03861 (7)0.0370 (4)
C100.20563 (5)0.4738 (3)0.01377 (7)0.0451 (4)
H10A0.19320.28400.01390.068*
H10B0.23520.48000.03560.068*
H10C0.21080.53040.02420.068*
C110.09468 (5)0.5939 (3)0.02107 (6)0.0368 (4)
C120.04599 (5)0.6554 (3)0.03528 (7)0.0455 (4)
H120.03040.79170.01490.055*
C130.02230 (6)0.5199 (3)0.07759 (7)0.0492 (4)
H130.00960.56010.08560.059*
C140.04580 (5)0.3138 (3)0.11063 (7)0.0435 (4)
C150.02414 (6)0.1660 (4)0.15629 (8)0.0562 (5)
H150.00780.19590.16640.067*
C160.05019 (7)0.0228 (4)0.18596 (8)0.0583 (5)
H160.03570.11840.21640.070*
C170.09766 (6)0.0735 (3)0.17137 (7)0.0490 (4)
H170.11460.20240.19210.059*
C180.12003 (5)0.0664 (3)0.12619 (7)0.0404 (4)
C190.09317 (5)0.2600 (3)0.09639 (6)0.0373 (4)
C200.19362 (6)0.1685 (4)0.13639 (8)0.0533 (5)
H20A0.17970.35310.13280.080*
H20B0.22550.17040.12010.080*
H20C0.19420.11910.17540.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0403 (7)0.0647 (7)0.0753 (9)0.0165 (6)0.0028 (6)0.0223 (7)
O20.0332 (6)0.0421 (5)0.0463 (7)0.0051 (4)0.0011 (5)0.0075 (5)
O30.0370 (6)0.0583 (7)0.0556 (7)0.0076 (5)0.0004 (5)0.0180 (6)
N10.0402 (7)0.0393 (6)0.0429 (8)0.0073 (5)0.0044 (6)0.0023 (6)
N20.0404 (8)0.0400 (6)0.0450 (8)0.0098 (5)0.0040 (6)0.0006 (6)
C10.0522 (10)0.0341 (7)0.0372 (9)0.0036 (6)0.0069 (7)0.0040 (7)
C20.0550 (11)0.0476 (9)0.0477 (10)0.0008 (7)0.0044 (8)0.0021 (8)
C30.0697 (13)0.0533 (10)0.0496 (11)0.0105 (9)0.0030 (9)0.0022 (9)
C40.0898 (16)0.0451 (9)0.0432 (11)0.0025 (9)0.0052 (10)0.0037 (8)
C50.0816 (15)0.0547 (10)0.0501 (11)0.0199 (9)0.0104 (10)0.0039 (9)
C60.0592 (11)0.0539 (9)0.0491 (11)0.0147 (8)0.0022 (9)0.0044 (9)
C70.0380 (9)0.0383 (7)0.0472 (10)0.0053 (6)0.0059 (7)0.0001 (7)
C80.0347 (8)0.0346 (7)0.0427 (9)0.0040 (6)0.0070 (7)0.0010 (7)
C90.0369 (8)0.0331 (7)0.0413 (9)0.0045 (6)0.0063 (7)0.0037 (7)
C100.0390 (9)0.0433 (8)0.0531 (10)0.0080 (6)0.0040 (7)0.0034 (7)
C110.0342 (8)0.0340 (7)0.0430 (9)0.0046 (6)0.0084 (7)0.0028 (7)
C120.0368 (9)0.0446 (8)0.0554 (11)0.0090 (7)0.0066 (8)0.0007 (8)
C130.0324 (9)0.0537 (9)0.0609 (11)0.0080 (7)0.0020 (8)0.0042 (8)
C140.0364 (9)0.0443 (8)0.0493 (10)0.0028 (6)0.0020 (7)0.0039 (7)
C150.0417 (10)0.0619 (10)0.0634 (12)0.0029 (8)0.0131 (9)0.0000 (9)
C160.0561 (11)0.0632 (11)0.0541 (12)0.0012 (9)0.0139 (9)0.0080 (9)
C170.0504 (10)0.0507 (9)0.0457 (10)0.0016 (7)0.0004 (8)0.0065 (8)
C180.0358 (9)0.0419 (8)0.0434 (9)0.0002 (6)0.0017 (7)0.0006 (7)
C190.0366 (8)0.0362 (7)0.0388 (9)0.0014 (6)0.0000 (7)0.0013 (7)
C200.0453 (10)0.0585 (10)0.0565 (11)0.0111 (8)0.0060 (8)0.0096 (9)
Geometric parameters (Å, º) top
O1—C71.2299 (17)C8—C91.438 (2)
O2—C111.3584 (17)C9—C101.4931 (19)
O2—C191.3766 (17)C10—H10A0.9600
O3—C181.3578 (18)C10—H10B0.9600
O3—C201.4244 (18)C10—H10C0.9600
N1—C71.389 (2)C11—C121.426 (2)
N1—N21.4046 (16)C12—C131.341 (2)
N1—C11.419 (2)C12—H120.9300
N2—C91.3048 (19)C13—C141.433 (2)
C1—C61.382 (2)C13—H130.9300
C1—C21.390 (2)C14—C191.384 (2)
C2—C31.381 (2)C14—C151.404 (2)
C2—H20.9300C15—C161.372 (2)
C3—C41.376 (3)C15—H150.9300
C3—H30.9300C16—C171.385 (2)
C4—C51.367 (3)C16—H160.9300
C4—H40.9300C17—C181.385 (2)
C5—C61.391 (2)C17—H170.9300
C5—H50.9300C18—C191.401 (2)
C6—H60.9300C20—H20A0.9600
C7—C81.462 (2)C20—H20B0.9600
C8—C111.371 (2)C20—H20C0.9600
C11—O2—C19121.38 (11)C9—C10—H10C109.5
C18—O3—C20117.11 (12)H10A—C10—H10C109.5
C7—N1—N2112.43 (12)H10B—C10—H10C109.5
C7—N1—C1129.21 (13)O2—C11—C8116.14 (13)
N2—N1—C1118.35 (12)O2—C11—C12118.14 (14)
C9—N2—N1106.59 (12)C8—C11—C12125.72 (14)
C6—C1—C2119.19 (15)C13—C12—C11121.15 (15)
C6—C1—N1121.59 (15)C13—C12—H12119.4
C2—C1—N1119.22 (14)C11—C12—H12119.4
C3—C2—C1120.04 (16)C12—C13—C14120.59 (14)
C3—C2—H2120.0C12—C13—H13119.7
C1—C2—H2120.0C14—C13—H13119.7
C4—C3—C2120.87 (18)C19—C14—C15118.31 (15)
C4—C3—H3119.6C19—C14—C13117.17 (14)
C2—C3—H3119.6C15—C14—C13124.52 (15)
C5—C4—C3118.99 (17)C16—C15—C14119.84 (16)
C5—C4—H4120.5C16—C15—H15120.1
C3—C4—H4120.5C14—C15—H15120.1
C4—C5—C6121.25 (18)C15—C16—C17121.19 (16)
C4—C5—H5119.4C15—C16—H16119.4
C6—C5—H5119.4C17—C16—H16119.4
C1—C6—C5119.64 (18)C16—C17—C18120.50 (16)
C1—C6—H6120.2C16—C17—H17119.7
C5—C6—H6120.2C18—C17—H17119.7
O1—C7—N1125.57 (15)O3—C18—C17125.90 (14)
O1—C7—C8130.78 (15)O3—C18—C19116.25 (13)
N1—C7—C8103.65 (12)C17—C18—C19117.84 (14)
C11—C8—C9129.57 (13)O2—C19—C14121.56 (13)
C11—C8—C7124.98 (13)O2—C19—C18116.12 (13)
C9—C8—C7105.45 (13)C14—C19—C18122.31 (14)
N2—C9—C8111.87 (13)O3—C20—H20A109.5
N2—C9—C10119.63 (13)O3—C20—H20B109.5
C8—C9—C10128.50 (14)H20A—C20—H20B109.5
C9—C10—H10A109.5O3—C20—H20C109.5
C9—C10—H10B109.5H20A—C20—H20C109.5
H10A—C10—H10B109.5H20B—C20—H20C109.5
C7—N1—N2—C90.36 (16)C19—O2—C11—C120.2 (2)
C1—N1—N2—C9179.67 (12)C9—C8—C11—O20.7 (2)
C7—N1—C1—C65.1 (2)C7—C8—C11—O2179.45 (13)
N2—N1—C1—C6175.68 (14)C9—C8—C11—C12179.11 (15)
C7—N1—C1—C2174.84 (15)C7—C8—C11—C120.8 (2)
N2—N1—C1—C24.3 (2)O2—C11—C12—C131.2 (2)
C6—C1—C2—C30.8 (2)C8—C11—C12—C13179.03 (15)
N1—C1—C2—C3179.12 (14)C11—C12—C13—C141.5 (2)
C1—C2—C3—C40.4 (3)C12—C13—C14—C190.8 (2)
C2—C3—C4—C51.1 (3)C12—C13—C14—C15178.71 (16)
C3—C4—C5—C60.6 (3)C19—C14—C15—C161.0 (3)
C2—C1—C6—C51.4 (2)C13—C14—C15—C16178.53 (16)
N1—C1—C6—C5178.61 (14)C14—C15—C16—C170.7 (3)
C4—C5—C6—C10.7 (3)C15—C16—C17—C180.0 (3)
N2—N1—C7—O1179.78 (15)C20—O3—C18—C172.8 (2)
C1—N1—C7—O10.6 (3)C20—O3—C18—C19177.68 (14)
N2—N1—C7—C80.35 (16)C16—C17—C18—O3179.84 (15)
C1—N1—C7—C8179.58 (13)C16—C17—C18—C190.3 (2)
O1—C7—C8—C110.0 (3)C11—O2—C19—C140.5 (2)
N1—C7—C8—C11179.86 (14)C11—O2—C19—C18178.69 (12)
O1—C7—C8—C9179.92 (17)C15—C14—C19—O2179.76 (14)
N1—C7—C8—C90.22 (15)C13—C14—C19—O20.2 (2)
N1—N2—C9—C80.20 (16)C15—C14—C19—C180.6 (2)
N1—N2—C9—C10179.44 (12)C13—C14—C19—C18178.94 (14)
C11—C8—C9—N2179.93 (14)O3—C18—C19—O20.4 (2)
C7—C8—C9—N20.02 (17)C17—C18—C19—O2179.14 (13)
C11—C8—C9—C100.5 (3)O3—C18—C19—C14179.59 (14)
C7—C8—C9—C10179.61 (14)C17—C18—C19—C140.0 (2)
C19—O2—C11—C8179.97 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N2/C7–C9 and C11–C14/C19/O2 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.282.911 (2)124
C12—H12···O10.932.383.004 (2)124
C13—H13···O1i0.932.533.2577 (19)136
C10—H10A···Cg1ii0.962.793.6812 (17)155
C7—O1···Cg2iii1.23 (1)3.65 (1)3.9797 (18)96 (1)
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N2/C7–C9 and C11–C14/C19/O2 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.282.911 (2)124.4
C12—H12···O10.932.383.004 (2)124.2
C13—H13···O1i0.932.533.2577 (19)135.9
C10—H10A···Cg1ii0.962.793.6812 (17)155
C7—O1···Cg2iii1.2299 (17)3.6544 (15)3.9797 (18)96.2 (1)
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z; (iii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhry, F., Tahir, M. N., Khan, M. A., Ather, A. Q. & Asif, N. (2012). Acta Cryst. E68, o2044.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799–818.  CrossRef CAS Google Scholar
First citationMalik, K. I., Munawar, M. A., Khan, M. A., Nadeem, S. & Mukhtar-ul-Hassan (2009). Acta Cryst. E65, o3046.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o414-o415
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds