organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o436-o437

Crystal structure of 5-(4-methyl­phen­yl)-3-[(E)-2-(4-methyl­phen­yl)ethen­yl]cyclo­hex-2-en-1-one

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by M. Lopez-Rodriguez, Universidad de La Laguna, Tenerife (Received 9 April 2015; accepted 28 April 2015; online 7 May 2015)

In the title compound, C22H22O, the dihedral angle between the planes of the benzene rings is 53.55 (7)°. Weak C—H⋯O inter­actions help to direct the packing, forming sheets lying parallel to (020).

1. Related literature

For the synthesis of cyclo­hexenones and their use as synthons, see: Mayekar et al. (2010[Mayekar, A. N., Li, H., Yathirajan, H. S., Narayana, B. & Suchetha Kumari, N. (2010). Int. J. Chem. (Can.), 2, 114-123.]); Suwito et al. (2014[Suwito, H., Mustofa, J., Kristanti, A. N. & Puspaningsih, N. N. T. (2014). J. Chem. Pharm. Res. 6, 1076-1088.]); Tabba et al. (1995[Tabba, H. D., Yousef, N. M. & Al-Arab, M. M. (1995). Collect. Czech. Chem. Commun. 60, 594-604.]); Bella et al. (2012[Bella, M., Schultz, M. & Milata, V. (2012). Arkivoc, iv, 242-251.]); Xing et al. (2010[Xing, R. G., Li, Y. N., Liu, Q., Meng, Q., Li, J., Shen, X., Liu, Z., Zhou, B., Yao, X. & Liu, Z. (2010). Eur. J. Org. Chem. pp. 6627-6632.]); Martin & Prasad (2006[Martin, A. E. & Prasad, K. J. (2006). Acta Pharm. 56, 79-86.]). For various biological activities of cyclo­hexenone derivatives, see: Prasad et al. (2006[Prasad, Y. R., Kumar, P. R., Deepti, C. A. & Ramana, M. V. (2006). Eur. J. Chem. 3, 236-241.]); Kumar et al. (2003[Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813-2815.]); Tatsuzaki et al. (2006); Yun et al. (2006[Yun, J.-M., Kweon, M.-H., Kwon, H., Hwang, J.-K. & Mukhtar, H. (2006). Carcinogenesis, 27, 1454-1464.]); Kim et al. (2008[Kim, B.-T. O. K.-J., Chun, J.-C. & Hwang, K.-J. (2008). Bull. Korean Chem. Soc. 29, 1125-1130.]); Yoon et al. (2007[Yoon, G., Kang, B. Y. & Cheon, S. H. (2007). Arch. Pharm. Res. 30, 313-316.]); Tanaka et al. (1997[Tanaka, M., Nara, F., Suzuki, K., Hosoya, T. & Ogita, T. (1997). J. Am. Chem. Soc. 119, 7871-7872.]); Vyas et al. (2009[Vyas, D. H., Tala, S. D., Akbari, J. D., Dhaduk, M. F. & Joshi, H. S. (2009). Indian J. Chem. Sect B, 48, 1405-1410.]). For the use of cyclo­hexenones as inter­mediates in synthesis, see: Mayekar et al. (2010[Mayekar, A. N., Li, H., Yathirajan, H. S., Narayana, B. & Suchetha Kumari, N. (2010). Int. J. Chem. (Can.), 2, 114-123.]); Bella et al. (2012[Bella, M., Schultz, M. & Milata, V. (2012). Arkivoc, iv, 242-251.]); Xing et al. (2010); Martin & Prasad (2006[Martin, A. E. & Prasad, K. J. (2006). Acta Pharm. 56, 79-86.]). For the bioactivity of dehydro­zingerone, chalcone and isoeugenol derivatives, see: Tatsuzaki et al. (2006[Tatsuzaki, J., Bastow, K. F., Nakagawa-Goto, K., Nakamura, S., Itokawa, H. & Lee, K.-H. (2006). J. Nat. Prod. 69, 1445-1449.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H22O

  • Mr = 302.39

  • Monoclinic, P 21 /c

  • a = 4.9614 (1) Å

  • b = 30.7302 (6) Å

  • c = 11.0726 (2) Å

  • β = 93.268 (1)°

  • V = 1685.44 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 150 K

  • 0.31 × 0.11 × 0.08 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.84, Tmax = 0.96

  • 12558 measured reflections

  • 3247 independent reflections

  • 2529 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.131

  • S = 1.05

  • 3247 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.99 2.60 3.515 (2) 154
C8—H8⋯O1ii 0.95 2.47 3.353 (2) 155
C14—H14⋯O1ii 0.95 2.55 3.410 (2) 151
Symmetry codes: (i) x+1, y, z; (ii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Structural commentary top

From a chemical point of view, the most commonly used method for preparation of polyfunctionalized cyclo­hexenones is the Michael addition of carbanions to α,β-unsaturated ketones in presence of basic catalysts (Mayekar et al., 2010; Suwito et al., 2014; Tabba et al., 1995). Cyclo­hexenones have been considered as efficient synthons in building spiranic compounds (Mayekar et al., 2010) or inter­mediates in the synthesis of fused heterocycles such as benzoselena­diazo­les and benzo­thia­zoles (Bella et al., 2012), benzo­pyrazoles (Xing et al., 2010) or carbazole derivatives (Martin & Prasad, 2006). The existence of the α,β-unsaturated ketone moiety is a common feature of a large number of biologically active compounds which exhibit diverse pharmacological effects such as anti-microbial (Prasad et al., 2006), anti-tumor (Kumar et al., 2003), anti-cancer (Tatsuzaki et al., 2006; Yun et al., 2006) and radical scavenger activities (Kim et al., 2008) as well as being inhibitors of topoisomerase I (Yoon et al., 2007). Cyclo­hexenone derivatives, in particular, are well known lead molecules for the treatment of inflammation and autoimmune diseases (Tanaka et al., 1997). Several reports have pointed out the importance of cyclo­hexenones for anti-microbial and anti-tubercular activity (Vyas et al., 2009).

In the title compound (Fig. 1), the dihedral angle between the phenyl rings is 53.55 (7)°. Weak C6—H6A···O1i (i: x + 1, y, z) inter­actions help to direct the packing (Fig. 2 and Table 1).

Synthesis and crystallization top

In 30 ml of methanol, a mixture of 1 mmol (262 mg) of (1Z,4E)-1,5-bis­(4-methyl­phenyl)­penta-1,4-dien-3-one and 1 mmol (100 mg) of acetyl­acetone was refluxed for 5 h in the presence of 10 mg of sodium methoxide. The resulting solid product was collected, filtered under vacuum, washed with cold ethanol and recrystallized from ethanol to afford colourless columns which were suitable for X-ray diffraction. Mp. 371 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms. The 020 reflection was omitted from the final refinement as it was partially obscured by the beamstop.

Related literature top

For the synthesis of cyclohexenones and their use as synthons, see: Mayekar et al. (2010); Suwito et al. (2014); Tabba et al. (1995); Bella et al. (2012); Xing et al. (2010); Martin & Prasad (2006). For various biological activities of cyclohexenone derivatives, see: Prasad et al. (2006); Kumar et al. (2003); Tatsuzaki et al. (2006); Yun et al. (2006); Kim et al. (2008); Yoon et al. (2007); Tanaka et al. (1997); Vyas et al. (2009). For the use of cyclohexenones as intermediates in synthesis, see: Mayekar et al. (2010); Bella et al. (2012); Xing et al. (2010); Martin & Prasad (2006). For related literature [on what subject?], see: Tatsuzaki et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with labeling scheme and 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing viewed towards the (102)plane. Weak C—H···O interactions are shown as dotted lines.
5-(4-Methylphenyl)-3-[(E)-2-(4-methylphenyl)ethenyl]cyclohex-2-en-1-one top
Crystal data top
C22H22OF(000) = 648
Mr = 302.39Dx = 1.192 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 4.9614 (1) ÅCell parameters from 7504 reflections
b = 30.7302 (6) Åθ = 2.9–72.6°
c = 11.0726 (2) ŵ = 0.55 mm1
β = 93.268 (1)°T = 150 K
V = 1685.44 (6) Å3Column, colourless
Z = 40.31 × 0.11 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3247 independent reflections
Radiation source: INCOATEC IµS micro-focus source2529 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.042
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 4.3°
ω scansh = 56
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 3836
Tmin = 0.84, Tmax = 0.96l = 1113
12558 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.6292P]
where P = (Fo2 + 2Fc2)/3
3247 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H22OV = 1685.44 (6) Å3
Mr = 302.39Z = 4
Monoclinic, P21/cCu Kα radiation
a = 4.9614 (1) ŵ = 0.55 mm1
b = 30.7302 (6) ÅT = 150 K
c = 11.0726 (2) Å0.31 × 0.11 × 0.08 mm
β = 93.268 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3247 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2529 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.96Rint = 0.042
12558 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
3247 reflectionsΔρmin = 0.19 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2370 (3)0.78680 (4)0.50574 (12)0.0422 (3)
C10.0733 (4)0.77848 (6)0.42988 (16)0.0324 (4)
C20.0376 (4)0.73445 (6)0.38590 (16)0.0320 (4)
H20.14350.71190.41770.038*
C30.1391 (3)0.72401 (5)0.30189 (15)0.0280 (4)
C40.2939 (4)0.75888 (5)0.23953 (15)0.0298 (4)
H4A0.29230.75210.15210.036*
H4B0.48410.75830.27180.036*
C50.1810 (4)0.80493 (6)0.25518 (16)0.0331 (4)
H50.00830.80680.20430.040*
C60.1127 (4)0.81281 (6)0.38459 (17)0.0369 (4)
H6A0.28140.81320.43680.044*
H6B0.02570.84170.39050.044*
C70.1933 (4)0.67865 (6)0.27681 (16)0.0313 (4)
H70.08000.65750.31070.038*
C80.3907 (4)0.66425 (5)0.20954 (15)0.0295 (4)
H80.48840.68580.16860.035*
C90.4725 (3)0.61914 (6)0.19209 (15)0.0296 (4)
C100.3664 (4)0.58378 (6)0.25307 (18)0.0389 (4)
H100.22650.58850.30670.047*
C110.4619 (4)0.54214 (6)0.23644 (18)0.0392 (4)
H110.38770.51880.28000.047*
C120.6632 (4)0.53343 (6)0.15784 (17)0.0355 (4)
C130.7678 (4)0.56848 (6)0.09696 (17)0.0394 (5)
H130.90570.56350.04240.047*
C140.6762 (4)0.61052 (6)0.11375 (16)0.0341 (4)
H140.75340.63380.07120.041*
C150.7656 (5)0.48793 (6)0.1393 (2)0.0466 (5)
H15A0.72770.47000.20950.070*
H15B0.96080.48880.13000.070*
H15C0.67500.47540.06640.070*
C160.3727 (4)0.83857 (5)0.20647 (15)0.0310 (4)
C170.4337 (4)0.83682 (6)0.08492 (16)0.0348 (4)
H170.35550.81460.03450.042*
C180.6061 (4)0.86683 (6)0.03656 (16)0.0357 (4)
H180.64310.86480.04650.043*
C190.7260 (4)0.89973 (6)0.10667 (17)0.0339 (4)
C200.6674 (4)0.90135 (6)0.22736 (18)0.0394 (4)
H200.74710.92340.27770.047*
C210.4943 (4)0.87140 (6)0.27656 (17)0.0378 (4)
H210.45850.87340.35970.045*
C220.9152 (4)0.93214 (7)0.0529 (2)0.0450 (5)
H22A1.10030.92090.06060.068*
H22B0.90600.95990.09600.068*
H22C0.86190.93660.03280.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0419 (8)0.0429 (7)0.0440 (8)0.0040 (6)0.0210 (6)0.0051 (6)
C10.0284 (9)0.0378 (10)0.0315 (9)0.0061 (7)0.0061 (7)0.0004 (7)
C20.0292 (9)0.0332 (9)0.0344 (9)0.0010 (7)0.0078 (7)0.0028 (7)
C30.0261 (8)0.0302 (9)0.0277 (9)0.0019 (7)0.0017 (6)0.0011 (6)
C40.0315 (9)0.0296 (9)0.0287 (9)0.0011 (7)0.0067 (7)0.0015 (6)
C50.0362 (9)0.0314 (9)0.0323 (9)0.0015 (7)0.0074 (7)0.0021 (7)
C60.0390 (10)0.0312 (9)0.0417 (10)0.0040 (8)0.0116 (8)0.0033 (7)
C70.0325 (9)0.0292 (9)0.0329 (9)0.0021 (7)0.0076 (7)0.0017 (7)
C80.0340 (9)0.0285 (8)0.0263 (8)0.0009 (7)0.0051 (7)0.0002 (6)
C90.0326 (9)0.0289 (9)0.0276 (9)0.0004 (7)0.0038 (7)0.0006 (6)
C100.0439 (11)0.0328 (9)0.0417 (10)0.0010 (8)0.0176 (8)0.0004 (8)
C110.0471 (11)0.0299 (9)0.0415 (11)0.0027 (8)0.0109 (8)0.0032 (7)
C120.0420 (10)0.0287 (9)0.0354 (10)0.0038 (8)0.0006 (8)0.0027 (7)
C130.0438 (11)0.0358 (10)0.0401 (10)0.0053 (8)0.0150 (8)0.0029 (8)
C140.0402 (10)0.0306 (9)0.0326 (9)0.0001 (7)0.0115 (8)0.0010 (7)
C150.0545 (13)0.0334 (10)0.0522 (13)0.0081 (9)0.0064 (10)0.0006 (9)
C160.0358 (9)0.0267 (8)0.0309 (9)0.0027 (7)0.0069 (7)0.0011 (7)
C170.0418 (10)0.0309 (9)0.0321 (9)0.0019 (8)0.0058 (7)0.0044 (7)
C180.0418 (10)0.0350 (10)0.0312 (9)0.0033 (8)0.0102 (8)0.0012 (7)
C190.0322 (9)0.0305 (9)0.0396 (10)0.0032 (7)0.0077 (7)0.0023 (7)
C200.0435 (11)0.0352 (10)0.0399 (11)0.0067 (8)0.0064 (8)0.0068 (8)
C210.0468 (11)0.0361 (10)0.0315 (10)0.0041 (8)0.0099 (8)0.0056 (7)
C220.0444 (12)0.0414 (11)0.0506 (12)0.0057 (9)0.0143 (9)0.0013 (9)
Geometric parameters (Å, º) top
O1—C11.228 (2)C11—H110.9500
C1—C21.452 (2)C12—C131.387 (3)
C1—C61.506 (3)C12—C151.506 (2)
C2—C31.352 (2)C13—C141.386 (2)
C2—H20.9500C13—H130.9500
C3—C71.450 (2)C14—H140.9500
C3—C41.508 (2)C15—H15A0.9800
C4—C51.535 (2)C15—H15B0.9800
C4—H4A0.9900C15—H15C0.9800
C4—H4B0.9900C16—C211.390 (3)
C5—C61.511 (2)C16—C171.397 (2)
C5—C161.524 (2)C17—C181.386 (3)
C5—H51.0000C17—H170.9500
C6—H6A0.9900C18—C191.388 (3)
C6—H6B0.9900C18—H180.9500
C7—C81.339 (2)C19—C201.385 (3)
C7—H70.9500C19—C221.514 (3)
C8—C91.460 (2)C20—C211.391 (3)
C8—H80.9500C20—H200.9500
C9—C141.394 (2)C21—H210.9500
C9—C101.398 (2)C22—H22A0.9800
C10—C111.381 (3)C22—H22B0.9800
C10—H100.9500C22—H22C0.9800
C11—C121.388 (3)
O1—C1—C2121.44 (16)C12—C11—H11119.1
O1—C1—C6121.55 (16)C13—C12—C11117.25 (16)
C2—C1—C6116.89 (15)C13—C12—C15121.09 (17)
C3—C2—C1123.22 (16)C11—C12—C15121.66 (17)
C3—C2—H2118.4C14—C13—C12121.60 (17)
C1—C2—H2118.4C14—C13—H13119.2
C2—C3—C7119.64 (15)C12—C13—H13119.2
C2—C3—C4120.88 (15)C13—C14—C9121.04 (16)
C7—C3—C4119.37 (14)C13—C14—H14119.5
C3—C4—C5113.86 (14)C9—C14—H14119.5
C3—C4—H4A108.8C12—C15—H15A109.5
C5—C4—H4A108.8C12—C15—H15B109.5
C3—C4—H4B108.8H15A—C15—H15B109.5
C5—C4—H4B108.8C12—C15—H15C109.5
H4A—C4—H4B107.7H15A—C15—H15C109.5
C6—C5—C16113.91 (15)H15B—C15—H15C109.5
C6—C5—C4110.97 (14)C21—C16—C17117.07 (16)
C16—C5—C4110.25 (14)C21—C16—C5123.69 (16)
C6—C5—H5107.1C17—C16—C5119.24 (16)
C16—C5—H5107.1C18—C17—C16121.24 (17)
C4—C5—H5107.1C18—C17—H17119.4
C1—C6—C5112.23 (15)C16—C17—H17119.4
C1—C6—H6A109.2C17—C18—C19121.53 (17)
C5—C6—H6A109.2C17—C18—H18119.2
C1—C6—H6B109.2C19—C18—H18119.2
C5—C6—H6B109.2C20—C19—C18117.33 (17)
H6A—C6—H6B107.9C20—C19—C22121.69 (17)
C8—C7—C3125.02 (16)C18—C19—C22120.98 (17)
C8—C7—H7117.5C19—C20—C21121.51 (17)
C3—C7—H7117.5C19—C20—H20119.2
C7—C8—C9127.22 (16)C21—C20—H20119.2
C7—C8—H8116.4C16—C21—C20121.32 (17)
C9—C8—H8116.4C16—C21—H21119.3
C14—C9—C10117.34 (16)C20—C21—H21119.3
C14—C9—C8118.65 (15)C19—C22—H22A109.5
C10—C9—C8123.97 (16)C19—C22—H22B109.5
C11—C10—C9120.96 (17)H22A—C22—H22B109.5
C11—C10—H10119.5C19—C22—H22C109.5
C9—C10—H10119.5H22A—C22—H22C109.5
C10—C11—C12121.80 (17)H22B—C22—H22C109.5
C10—C11—H11119.1
O1—C1—C2—C3179.54 (18)C10—C11—C12—C15179.6 (2)
C6—C1—C2—C34.5 (3)C11—C12—C13—C140.1 (3)
C1—C2—C3—C7170.34 (16)C15—C12—C13—C14179.66 (19)
C1—C2—C3—C45.8 (3)C12—C13—C14—C90.6 (3)
C2—C3—C4—C514.9 (2)C10—C9—C14—C130.3 (3)
C7—C3—C4—C5169.05 (15)C8—C9—C14—C13177.83 (17)
C3—C4—C5—C644.1 (2)C6—C5—C16—C215.5 (3)
C3—C4—C5—C16171.31 (15)C4—C5—C16—C21120.04 (19)
O1—C1—C6—C5149.12 (18)C6—C5—C16—C17174.85 (17)
C2—C1—C6—C534.9 (2)C4—C5—C16—C1759.6 (2)
C16—C5—C6—C1179.03 (15)C21—C16—C17—C180.6 (3)
C4—C5—C6—C153.9 (2)C5—C16—C17—C18179.74 (17)
C2—C3—C7—C8169.72 (18)C16—C17—C18—C190.2 (3)
C4—C3—C7—C86.4 (3)C17—C18—C19—C200.2 (3)
C3—C7—C8—C9172.86 (17)C17—C18—C19—C22179.64 (18)
C7—C8—C9—C14177.15 (18)C18—C19—C20—C210.3 (3)
C7—C8—C9—C105.5 (3)C22—C19—C20—C21179.72 (19)
C14—C9—C10—C110.4 (3)C17—C16—C21—C200.5 (3)
C8—C9—C10—C11176.95 (18)C5—C16—C21—C20179.83 (18)
C9—C10—C11—C120.9 (3)C19—C20—C21—C160.0 (3)
C10—C11—C12—C130.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.992.603.515 (2)154
C8—H8···O1ii0.952.473.353 (2)155
C14—H14···O1ii0.952.553.410 (2)151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.992.603.515 (2)154
C8—H8···O1ii0.952.473.353 (2)155
C14—H14···O1ii0.952.553.410 (2)151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+3/2, z1/2.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBella, M., Schultz, M. & Milata, V. (2012). Arkivoc, iv, 242–251.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, B.-T. O. K.-J., Chun, J.-C. & Hwang, K.-J. (2008). Bull. Korean Chem. Soc. 29, 1125–1130.  CAS Google Scholar
First citationKumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813–2815.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMartin, A. E. & Prasad, K. J. (2006). Acta Pharm. 56, 79–86.  PubMed CAS Google Scholar
First citationMayekar, A. N., Li, H., Yathirajan, H. S., Narayana, B. & Suchetha Kumari, N. (2010). Int. J. Chem. (Can.), 2, 114–123.  CAS Google Scholar
First citationPrasad, Y. R., Kumar, P. R., Deepti, C. A. & Ramana, M. V. (2006). Eur. J. Chem. 3, 236–241.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuwito, H., Mustofa, J., Kristanti, A. N. & Puspaningsih, N. N. T. (2014). J. Chem. Pharm. Res. 6, 1076–1088.  Google Scholar
First citationTabba, H. D., Yousef, N. M. & Al-Arab, M. M. (1995). Collect. Czech. Chem. Commun. 60, 594–604.  CSD CrossRef CAS Web of Science Google Scholar
First citationTanaka, M., Nara, F., Suzuki, K., Hosoya, T. & Ogita, T. (1997). J. Am. Chem. Soc. 119, 7871–7872.  CrossRef CAS Web of Science Google Scholar
First citationTatsuzaki, J., Bastow, K. F., Nakagawa-Goto, K., Nakamura, S., Itokawa, H. & Lee, K.-H. (2006). J. Nat. Prod. 69, 1445–1449.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVyas, D. H., Tala, S. D., Akbari, J. D., Dhaduk, M. F. & Joshi, H. S. (2009). Indian J. Chem. Sect B, 48, 1405–1410.  Google Scholar
First citationXing, R. G., Li, Y. N., Liu, Q., Meng, Q., Li, J., Shen, X., Liu, Z., Zhou, B., Yao, X. & Liu, Z. (2010). Eur. J. Org. Chem. pp. 6627–6632.  Web of Science CrossRef Google Scholar
First citationYoon, G., Kang, B. Y. & Cheon, S. H. (2007). Arch. Pharm. Res. 30, 313–316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYun, J.-M., Kweon, M.-H., Kwon, H., Hwang, J.-K. & Mukhtar, H. (2006). Carcinogenesis, 27, 1454–1464.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o436-o437
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds