organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o433-o434

Crystal structure of (E)-3-allyl-2-sulfanyl­­idene-5-[(thio­phen-2-yl)methyl­­idene]thia­zolidin-4-one

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: r_elajlaoui@yahoo.fr

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 20 May 2015; accepted 26 May 2015; online 30 May 2015)

Mol­ecules of the title compound, C11H9NOS3, are built up by one thio­phene and one 2-thioxa­thia­zolidin-4-one ring which are connected by a methyl­ene bridge. In addition, there is an allyl substituent attached to nitro­gen. The two rings are almost coplanar, making a dihedral angle between them of 0.76 (11)°. The allyl group is oriented perpendicular to the mean plane through both ring systems. The crystal structure exhibits inversion dimers in which mol­ecules are linked by pairs of C—H⋯O hydrogen bonds. Additional ππ inter­actions between neighboring thio­phene and 2-thioxa­thia­zolidin-4-one rings [inter­centroid distance = 3.694 (2) Å] lead to the formation of a three-dimensional network.

1. Related literature

For pharmacological activities such as anti­microbial and anti-inflammatory of aryl­idene derivatives of rhodanine (2-thioxo-1,3-thia­zolidin-4-one), see: Soltero-Higgin et al. (2004[Soltero-Higgin, M., Carlson, E. E., Phillips, J. H. & Kiessling, L. L. (2004). J. Am. Chem. Soc. 126, 10532-10533.]); Hu et al. (2004[Hu, Y., Helm, J. S., Chen, L., Ginsberg, C., Gross, B., Kraybill, B., Tiyanont, K., Fang, X., Wu, T. & Walker, S. (2004). Chem. Biol. 11, 703-711.]); Nasr & Said (2003[Nasr, M. N. A. & Said, S. A. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 551-559.]); Johnson et al. (2001[Johnson, A. R., Marletta, M. A. & Dyer, R. D. (2001). Biochemistry, 40, 7736-7745.]); Sortino et al. (2007[Sortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484-494.]); Insuasty et al. (2010[Insuasty, B., Gutie'rrez, A., Quiroga, J., Abonia, R., Nogueras, M., Cobo, J., Svetaz, L., Raimondi, M. & Zacchino, S. (2010). Arch. Pharm. 343, 48-53.]); Tomasic & Masic (2009[Tomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596-1629.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H9NOS3

  • Mr = 267.37

  • Triclinic, [P \overline 1]

  • a = 6.7342 (2) Å

  • b = 7.3762 (2) Å

  • c = 13.2917 (5) Å

  • α = 79.386 (2)°

  • β = 80.104 (2)°

  • γ = 68.908 (1)°

  • V = 601.44 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 K

  • 0.37 × 0.35 × 0.28 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.700, Tmax = 0.746

  • 25223 measured reflections

  • 3514 independent reflections

  • 2557 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.07

  • 3514 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.54 3.304 (3) 140
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Rhodanine (2-thioxo-1,3-thiazolidin-4-one) is the key structural feature of a very important group of heterocyclic compounds for drug discovery programs. Arylidene derivatives of rhodanine have attracted great interest for synthetic organic chemists due to the broad biological activities of this class of compounds including antimicrobial (Sortino et al.; 2007, Hu et al., 2004), anti-inflammatory (Nasr & Said, 2003; Johnson et al. 2001), and antifungal (Sortino et al., 2007; Insuasty et al., 2010) properties. Additionally, rhodanine derivatives may potentially be used in the treatment of diabetes, obesity, Alzheimer's disease, cystic fibrosis, thrombocytopenia, cancer, sleep, mood and central nervous system disorders as well as chronic inflammation (Tomasic & Masic, 2009).

The two five-membered rings (C1–C4, S1 and C6– C8, N1, S2) forming the molecule are almost coplanar, with a maximum deviation of -0.023 (2) Å for C7 (Fig.1). The allyl group is oriented perpendicular to the mean plane through the thioxothiazolidine cycle as indicated by the torsion angle C10–C9–N1–C7 of 90.2 (3)°.

The cohesion of the crystal structure is ensured by C3–H3···O1 hydrogen bonds between molecules forming a dimers and ππ interactions between heterocycles [intercentroid distance = 3.69 (2) Å], forming a three-dimensional network as shown in Fig.2 and Table 1.

Related literature top

For pharmacological activities such as antimicrobial and anti-inflammatory of arylidene derivatives of rhodanine (2-thioxo-1,3-thiazolidin-4-one), see: Soltero-Higgin et al. (2004); Hu et al. (2004); Nasr & Said (2003); Johnson et al. (2001); Sortino et al. (2007); Insuasty et al. (2010); Tomasic & Masic (2009).

Experimental top

To a solution of 3-allyl-2-thioxo-1,3-thiazolidin-4-one (1.15 mmol, 0.2 g) in 10 ml of THF methyl-2-(thiophen-2-ylmethylene)-5-oxopyrazolidin-2-ium-1-ide (1.38 mmol) was added. The mixture was refluxed for 8 h and was monitored by TLC. After the reaction was completed only one yellow spot (TLC Rf = 0.3, hexane/ethyl acetate 1:9) was generated cleanly. The solvent was evaporated in vacuo. The crude product was purified on silica using hexane: ethyl acetate (1/9) as eluent. The product was obtained as a yellow crystal solid (Yield: 55%, m.p.: 403 K).

Refinement top

H atoms were located from the difference Fourier map and treated as riding with C–H = 0.97 Å and C–H = 0.93 Å for methylene and aromatic, respectively. All hydrogen atoms were included into the refinement with Uiso(H) = 1.2 Ueq of the parent carbon atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radius.
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing hydrogen bonds and ππ interactions between molecules.
(E)-3-Allyl-2-sulfanylidene-5-[(thiophen-2-yl)methylidene]thiazolidin-4-one top
Crystal data top
C11H9NOS3Z = 2
Mr = 267.37F(000) = 276
Triclinic, P1Dx = 1.476 Mg m3
a = 6.7342 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3762 (2) ÅCell parameters from 3514 reflections
c = 13.2917 (5) Åθ = 3.0–30.0°
α = 79.386 (2)°µ = 0.59 mm1
β = 80.104 (2)°T = 296 K
γ = 68.908 (1)°Block, yellow
V = 601.44 (3) Å30.37 × 0.35 × 0.28 mm
Data collection top
Bruker X8 APEX
diffractometer
3514 independent reflections
Radiation source: fine-focus sealed tube2557 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.700, Tmax = 0.746k = 1010
25223 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.3716P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3514 reflectionsΔρmax = 0.35 e Å3
145 parametersΔρmin = 0.26 e Å3
Crystal data top
C11H9NOS3γ = 68.908 (1)°
Mr = 267.37V = 601.44 (3) Å3
Triclinic, P1Z = 2
a = 6.7342 (2) ÅMo Kα radiation
b = 7.3762 (2) ŵ = 0.59 mm1
c = 13.2917 (5) ÅT = 296 K
α = 79.386 (2)°0.37 × 0.35 × 0.28 mm
β = 80.104 (2)°
Data collection top
Bruker X8 APEX
diffractometer
3514 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2557 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.746Rint = 0.042
25223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.07Δρmax = 0.35 e Å3
3514 reflectionsΔρmin = 0.26 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1345 (4)0.1860 (4)0.70306 (19)0.0518 (6)
H10.00460.20330.73420.062*
C20.3105 (4)0.0861 (4)0.75114 (18)0.0523 (6)
H20.30580.02670.81920.063*
C30.5018 (4)0.0808 (3)0.68783 (17)0.0428 (5)
H30.63720.01820.70940.051*
C40.4669 (3)0.1785 (3)0.59025 (16)0.0350 (4)
C50.6327 (3)0.1940 (3)0.50925 (16)0.0358 (4)
H50.77180.13210.52640.043*
C60.6167 (3)0.2849 (3)0.41203 (16)0.0341 (4)
C70.8086 (3)0.2828 (3)0.33909 (16)0.0366 (4)
C80.5339 (3)0.4692 (3)0.23605 (17)0.0399 (5)
C90.9117 (4)0.4146 (4)0.15934 (19)0.0491 (6)
H9A0.85500.54080.11810.059*
H9B1.03550.41410.18760.059*
C100.9801 (6)0.2599 (5)0.0927 (2)0.0743 (9)
H100.87400.23920.06460.089*
C111.1737 (7)0.1513 (6)0.0701 (3)0.1111 (16)
H11A1.28450.16740.09670.133*
H11B1.20380.05620.02720.133*
N10.7483 (3)0.3913 (3)0.24437 (13)0.0382 (4)
O10.9933 (2)0.2023 (3)0.35541 (13)0.0515 (4)
S10.19548 (9)0.27676 (9)0.57905 (5)0.04606 (16)
S20.38596 (8)0.41472 (8)0.35129 (4)0.03895 (14)
S30.41977 (12)0.59688 (12)0.13403 (5)0.0646 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0437 (13)0.0519 (14)0.0552 (15)0.0171 (11)0.0135 (11)0.0117 (11)
C20.0583 (15)0.0566 (14)0.0374 (12)0.0213 (12)0.0061 (11)0.0020 (10)
C30.0425 (12)0.0437 (12)0.0389 (11)0.0123 (10)0.0042 (9)0.0028 (9)
C40.0343 (10)0.0315 (10)0.0392 (11)0.0108 (8)0.0029 (8)0.0065 (8)
C50.0316 (10)0.0343 (10)0.0406 (11)0.0101 (8)0.0032 (8)0.0054 (8)
C60.0304 (9)0.0340 (10)0.0377 (10)0.0111 (8)0.0022 (8)0.0060 (8)
C70.0337 (10)0.0393 (11)0.0389 (11)0.0156 (9)0.0002 (8)0.0077 (9)
C80.0402 (11)0.0412 (11)0.0394 (11)0.0151 (9)0.0030 (9)0.0063 (9)
C90.0447 (13)0.0555 (14)0.0469 (13)0.0242 (11)0.0066 (10)0.0024 (10)
C100.084 (2)0.086 (2)0.0568 (17)0.0438 (19)0.0266 (15)0.0216 (15)
C110.133 (4)0.086 (3)0.067 (2)0.002 (2)0.025 (2)0.0083 (19)
N10.0360 (9)0.0424 (9)0.0370 (9)0.0165 (8)0.0006 (7)0.0051 (7)
O10.0298 (8)0.0662 (11)0.0532 (10)0.0130 (7)0.0035 (7)0.0032 (8)
S10.0340 (3)0.0453 (3)0.0515 (3)0.0083 (2)0.0008 (2)0.0031 (2)
S20.0291 (2)0.0432 (3)0.0410 (3)0.0101 (2)0.0029 (2)0.0024 (2)
S30.0557 (4)0.0842 (5)0.0448 (4)0.0184 (4)0.0133 (3)0.0101 (3)
Geometric parameters (Å, º) top
C1—C21.347 (4)C7—O11.208 (2)
C1—S11.701 (3)C7—N11.400 (3)
C1—H10.9300C8—N11.364 (3)
C2—C31.405 (3)C8—S31.638 (2)
C2—H20.9300C8—S21.743 (2)
C3—C41.377 (3)C9—C101.468 (4)
C3—H30.9300C9—N11.468 (3)
C4—C51.433 (3)C9—H9A0.9700
C4—S11.729 (2)C9—H9B0.9700
C5—C61.344 (3)C10—C111.278 (5)
C5—H50.9300C10—H100.9300
C6—C71.473 (3)C11—H11A0.9300
C6—S21.749 (2)C11—H11B0.9300
C2—C1—S1112.36 (18)N1—C8—S3126.87 (17)
C2—C1—H1123.8N1—C8—S2110.96 (16)
S1—C1—H1123.8S3—C8—S2122.17 (13)
C1—C2—C3113.0 (2)C10—C9—N1113.0 (2)
C1—C2—H2123.5C10—C9—H9A109.0
C3—C2—H2123.5N1—C9—H9A109.0
C4—C3—C2112.6 (2)C10—C9—H9B109.0
C4—C3—H3123.7N1—C9—H9B109.0
C2—C3—H3123.7H9A—C9—H9B107.8
C3—C4—C5124.61 (19)C11—C10—C9125.3 (4)
C3—C4—S1110.43 (16)C11—C10—H10117.4
C5—C4—S1124.96 (16)C9—C10—H10117.4
C6—C5—C4129.47 (19)C10—C11—H11A120.0
C6—C5—H5115.3C10—C11—H11B120.0
C4—C5—H5115.3H11A—C11—H11B120.0
C5—C6—C7121.35 (19)C8—N1—C7116.63 (17)
C5—C6—S2128.78 (16)C8—N1—C9122.99 (19)
C7—C6—S2109.86 (15)C7—N1—C9120.37 (18)
O1—C7—N1123.06 (19)C1—S1—C491.64 (11)
O1—C7—C6126.9 (2)C8—S2—C692.49 (10)
N1—C7—C6110.02 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.543.304 (3)140
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.543.304 (3)139.7
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHu, Y., Helm, J. S., Chen, L., Ginsberg, C., Gross, B., Kraybill, B., Tiyanont, K., Fang, X., Wu, T. & Walker, S. (2004). Chem. Biol. 11, 703–711.  PubMed CAS Google Scholar
First citationInsuasty, B., Gutie'rrez, A., Quiroga, J., Abonia, R., Nogueras, M., Cobo, J., Svetaz, L., Raimondi, M. & Zacchino, S. (2010). Arch. Pharm. 343, 48–53.  CAS Google Scholar
First citationJohnson, A. R., Marletta, M. A. & Dyer, R. D. (2001). Biochemistry, 40, 7736–7745.  CrossRef PubMed CAS Google Scholar
First citationNasr, M. N. A. & Said, S. A. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 551–559.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoltero-Higgin, M., Carlson, E. E., Phillips, J. H. & Kiessling, L. L. (2004). J. Am. Chem. Soc. 126, 10532–10533.  PubMed CAS Google Scholar
First citationSortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484–494.  PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596–1629.  PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o433-o434
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds