research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 681-683

Crystal structure of 1,13,14-tri­aza­dibenz[a,j]anthracene 1,1,2,2-tetra­chloro­ethane monosolvate

aChemical Resources Laboratory, Tokyo Institute of Technology, 4259 nagatsuta, Midori-ku, Yokohama 226-8503, Japan
*Correspondence e-mail: tkoizumi@res.titech.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 12 March 2015; accepted 15 May 2015; online 23 May 2015)

The asymmetric unit of the title compound, C19H11N3·C2H2Cl4, consists of one half-mol­ecule of 1,13,14-tri­aza­dibenz[a,j]anthracene (dibenzo[c,h]-1.9,10-anthyridine, dbanth) and one half of 1,1,2,2-tetra­chloro­ethane (TCE), both of which are located on a crystallographic twofold rotation axis. The dihedral angle between the planes of the terminal benzene rings in dbanth is 3.59 (7)° owing to the steric repulsion between the H atoms in the two benzo groups and the H atom in the central pyridine ring of the anthridine skeleton. In the crystal, ππ inter­actions between pyridine rings [centroid–centroid distances = 3.568 (2) and 3.594 (2) Å] link the dbanth mol­ecules to form a one-dimensional columnar structure along the c axis. The dbanth and TCE mol­ecules are connected through weak bifurcated C—H⋯(N,N) hydrogen bonds.

1. Chemical context

1,9,10-Anthyridine has an anthracene skeleton with three imine N atoms that are situated at the same edge of the mol­ecule. Since an imine unit in an aromatic compound such as pyridine can act as a hydrogen-bond acceptor, 1,9,10-anthyridine can form a triply hydrogen-bonded structure with a corresponding H-atom donor, such as 2,6-di­amino­pyri­dinium and 2,6-bis­(hy­droxy­meth­yl)phenol (Murray & Zimmerman, 1992[Murray, T. J. & Zimmerman, S. C. (1992). J. Am. Chem. Soc. 114, 4010-4011.]; Xu et al., 2006[Xu, W., Li, X.-C., Tan, H. & Chen, G.-J. (2006). Phys. Chem. Chem. Phys. 8, 4427-4433.]; Djurdjevic et al., 2007[Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. & Zerbetto, F. (2007). J. Am. Chem. Soc. 129, 476-477.]; Blight et al., 2009[Blight, B. A., Camara-Campos, A., Djurdjevic, S., Kaller, M., Leigh, D. A., McMillan, F. M., McNab, H. & Slawin, A. M. Z. (2009). J. Am. Chem. Soc. 131, 14116-14122.]). Formation of multiple hydrogen bonds often corresponds to a large association constant (Ka = ca 104–1010); therefore, 1,9,10-anthyridine derivatives are promising components for supra­molecular compounds. However, there have been few reports on the crystal structures of 1,9,10-anthyridine derivatives. The crystal structure and inter­molecular inter­actions of chloro­benzene-solvated 2,3,7,8-tetra­phenyl-1,9,10-anthyridine have been reported (Madhavi et al., 1997[Madhavi, N. N. L., Katz, A. K., Carrell, H. L., Nangia, A. & Desiraju, G. R. (1997). Chem. Commun. pp. 1953-1954.]). In addition, 1,13,14-tri­aza­dibenz[a,j]anthracene (dbanth) has been synthesized and its crystal structure has been reported (Djurdjevic et al., 2007[Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. & Zerbetto, F. (2007). J. Am. Chem. Soc. 129, 476-477.]; Blight et al., 2009[Blight, B. A., Camara-Campos, A., Djurdjevic, S., Kaller, M., Leigh, D. A., McMillan, F. M., McNab, H. & Slawin, A. M. Z. (2009). J. Am. Chem. Soc. 131, 14116-14122.]). In that case, the crystals contained no solvent mol­ecules. In other instances, several transition-metal complexes bearing dbanth as a ligand have been reported (Wang et al., 2012[Wang, W.-Z., Hsieh, C.-L., Ismayilov, R. H., Hsu, C.-H., Liu, I. P., Liu, Y.-H., Lee, G.-H. & Peng, S.-M. (2012). New J. Chem. 36, 2340-2346.]; Huang et al., 2013[Huang, D.-W., Lo, Y.-H., Liu, Y.-H., Peng, S.-M. & Liu, S.-T. (2013). Organometallics, 32, 4009-4015.]; Hirakawa & Koizumi, 2014[Hirakawa, S. & Koizumi, T. (2014). Inorg. Chem. 53, 10788-10790.]). In this paper, we report the crystal structure of dbanth 1,1,2,2-tetra­chloro­ethane (TCE) monosolvate, (I)[link]. The H atoms in the TCE mol­ecule form C—H⋯N hydrogen bonds with three dbanth N atoms (Table 1[link]).

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H7⋯C11 0.98 2.53 3.372 (3) 144
N2—H7⋯C11 0.98 2.57 3.206 (3) 122

2. Structural commentary

The mol­ecular structure of the title compound is depicted in Fig. 1[link]. The dbanth and TCE mol­ecules have twofold rotation symmetry. Although the structure of dbanth is almost planar, the planes of the terminal benzene rings are slightly twisted with respect to each other, with a dihedral angle of 3.59 (7)°. The distortion of the compound is considered to be due to the steric repulsion between atoms H5, H5* and H6. Atom H7 in the solvated TCE mol­ecule forms a bifurcated hydrogen bond with the two N atoms (N1 and N2) of the dbanth mol­ecule (Table 1[link]). When dbanth was recrystallized from CHCl3, solvation of CHCl3 did not occur. This result indicates that formation of C—H⋯N hydrogen bonds stabilizes the 1:1 complex of dbanth and TCE.

[Figure 1]
Figure 1
The two components of the title compound, (I)[link], with displacement ellipsoids drawn at the 50% probability level. C—H⋯N hydrogen bonds are shown as dashed lines. [Symmetry code: (*) −x + 1, y, −z + [{3\over 2}].]

3. Supra­molecular features

In the crystal, the dbanth mol­ecule inter­acts with the neighbouring dbanth mol­ecule through ππ stacking inter­actions, with an average inter­planar distance of 3.36 Å; the centroid–centroid distances between pyridine rings containing atom N1 and between pyridine rings containing atom N2 are 3.568 (2) and 3.594 (2) Å, respectively (Fig. 2[link]). The dbanth mol­ecules form a one-dimensional columnar structure via successive ππ stacking inter­actions (Fig. 3[link]). A twofold rotation axis passes through atoms N2, C9 and H6 of the central pyridine ring, so that all of the dbanth mol­ecules are arranged parallel to one another in the space group C2/c. In the crystal of nonsolvated dbanth (space group P21/c; Djurdjevic et al., 2007[Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. & Zerbetto, F. (2007). J. Am. Chem. Soc. 129, 476-477.]), dbanth mol­ecules are also stacked in a column, but the mol­ecules in the neighbouring columns are inclined to each other by 41.8 (2)°.

[Figure 2]
Figure 2
A partial packing diagram of the title compound, showing ππ inter­actions (dotted lines).
[Figure 3]
Figure 3
A crystal packing of the title compound, viewed down the c axis. Dashed lines indicate C—H⋯N hydrogen bonds.

4. Synthesis and crystallization

1,13,14-Tri­aza­dibenz[a,j]anthracene (dbanth) was synthesized via the reaction of 2,6-di­amino-3,5-di­iodo­pyridine with two equivalents of 2-formyl­benzene­boronic acid using Pd(PPh3)4 as a catalyst according to a literature method (Djurdjevic et al., 2007[Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. & Zerbetto, F. (2007). J. Am. Chem. Soc. 129, 476-477.]). Single crystals suitable for X-ray diffraction were obtained from a TCE solution by slow evaporation.

5. Refinement

Crystal data, data collection, and refinement details are summarized in Table 2[link]. All H atoms were fixed geometry (C—H = 0.93 or 0.98 Å) and refined using a riding model, with Uiso(H) values set at 1.2Ueq of the parent atom.

Table 2
Experimental details

Crystal data
Chemical formula C19H11N3·C2H2Cl4
Mr 449.14
Crystal system, space group Monoclinic, C2/c
Temperature (K) 90
a, b, c (Å) 20.072 (7), 14.190 (5), 7.079 (3)
β (°) 110.255 (4)
V3) 1891.5 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.64
Crystal size (mm) 0.79 × 0.40 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 1996[Bruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.511, 0.938
No. of measured, independent and observed [F2 > 2σ(F2)] reflections 4336, 1670, 1606
Rint 0.038
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.06
No. of reflections 1670
No. of parameters 128
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.27
Computer programs: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Chemical context top

1,9,10-Anthyridine has an anthracene skeleton with three imine N atoms that are situated at the same edge of the molecule. Since an imine unit in an aromatic compound such as pyridine can act as a hydrogen-bond acceptor, 1,9,10-Anthyridine can form a triply hydrogen-bonded structure with a corresponding H-atom donor, such as 2,6-di­amino­pyridinium and 2,6-bis­(hy­droxy­methyl)­phenol (Murray & Zimmerman, 1992; Xu et al., 2006; Djurdjevic et al., 2007; Blight et al., 2009). Formation of multiple hydrogen bonds often corresponds to a large association constant (ca Ka = 104–1010); therefore, 1,9,10-anthyridine derivatives are promising components for supra­molecular compounds. However, there have been few reports on the crystal structures of 1,9,10-anthyridine derivatives. The crystal structure and inter­molecular inter­actions of chloro­benzene-solvated 2,3,7,8-tetra­phenyl-1,9,10-anthyridine have been reported (Madhavi et al., 1997). In addition, 1,13,14-tri­aza­dibenz[a,j]anthracene (dbanth) has been synthesized and its crystal structure has been reported (Djurdjevic et al., 2007; Blight et al., 2009). In that case, the crystals contained no solvent molecules. In other instances, several transition-metal complexes bearing dbanth as a ligand have been reported (Wang et al., 2012; Huang et al., 2013; Hirakawa & Koizumi, 2014). In this paper, we report the crystal structure of dbanth 1,1,2,2-tetra­chloro­ethane (TCE) monosolvate, (I). The H atoms in the TCE molecule form C—H···N hydrogen bonds with three dbanth N atoms (Table 1).

Structural commentary top

The molecular structure of the titled compound is depicted in Fig. 1. The dbanth and TCE molecules have twofold rotation symmetry. Although the structure of dbanth is almost planar, the planes of the two terminal benzene rings are slightly twisted with respect to each other, with a dihedral angle of 3.59 (7)°. The distortion of the compound is considered to be due to the steric repulsion between atoms H5, H5* and H6. Atom H7 in the solvated TCE molecule forms a bifurcated hydrogen bond with the two N atoms (N1 and N2) of the dbanth molecule (Table 1). When dbanth was recrystallized from CHCl3, solvation of CHCl3 did not occur. This result indicates that formation of C—H···N hydrogen bonds stabilizes the 1:1 complex of dbanth and TCE.

Supra­molecular features top

In the crystal, the dbanth molecule inter­acts with the neighbouring dbanth molecule through ππ stacking inter­actions, with an average inter­planar distance of 3.36 Å; the centroid–centroid distances between pyridine rings containing atom N1 and between pyridine rings containing atom N2 are 3.568 (2) and 3.594 (2) Å, respectively (Fig. 2). The dbanth molecules form a one-dimensional columnar structure via successive ππ stacking inter­actions (Fig. 3). A twofold rotation axis passes through atoms N2, C9 and H6 of the central pyridine ring, so that all of the dbanth molecules are arranged parallel to one another in the space group C2/c. In the crystal of nonsolvated dbanth (space group P21/c; Djurdjevic et al., 2007), dbanth molecules are also stacked in a column, but the molecules in the neighbouring columns are inclined to each other by 41.8 (2)°.

Synthesis and crystallization top

1,13,14-Tri­aza­dibenz[a,j]anthracene (dbanth) was synthesized via the reaction of 2,6-di­amino-3,5-di­iodo­pyridine with two equivalents of 2-formyl­benzene­boronic acid using Pd(PPh3)4 as a catalyst according to a literature method (Djurdjevic et al., 2007). Single crystals suitable for X-ray diffraction were obtained from a TCE solution by slow evaporation.

Refinement top

Crystal data, data collection, and refinement details are summarized in Table 2. All H atoms were fixed geometry (C—H = 0.93 or 0.98 Å ) and refined using a riding model, with Uiso(H) values set at 1.2Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The two components of the title compound, (I), with displacement ellipsoids drawn at the 50% probability level. C—H···N hydrogen bonds are shown as dashed lines. [Symmetry code: (*) -x+1, y, -z+3/2.]
[Figure 2] Fig. 2. A packing diagram of the title compound, showing ππ interactions (dotted lines).
[Figure 3] Fig. 3. A crystal packing of the title compound, viewed down the c axis. Dashed lines indicate C—H···N hydrogen bonds.
1,13,14-Triazadibenz[a,j]anthracene 1,1,2,2-tetrachloroethane monosolvate top
Crystal data top
C19H11N3·C2H2Cl4F(000) = 912.00
Mr = 449.14Dx = 1.577 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 94 reflections
a = 20.072 (7) Åθ = 5.4–26.8°
b = 14.190 (5) ŵ = 0.64 mm1
c = 7.079 (3) ÅT = 90 K
β = 110.255 (4)°Needle, colorless
V = 1891.5 (11) Å30.79 × 0.40 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1606 reflections with F2 > 2σ(F2)
ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 1996)
θmax = 25.0°
Tmin = 0.511, Tmax = 0.938h = 2319
4336 measured reflectionsk = 1316
1670 independent reflectionsl = 78
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0378P)2 + 2.3451P]
where P = (Fo2 + 2Fc2)/3
1670 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.27 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H11N3·C2H2Cl4V = 1891.5 (11) Å3
Mr = 449.14Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.072 (7) ŵ = 0.64 mm1
b = 14.190 (5) ÅT = 90 K
c = 7.079 (3) Å0.79 × 0.40 × 0.10 mm
β = 110.255 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1670 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1996)
1606 reflections with F2 > 2σ(F2)
Tmin = 0.511, Tmax = 0.938Rint = 0.038
4336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
1670 reflectionsΔρmin = 0.27 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.41196 (2)0.93210 (3)0.70600 (6)0.02318 (16)
Cl20.46383 (2)0.83298 (3)0.42650 (6)0.02069 (15)
N10.38456 (7)0.62220 (9)0.53448 (19)0.0148 (3)
N20.50000.61449 (12)0.75000.0129 (4)
C10.32689 (8)0.57917 (11)0.4258 (2)0.0158 (3)
H10.28830.61680.35580.019*
C20.31719 (8)0.47862 (11)0.4035 (2)0.0144 (3)
C30.25243 (8)0.43881 (12)0.2803 (2)0.0179 (3)
H20.21450.47780.21200.022*
C40.24495 (8)0.34260 (12)0.2603 (3)0.0205 (4)
H30.20210.31640.17930.025*
C50.30269 (8)0.28419 (12)0.3637 (2)0.0193 (4)
H40.29780.21910.34970.023*
C60.36626 (8)0.32177 (11)0.4851 (2)0.0152 (3)
H50.40390.28200.55220.018*
C70.37471 (8)0.42004 (11)0.5082 (2)0.0122 (3)
C80.43950 (7)0.46557 (10)0.6339 (2)0.0112 (3)
C90.50000.41722 (14)0.75000.0110 (4)
H60.50000.35170.75000.013*
C100.44225 (8)0.56624 (10)0.6410 (2)0.0115 (3)
C110.46206 (8)0.83406 (10)0.6758 (2)0.0150 (3)
H70.43860.77640.69630.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0185 (2)0.0215 (2)0.0267 (3)0.00797 (15)0.00433 (19)0.00421 (15)
Cl20.0227 (2)0.0234 (3)0.0136 (2)0.00366 (15)0.00322 (19)0.00042 (14)
N10.0132 (7)0.0162 (7)0.0140 (7)0.0038 (5)0.0035 (5)0.0018 (5)
N20.0126 (9)0.0133 (9)0.0129 (9)0.0000.0043 (7)0.000
C10.0119 (8)0.0202 (8)0.0135 (8)0.0070 (6)0.0023 (6)0.0039 (6)
C20.0102 (7)0.0211 (8)0.0118 (7)0.0020 (6)0.0039 (6)0.0016 (6)
C30.0079 (7)0.0284 (9)0.0154 (8)0.0033 (6)0.0014 (6)0.0029 (6)
C40.0089 (7)0.0298 (9)0.0186 (9)0.0055 (6)0.0005 (7)0.0003 (7)
C50.0157 (8)0.0187 (8)0.0204 (8)0.0042 (6)0.0026 (7)0.0004 (6)
C60.0103 (7)0.0176 (8)0.0146 (8)0.0002 (6)0.0006 (6)0.0020 (6)
C70.0091 (7)0.0174 (8)0.0103 (7)0.0004 (6)0.0036 (6)0.0009 (5)
C80.0092 (7)0.0152 (8)0.0097 (7)0.0001 (6)0.0039 (6)0.0002 (5)
C90.0108 (10)0.0104 (10)0.0114 (10)0.0000.0036 (9)0.000
C100.0111 (7)0.0136 (7)0.0104 (8)0.0011 (5)0.0045 (6)0.0010 (5)
C110.0158 (8)0.0130 (8)0.0154 (8)0.0017 (6)0.0046 (7)0.0008 (6)
Geometric parameters (Å, º) top
Cl1—C111.7722 (15)C4—H30.9300
Cl2—C111.7778 (17)C5—C61.376 (2)
N1—C11.299 (2)C5—H40.9300
N1—C101.3913 (19)C6—C71.407 (2)
N2—C101.3373 (18)C6—H50.9300
N2—C10i1.3373 (18)C7—C81.449 (2)
C1—C21.441 (2)C8—C91.3891 (18)
C1—H10.9300C8—C101.430 (2)
C2—C71.407 (2)C9—C8i1.3891 (18)
C2—C31.409 (2)C9—H60.9300
C3—C41.375 (2)C11—C11i1.522 (3)
C3—H20.9300C11—H70.9800
C4—C51.406 (2)
C1—N1—C10117.16 (13)C7—C6—H5119.8
C10—N2—C10i118.40 (18)C6—C7—C2118.69 (14)
N1—C1—C2126.09 (14)C6—C7—C8124.04 (14)
N1—C1—H1117.0C2—C7—C8117.28 (14)
C2—C1—H1117.0C9—C8—C10117.23 (13)
C7—C2—C3120.14 (15)C9—C8—C7123.92 (14)
C7—C2—C1118.16 (14)C10—C8—C7118.86 (13)
C3—C2—C1121.70 (14)C8i—C9—C8120.80 (19)
C4—C3—C2120.41 (15)C8i—C9—H6119.6
C4—C3—H2119.8C8—C9—H6119.6
C2—C3—H2119.8N2—C10—N1114.40 (14)
C3—C4—C5119.38 (15)N2—C10—C8123.16 (14)
C3—C4—H3120.3N1—C10—C8122.44 (13)
C5—C4—H3120.3C11i—C11—Cl1113.02 (9)
C6—C5—C4121.04 (15)C11i—C11—Cl2109.00 (14)
C6—C5—H4119.5Cl1—C11—Cl2109.48 (8)
C4—C5—H4119.5C11i—C11—H7108.4
C5—C6—C7120.35 (14)Cl1—C11—H7108.4
C5—C6—H5119.8Cl2—C11—H7108.4
C10—N1—C1—C20.6 (2)C6—C7—C8—C91.8 (2)
N1—C1—C2—C70.2 (2)C2—C7—C8—C9178.34 (11)
N1—C1—C2—C3179.50 (14)C6—C7—C8—C10178.32 (13)
C7—C2—C3—C40.3 (2)C2—C7—C8—C101.6 (2)
C1—C2—C3—C4179.35 (15)C10—C8—C9—C8i0.54 (9)
C2—C3—C4—C50.2 (2)C7—C8—C9—C8i179.54 (15)
C3—C4—C5—C60.4 (3)C10i—N2—C10—N1179.30 (14)
C4—C5—C6—C70.0 (2)C10i—N2—C10—C80.61 (10)
C5—C6—C7—C20.6 (2)C1—N1—C10—N2180.00 (12)
C5—C6—C7—C8179.54 (14)C1—N1—C10—C80.1 (2)
C3—C2—C7—C60.7 (2)C9—C8—C10—N21.18 (19)
C1—C2—C7—C6178.97 (14)C7—C8—C10—N2178.90 (11)
C3—C2—C7—C8179.37 (13)C9—C8—C10—N1178.71 (11)
C1—C2—C7—C80.9 (2)C7—C8—C10—N11.2 (2)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H7···C110.982.533.372 (3)144
N2—H7···C110.982.573.206 (3)122
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H7···C110.982.533.372 (3)144
N2—H7···C110.982.573.206 (3)122

Experimental details

Crystal data
Chemical formulaC19H11N3·C2H2Cl4
Mr449.14
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)20.072 (7), 14.190 (5), 7.079 (3)
β (°) 110.255 (4)
V3)1891.5 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.79 × 0.40 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1996)
Tmin, Tmax0.511, 0.938
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
4336, 1670, 1606
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.06
No. of reflections1670
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.27

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2004), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas of New Polymeric Materials Based on Element-Blocks (No. 2401) (24102013) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

First citationBlight, B. A., Camara-Campos, A., Djurdjevic, S., Kaller, M., Leigh, D. A., McMillan, F. M., McNab, H. & Slawin, A. M. Z. (2009). J. Am. Chem. Soc. 131, 14116–14122.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDjurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. & Zerbetto, F. (2007). J. Am. Chem. Soc. 129, 476–477.  CSD CrossRef PubMed CAS Google Scholar
First citationHirakawa, S. & Koizumi, T. (2014). Inorg. Chem. 53, 10788–10790.  CSD CrossRef CAS PubMed Google Scholar
First citationHuang, D.-W., Lo, Y.-H., Liu, Y.-H., Peng, S.-M. & Liu, S.-T. (2013). Organometallics, 32, 4009–4015.  CSD CrossRef CAS Google Scholar
First citationMadhavi, N. N. L., Katz, A. K., Carrell, H. L., Nangia, A. & Desiraju, G. R. (1997). Chem. Commun. pp. 1953–1954.  Google Scholar
First citationMurray, T. J. & Zimmerman, S. C. (1992). J. Am. Chem. Soc. 114, 4010–4011.  CrossRef CAS Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, W.-Z., Hsieh, C.-L., Ismayilov, R. H., Hsu, C.-H., Liu, I. P., Liu, Y.-H., Lee, G.-H. & Peng, S.-M. (2012). New J. Chem. 36, 2340–2346.  CrossRef CAS Google Scholar
First citationXu, W., Li, X.-C., Tan, H. & Chen, G.-J. (2006). Phys. Chem. Chem. Phys. 8, 4427–4433.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 681-683
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds