research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 702-705

Crystal structure of aqua­[(E)-N′-(5-bromo-2-oxido­benzyl­­idene-κO)benzohydrazidato-κ2O,N′]dioxidomolybdenum(VI) di­methyl­formamide monosolvate

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, bDepartment of Chemistry, Faculty of Science, Eastern University, Chenkalady, Sri Lanka, and cDept. of Chemistry, Sree Krishna College, Guruvayur 680 102, Thrissur, Kerala, India
*Correspondence e-mail: msithambaresan@gmail.com

Edited by S. Parkin, University of Kentucky, USA (Received 1 May 2015; accepted 19 May 2015; online 28 May 2015)

The title compound, [Mo(C14H9BrN2O2)O2(H2O)]·C3H7NO, has a distorted octa­hedral geometry around the Mo atom, with the two terminal oxide groups lying cis to each other. The two aromatic rings present in the mol­ecule are almost coplanar, forming a dihedral angle of 1.4 (2)°. The five-membered ring involving the metal atom is puckered, with an amplitude Q = 0.358 (2) Å and φ = 204.1 (6)°. In the crystal, pairs of inversion-related mol­ecules are linked by O—H⋯N hydrogen bonds. An O—H⋯O hydrogen bond connects the water ligand to the di­methyl­formamide solvent mol­ecule. The crystal packing also features ππ [centroid–centroid distance of 3.688 (2) Å] and C—H⋯O inter­actions.

1. Chemical context

Aroylhydrazones are unique organic compounds characterized by the azomethine group in their mol­ecules (Sheeja et al., 2010[Sheeja, S. R., Mangalam, N. A., Prathapachandra Kurup, M. R., Sheena Mary, Y., Raju, K., Varghese, H. T. & Panicker, C. Y. (2010). J. Mol. Struct. 973, 36-46.]). They exhibit a wide range of applications in the field of biology, optics, catalysis and analytical chemistry. Their broad spectrum of biological activities include anti­microbial (Sreeja et al., 2004[Sreeja, P. B., Prathapachandra Kurup, M. R., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575-581.]), anti­fungal (Nfor et al., 2013[Nfor, E. N., Husian, A., Majoumo-Mbe, F., Njah, I. N., Offiong, O. E. & Bourne, S. A. (2013). Polyhedron, 63, 207-213.]), anti­viral and anti­neoplastic (Nair et al., 2014[Nair, R. S., Kuriakose, M., Somasundaram, V., Shenoi, V., Kurup, M. R. P. & Srinivas, P. (2014). Life Sci. 116, 90-97.]) activities. Biocidal studies reveal that hydrazones can be used as fungicides (Rai, 2006[Rai, B. K. (2006). J. Indian Council Chem. 23, 13-16.]). Hydrazones are also used as DNA photocleaving agents (Pal et al., 2014[Pal, R., Kumar, V., Gupta, A. K. & Beniwal, V. (2014). Med. Chem. Res. 23, 3327-3335.]) and even as a reversible photochromic system (Li et al., 2014[Li, K., Xiang, Y., Wang, X., Li, J., Hu, R., Tong, A. & Tang, B. Z. (2014). J. Am. Chem. Soc. 136, 1643-1649.]). Hydrazone-based mol­ecular switches, metallo­assemblies and sensors have also been developed (Su & Aprahamian, 2014[Su, X. & Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963-1981.]).

[Scheme 1]

Molybdenum is an important trace metal capable of forming various complexes with versatile organic ligands. Its flexibility in possessing a large number of stable and accessible oxidation states leads to applications in industrial and bio­logical reactions. Molybdenum complexes play a major role in catalytic activity (Maurya et al., 2014[Maurya, M. R., Dhaka, S. & Avecilla, F. (2014). Polyhedron, 67, 145-159.]). They are employed as catalysts in olefin epoxidation (Lei & Chelamalla, 2013[Lei, X. & Chelamalla, N. (2013). Polyhedron, 49, 244-251.]), reduction of di­nitro­gen to ammonia (Sengupta et al., 2015[Sengupta, D., Gangopadhyay, S., Drew, M. G. B. & Gangopadhyay, P. K. (2015). Dalton Trans. 44, 1323-1331.]) and oxidation of secondary alcohols (Maurya et al., 2015[Maurya, M. R., Dhaka, S. & Avecilla, F. (2015). New J. Chem. 39, 2130-2139.]). The biological relevance of molybdenum complexes include their application in modelling active sites of molybdoenzymes (Pramanik et al., 2004[Pramanik, N. R., Ghosh, S., Raychaudhuri, T. K., Ray, S., Butcher, R. J. & Mandal, S. S. (2004). Polyhedron, 23, 1595-1603.]) and also their anti­bacterial (Pasayat et al., 2012[Pasayat, S., Dash, S. P., Saswati, Majhi, P. K., Patil, Y. P., Nethaji, M., Dash, H. R., Das, S. & Dinda, R. (2012). Polyhedron, 38, 198-204.]), cytotoxic and anti­proliferative activities (Pasayat et al., 2014[Pasayat, S., Dash, S. P., Majumder, S., Dinda, R., Sinn, E., Stoeckli-Evans, H., Mukhopadhyay, S., Bhutia, S. K. & Mitra, P. (2014). Polyhedron, 80, 198-205.]).

2. Structural commentary

The title complex [Mo(C14H9BrN2O2)O2(H2O)]·C3H7NO crystallizes in the monoclinic space group P21/n. The complex adopts a distorted octa­hedral geometry around the Mo atom (Fig. 1[link]) in which the aroylhydrazone coordinates to the metal in a tridentate manner. One di­methyl­formamide solvent mol­ecule is present without any coordination to the metal centre. Two oxygen atoms and one nitro­gen atom of the aroylhydrazone and one of the terminal oxido atoms occupy equatorial positions in the complex. The axial positions are occupied by the other terminal oxygen and the oxygen atom of the water mol­ecule. The two terminal oxido groups are cis to each other. The C8—O2 bond length [1.314 (3) Å] is close to the reported C—O single bond length (1.318 Å; Gupta et al., 2007[Gupta, S., Barik, A. K., Pal, S., Hazra, A., Roy, S., Butcher, R. J. & Kar, S. K. (2007). Polyhedron, 26, 133-141.]). The Mo1—O4 and Mo1—O3 bonds of 1.693 (3) and 1.702 (2) Å, respectively, are very close to the reported Mo=O double bond [1.697 (1) Å], indicating that the complex has two Mo=O double bonds (Ebrahimipour et al., 2015[Ebrahimipour, S. Y., Khabazadeh, H., Castro, J., Sheikhshoaie, I., Crochet, A. & Fromm, K. M. (2015). Inorg. Chim. Acta, 427, 52-61.]).

[Figure 1]
Figure 1
The title compound drawn with 50% probability displacement ellipsoids for the non-H atoms.

The ligand adopts Z configurations with respect to the C7—N1 and C8—N2 bonds in the complex, which is clear from C1—C6—C7—N1 and N1—N2—C8—O2 torsion angles [9.8 (5) and −1.4 (4)°, respectively]. This configuration is similar to that of the metal-free ligand (Liu et al., 2006[Liu, H.-Y., Wang, H.-Y., Gao, F., Lu, Z.-S. & Niu, D.-Z. (2006). Acta Cryst. E62, o4495-o4496.]). The C1–C6 and C9–C14 rings make a dihedral angle of 1.4 (2)° with each other. Ring puckering analysis and least-squares plane calculations show that the Mo1/O1/C1/C6/C7/N1 ring is puckered with puckering amplitude Q = 0.358 (2)Å and φ = 204.1 (6)°.

3. Supra­molecular features

The supra­molecular arrangement of the complex is driven by various types of classical and non-classical hydrogen-bonding inter­actions, in which O4, O5 and N2 act as acceptor atoms (Fig. 2[link], Table 1[link]). There are classical O—H⋯N and O—H⋯O hydrogen-bonding inter­actions with DA distances 2.891 (4) and 2.701 (4) Å respectively, and a non-classical C—H⋯O inter­action with a DA distance of 3.421 (5) Å. These inter­actions connect pairs of mol­ecules along with the solvent di­methyl­formamide. The complex mol­ecule is stacked along the b axis through two different types of O—H⋯π inter­action (Fig. 3[link]), with H–centroid distances 2.67 (4) and 2.94 (5) Å and a ππ inter­action between rings C1–C6 and C9–C14(2 − x, −y, −z) with a centroid-centroid distance of 3.688 (2) Å (Fig. 3[link]). A view of the crystal packing along the a axis is given in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O5i 0.93 2.51 3.421 (5) 168
C17—H17⋯O4ii 0.93 2.63 3.404 (5) 141
O6—H6A⋯N2iii 0.86 (1) 2.04 (1) 2.891 (3) 173 (3)
O6—H6B⋯O5iv 0.86 (1) 1.85 (1) 2.701 (4) 171 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y, -z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Hydrogen-bonding inter­actions in the title compound.
[Figure 3]
Figure 3
O—H⋯π and ππ inter­actions present in the mol­ecule. Atom O6 is the water O atom.
[Figure 4]
Figure 4
Packing of the mol­ecules, viewed along the a axis.

4. Synthesis and crystallization

The benzoyl hydrazone was synthesized by a reported procedure (Liu et al., 2006[Liu, H.-Y., Wang, H.-Y., Gao, F., Lu, Z.-S. & Niu, D.-Z. (2006). Acta Cryst. E62, o4495-o4496.]). A methano­lic solution of benzhydrazide (0.0680 g, 0.5 mmol) was refluxed with a methano­lic solution of 5-bromo­salicyl­aldehyde (0.1005 g, 0.5 mmol) continuously for 3 h. The reaction mixture was kept aside for slow evaporation at room temperature. After 2–3 days, a pale-yellow compound formed, and was washed with methanol and dried under vacuum.

The complex was synthesized by refluxing a methano­lic solution of benzoyl hydrazone (0.1595 g, 0.5 mmol) and MoCl5 (0.1362 g, 0.5 mmol) for 3 h. The brown precipitate obtained was filtered, washed with methanol, dried and recrystallized from di­methyl­formamide (yield, 0.1688g, 63%). FT–IR (KBr, cm−1) 3400, 3194, 1657, 1546, 1345, 937, 810.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were placed in calculated positions, guided by difference Fourier maps, with C—H bond lengths of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C). The O—H distances were restrained with 1,2 and 1,3 distance restraints of 0.86 (1) and 1.36 (2) Å. Reflections (0 0 2), (1 0 1) and ([\overline{1}] 0 1), which were obscured by the beam stop, were omitted.

Table 2
Experimental details

Crystal data
Chemical formula [Mo(C14H9BrN2O2)O2(H2O)]·C3H7NO
Mr 536.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.8581 (8), 7.1145 (5), 25.998 (2)
β (°) 93.900 (3)
V3) 2003.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.69
Crystal size (mm) 0.40 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.355, 0.447
No. of measured, independent and observed [I > 2σ(I)] reflections 14880, 4957, 3710
Rint 0.027
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.096, 1.08
No. of reflections 4957
No. of parameters 264
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.31, −0.89
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Aroylhydrazones are unique organic compounds characterized by the azomethine group in their molecules (Sheeja et al., 2010). They exhibit a wide range of applications in the field of biology, optics, catalysis and analytical chemistry. Their broad spectrum of biological activities include anti­microbial (Sreeja et al., 2004), anti­fungal (Nfor et al., 2013), anti­viral and anti­neoplastic (Nair et al., 2014) activities. Biocidal studies reveal that hydrazones can be used as fungicides (Rai, 2006). Hydrazones are also used as DNA photocleaving agents (Pal et al., 2014)and even as a reversible photochromic system (Li et al., 2014). Hydrazone-based molecular switches, metalloassemblies and sensors have also been developed (Su & Aprahamian, 2014).

Molybdenum is an important trace metal capable of forming various complexes with versatile organic ligands. Its flexibility in possessing a large number of stable and accessible oxidation states leads to applications in industrial and biological reactions. Molybdenum complexes play a major role in catalytic activity (Maurya et al., 2014). They are employed as catalysts in olefin epoxidation (Lei & Chelamalla, 2013), reduction of di­nitro­gen to ammonia (Sengupta et al., 2015) and oxidation of secondary alcohols (Maurya et al., 2015). The biological relevance of molybdenum complexes include their application in modelling active sites of molybdoenzymes (Pramanik et al., 2004) and also their anti­bacterial (Pasayat et al., 2012), cytotoxic and anti­proliferative activities (Pasayat et al., 2014).

Structural commentary top

The title complex [MoO2(C14H9N2O2Br)H2O]·C3H7NO crystallized in the monoclinic space group P21/n . The complex adopts a distorted o­cta­hedral geometry around the Mo atom (Fig. 1) in which the aroylhydrazone coordinates to the metal in a tridentate manner. One di­methyl­formamide solvent molecule is present without any coordination to the metal centre. Two oxygen atoms and one nitro­gen atom of the aroylhydrazone and one of the terminal oxo atoms occupy equatorial positions in the complex. The axial positions are occupied by the other terminal oxygen and the oxygen atom of the water molecule. The two terminal oxo groups are cis to each other. The C8—O2 bond length [1.314 (3) Å] is close to the reported C—O single bond length (1.318 Å; Gupta et al., 2007). The Mo1—O4 and Mo1—O3 bonds of 1.693 (3) and 1.702 (2) Å, respectively, are very close to the reported MoO double bond [1.697 (1) Å], indicating that the complex has two Mo=O double bonds (Ebrahimipour et al., 2015).

The ligand adopts Z configurations with respect to the C7—N1 and C8—N2 bonds in the complex, which is clear from C1—C6—C7—N1 and N1—N2—C8—O2 torsion angles [9.8 (5) and -1.4 (4)°, respectively]. This configuration is similar to that of the metal in the free ligand (Liu et al., 2006). The C1–C6 and C9–C14 rings make a dihedral angle of 1.4 (2)° with each other. Ring puckering analysis and least-squares plane calculations show that the Mo1/O1/C1/C6/C7/N1 ring is puckered with puckering amplitude Q = 0.358 (2)Å and ϕ = 204.1 (6)°.

Supra­molecular features top

The supra­molecular arrangement of the complex is driven by various types of classical and non-classical hydrogen-bonding inter­actions, in which O4, O5 and N2 act as acceptor atoms (Fig. 2, Table 1). There are classical O—H···N and O—H···O hydrogen-bonding inter­actions with D···A distances 2.891 (4) and 2.701 (4) Å respectively, and a non-classical C—H···O inter­action with a D···A distance of 3.421 (5) Å. These inter­actions connect pairs of molecules along with the solvent di­methyl­formamide. The complex molecule is stacked along the b axis through two different types of C—H···π inter­action (Fig. 3), with H-centroid distances 2.67 (4) and 2.94 (5) Å and a ππ inter­action between rings C1–C6 and C9–C14(2 - x, -y, -z) with a centroid-centroid distance of 3.688 (2) Å (Fig. 3). A view of the crystal packing along the a axis is given in Fig. 4.

Synthesis and crystallization top

The benzoyl hydrazone was synthesized by a reported procedure (Liu et al., 2006). A methano­lic solution of benzhydrazide (0.0680g, 0.5mmol) was refluxed with a methano­lic solution of 5-bromo­salicyl­aldehyde (0.1005g, 0.5mmol) continuously for 3 hours. The reaction mixture was kept aside for slow evaporation at room temperature. After 2–3 days, a pale-yellow compound formed, and was washed with methanol and dried under vacuum.

The complex was synthesized by refluxing a methano­lic solution of benzoyl hydrazone (0.1595g, 0.5 mmol) and MoCl5 (0.1362g, 0.5 mmol) for 3 hours. The brown precipitate obtained was filtered, washed with methanol, dried and recrystallized from di­methyl­formamide (yield, 0.1688g, 63%). FT–IR (KBr, cm-1) νmax: 3400, 3194, 1657, 1546, 1345, 937, 810.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All C-bound H atoms were placed in calculated positions, guided by difference Fourier maps, with C—H bond lengths of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C). The O—H distances were restrained with 1,2 and 1,3 distance restraints of 0.86 (1) and 1.36 (2) Å. Reflections (0 0 2), (1 0 1) and (1 0 1), which were obscured by the beam stop, were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The title compound drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Hydrogen-bonding interactions in the title compound.
[Figure 3] Fig. 3. C—H···π and ππ interactions present in the molecule. Atom O6 is the water O atom.
[Figure 4] Fig. 4. Packing of the molecules, viewed along the a axis.
Aqua[(E)-N'-(5-bromo-2-oxidobenzylidene-κO)benzohydrazidato-κ2O,N']dioxidomolybdenum(VI) dimethylformamide monosolvate top
Crystal data top
[Mo(C14H9BrN2O2)O2(H2O)]·C3H7NOF(000) = 1064
Mr = 536.19Dx = 1.777 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.8581 (8) ÅCell parameters from 5189 reflections
b = 7.1145 (5) Åθ = 2.9–28.1°
c = 25.998 (2) ŵ = 2.69 mm1
β = 93.900 (3)°T = 296 K
V = 2003.7 (3) Å3Needle, yellow
Z = 40.40 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3710 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
ω and ϕ scanθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.355, Tmax = 0.447k = 89
14880 measured reflectionsl = 3431
4957 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0418P)2 + 1.3003P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max = 0.001
S = 1.08Δρmax = 1.31 e Å3
4957 reflectionsΔρmin = 0.88 e Å3
264 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0007 (2)
Crystal data top
[Mo(C14H9BrN2O2)O2(H2O)]·C3H7NOV = 2003.7 (3) Å3
Mr = 536.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8581 (8) ŵ = 2.69 mm1
b = 7.1145 (5) ÅT = 296 K
c = 25.998 (2) Å0.40 × 0.15 × 0.10 mm
β = 93.900 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4957 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3710 reflections with I > 2σ(I)
Tmin = 0.355, Tmax = 0.447Rint = 0.027
14880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.31 e Å3
4957 reflectionsΔρmin = 0.88 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6397 (3)0.2038 (4)0.03480 (13)0.0315 (7)
C20.5256 (3)0.2057 (5)0.05560 (14)0.0399 (8)
H20.45490.17930.03460.048*
C30.5153 (3)0.2461 (5)0.10676 (14)0.0453 (9)
H30.43820.24970.12030.054*
C40.6213 (3)0.2812 (5)0.13790 (14)0.0433 (8)
C50.7351 (3)0.2765 (5)0.11877 (13)0.0402 (8)
H50.80510.29820.14060.048*
C60.7471 (3)0.2391 (4)0.06655 (12)0.0312 (6)
C70.8694 (3)0.2411 (4)0.04814 (12)0.0317 (6)
H70.93670.24620.07220.038*
C81.0185 (3)0.2494 (4)0.06177 (12)0.0299 (6)
C91.1389 (3)0.2485 (4)0.08474 (12)0.0315 (6)
C101.2469 (3)0.2848 (5)0.05437 (13)0.0354 (7)
H101.24360.31380.01960.042*
C111.3591 (3)0.2772 (5)0.07643 (15)0.0443 (9)
H111.43150.30260.05640.053*
C121.3649 (3)0.2328 (6)0.12723 (16)0.0524 (10)
H121.44100.22660.14150.063*
C131.2584 (4)0.1972 (7)0.15748 (16)0.0620 (12)
H131.26240.16660.19210.074*
C141.1456 (3)0.2070 (6)0.13613 (14)0.0498 (10)
H141.07350.18530.15670.060*
C150.3158 (5)1.0771 (9)0.2643 (2)0.105 (2)
H15A0.28321.04380.23030.158*
H15B0.37001.18310.26240.158*
H15C0.24911.10900.28520.158*
C160.4848 (5)0.8476 (8)0.2605 (2)0.0858 (16)
H16A0.50590.72420.27320.129*
H16B0.55470.92930.26610.129*
H16C0.46140.84080.22430.129*
C170.3545 (4)0.8450 (7)0.33094 (16)0.0553 (10)
H170.28770.89670.34650.066*
N10.8897 (2)0.2360 (3)0.00006 (10)0.0284 (5)
N21.0134 (2)0.2354 (4)0.01231 (10)0.0308 (6)
N30.3835 (3)0.9198 (5)0.28720 (12)0.0550 (8)
O10.64511 (18)0.1587 (4)0.01536 (9)0.0394 (5)
O20.92037 (18)0.2583 (3)0.09418 (9)0.0367 (5)
O30.6772 (2)0.1701 (4)0.12470 (9)0.0512 (7)
O40.7253 (2)0.4738 (4)0.06416 (11)0.0539 (7)
O50.4074 (3)0.7140 (5)0.35275 (12)0.0743 (9)
O60.8105 (2)0.0693 (3)0.06282 (10)0.0384 (5)
Br10.60802 (5)0.33679 (9)0.20859 (2)0.07719 (18)
Mo10.75010 (2)0.23944 (4)0.06785 (2)0.03247 (10)
H6A0.858 (3)0.117 (5)0.0387 (9)0.046 (11)*
H6B0.834 (4)0.118 (6)0.0907 (8)0.092 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (14)0.0328 (18)0.0324 (16)0.0022 (12)0.0037 (12)0.0019 (13)
C20.0290 (15)0.047 (2)0.044 (2)0.0013 (13)0.0035 (14)0.0032 (16)
C30.0371 (16)0.057 (2)0.043 (2)0.0015 (17)0.0154 (15)0.0038 (18)
C40.052 (2)0.047 (2)0.0325 (18)0.0001 (16)0.0122 (15)0.0028 (16)
C50.0396 (17)0.048 (2)0.0326 (17)0.0010 (15)0.0016 (13)0.0010 (16)
C60.0303 (14)0.0311 (16)0.0322 (16)0.0032 (13)0.0022 (11)0.0040 (14)
C70.0280 (13)0.0354 (17)0.0309 (16)0.0003 (13)0.0030 (11)0.0033 (15)
C80.0270 (13)0.0281 (16)0.0346 (16)0.0016 (13)0.0017 (11)0.0037 (14)
C90.0262 (13)0.0333 (17)0.0352 (17)0.0019 (13)0.0033 (12)0.0053 (15)
C100.0318 (15)0.038 (2)0.0363 (18)0.0015 (13)0.0013 (13)0.0070 (14)
C110.0276 (14)0.056 (2)0.049 (2)0.0003 (15)0.0004 (14)0.0156 (18)
C120.0327 (16)0.074 (3)0.052 (2)0.0104 (18)0.0146 (16)0.014 (2)
C130.047 (2)0.101 (4)0.039 (2)0.009 (2)0.0117 (17)0.000 (2)
C140.0346 (17)0.077 (3)0.038 (2)0.0012 (17)0.0021 (15)0.0014 (19)
C150.102 (4)0.099 (5)0.116 (5)0.026 (4)0.017 (4)0.044 (4)
C160.083 (4)0.103 (4)0.075 (4)0.012 (3)0.035 (3)0.021 (3)
C170.056 (2)0.069 (3)0.042 (2)0.008 (2)0.0081 (18)0.005 (2)
N10.0229 (11)0.0293 (14)0.0326 (14)0.0023 (10)0.0002 (9)0.0006 (12)
N20.0217 (11)0.0353 (15)0.0352 (14)0.0005 (10)0.0007 (10)0.0010 (12)
N30.060 (2)0.062 (2)0.0432 (19)0.0035 (16)0.0052 (15)0.0134 (16)
O10.0249 (10)0.0582 (15)0.0347 (13)0.0035 (10)0.0002 (9)0.0062 (12)
O20.0259 (9)0.0533 (15)0.0307 (11)0.0017 (10)0.0001 (8)0.0064 (11)
O30.0334 (12)0.086 (2)0.0321 (13)0.0029 (12)0.0099 (10)0.0021 (13)
O40.0500 (15)0.0474 (16)0.0641 (18)0.0155 (12)0.0026 (13)0.0089 (13)
O50.087 (2)0.088 (3)0.0481 (18)0.0023 (18)0.0050 (16)0.0220 (17)
O60.0417 (13)0.0406 (14)0.0323 (13)0.0056 (10)0.0025 (10)0.0038 (12)
Br10.0820 (3)0.1149 (5)0.0373 (2)0.0145 (3)0.0234 (2)0.0067 (3)
Mo10.02312 (13)0.04399 (19)0.02970 (15)0.00441 (12)0.00257 (9)0.00338 (13)
Geometric parameters (Å, º) top
C1—O11.348 (4)C12—H120.9300
C1—C21.386 (4)C13—C141.380 (5)
C1—C61.405 (4)C13—H130.9300
C2—C31.373 (5)C14—H140.9300
C2—H20.9300C15—N31.445 (6)
C3—C41.384 (5)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.364 (5)C15—H15C0.9600
C4—Br11.895 (4)C16—N31.435 (5)
C5—C61.398 (4)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.441 (4)C16—H16C0.9600
C7—N11.284 (4)C17—O51.215 (5)
C7—H70.9300C17—N31.313 (5)
C8—N21.295 (4)C17—H170.9300
C8—O21.314 (3)N1—N21.403 (3)
C8—C91.474 (4)N1—Mo12.247 (2)
C9—C141.375 (5)O1—Mo11.924 (2)
C9—C101.393 (4)O2—Mo12.019 (2)
C10—C111.382 (4)O3—Mo11.702 (2)
C10—H100.9300O4—Mo11.693 (3)
C11—C121.363 (5)O6—Mo12.293 (2)
C11—H110.9300O6—H6A0.857 (10)
C12—C131.377 (6)O6—H6B0.856 (10)
O1—C1—C2118.6 (3)N3—C15—H15A109.5
O1—C1—C6121.4 (3)N3—C15—H15B109.5
C2—C1—C6119.9 (3)H15A—C15—H15B109.5
C3—C2—C1120.9 (3)N3—C15—H15C109.5
C3—C2—H2119.5H15A—C15—H15C109.5
C1—C2—H2119.5H15B—C15—H15C109.5
C2—C3—C4119.0 (3)N3—C16—H16A109.5
C2—C3—H3120.5N3—C16—H16B109.5
C4—C3—H3120.5H16A—C16—H16B109.5
C5—C4—C3121.4 (3)N3—C16—H16C109.5
C5—C4—Br1119.3 (3)H16A—C16—H16C109.5
C3—C4—Br1119.3 (3)H16B—C16—H16C109.5
C4—C5—C6120.4 (3)O5—C17—N3125.6 (4)
C4—C5—H5119.8O5—C17—H17117.2
C6—C5—H5119.8N3—C17—H17117.2
C5—C6—C1118.4 (3)C7—N1—N2117.0 (2)
C5—C6—C7118.0 (3)C7—N1—Mo1127.82 (19)
C1—C6—C7123.6 (3)N2—N1—Mo1115.16 (18)
N1—C7—C6123.1 (3)C8—N2—N1109.5 (2)
N1—C7—H7118.5C17—N3—C16120.7 (4)
C6—C7—H7118.5C17—N3—C15121.7 (4)
N2—C8—O2123.6 (3)C16—N3—C15117.6 (4)
N2—C8—C9120.0 (3)C1—O1—Mo1132.99 (19)
O2—C8—C9116.3 (3)C8—O2—Mo1120.02 (19)
C14—C9—C10119.5 (3)Mo1—O6—H6A126 (2)
C14—C9—C8120.1 (3)Mo1—O6—H6B116 (3)
C10—C9—C8120.4 (3)H6A—O6—H6B105 (2)
C11—C10—C9119.3 (3)O4—Mo1—O3105.57 (13)
C11—C10—H10120.3O4—Mo1—O198.63 (11)
C9—C10—H10120.3O3—Mo1—O1105.44 (11)
C12—C11—C10120.7 (3)O4—Mo1—O296.11 (11)
C12—C11—H11119.7O3—Mo1—O296.16 (10)
C10—C11—H11119.7O1—Mo1—O2149.37 (9)
C11—C12—C13120.3 (3)O4—Mo1—N193.86 (11)
C11—C12—H12119.9O3—Mo1—N1158.18 (11)
C13—C12—H12119.9O1—Mo1—N180.79 (9)
C12—C13—C14119.6 (4)O2—Mo1—N171.52 (9)
C12—C13—H13120.2O4—Mo1—O6170.43 (11)
C14—C13—H13120.2O3—Mo1—O683.47 (11)
C9—C14—C13120.6 (3)O1—Mo1—O681.64 (10)
C9—C14—H14119.7O2—Mo1—O679.51 (9)
C13—C14—H14119.7N1—Mo1—O676.70 (9)
O1—C1—C2—C3178.4 (3)C8—C9—C10—C11177.9 (3)
C6—C1—C2—C31.5 (5)C9—C10—C11—C120.7 (5)
C1—C2—C3—C41.4 (5)C10—C11—C12—C130.8 (6)
C2—C3—C4—C50.0 (6)C11—C12—C13—C140.2 (7)
C2—C3—C4—Br1179.9 (3)C10—C9—C14—C131.3 (6)
C3—C4—C5—C61.2 (5)C8—C9—C14—C13177.0 (4)
Br1—C4—C5—C6178.8 (3)C12—C13—C14—C91.2 (7)
C4—C5—C6—C11.0 (5)C6—C7—N1—N2178.9 (3)
C4—C5—C6—C7178.3 (3)C6—C7—N1—Mo13.7 (4)
O1—C1—C6—C5177.1 (3)O2—C8—N2—N11.4 (4)
C2—C1—C6—C50.3 (5)C9—C8—N2—N1178.9 (3)
O1—C1—C6—C73.6 (5)C7—N1—N2—C8173.6 (3)
C2—C1—C6—C7179.6 (3)Mo1—N1—N2—C84.1 (3)
C5—C6—C7—N1169.5 (3)O5—C17—N3—C160.4 (7)
C1—C6—C7—N19.8 (5)O5—C17—N3—C15179.4 (5)
N2—C8—C9—C14160.5 (3)C2—C1—O1—Mo1146.6 (3)
O2—C8—C9—C1417.2 (5)C6—C1—O1—Mo136.6 (4)
N2—C8—C9—C1017.8 (5)N2—C8—O2—Mo12.5 (4)
O2—C8—C9—C10164.5 (3)C9—C8—O2—Mo1175.1 (2)
C14—C9—C10—C110.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O5i0.932.513.421 (5)168
C17—H17···O4ii0.932.633.404 (5)141
O6—H6A···N2iii0.86 (1)2.04 (1)2.891 (3)173 (3)
O6—H6B···O5iv0.86 (1)1.85 (1)2.701 (4)171 (4)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2; (iii) x+2, y, z; (iv) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O5i0.932.513.421 (5)168.2
C17—H17···O4ii0.932.633.404 (5)141.2
O6—H6A···N2iii0.857 (10)2.038 (11)2.891 (3)173 (3)
O6—H6B···O5iv0.856 (10)1.852 (13)2.701 (4)171 (4)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2; (iii) x+2, y, z; (iv) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mo(C14H9BrN2O2)O2(H2O)]·C3H7NO
Mr536.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.8581 (8), 7.1145 (5), 25.998 (2)
β (°) 93.900 (3)
V3)2003.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.69
Crystal size (mm)0.40 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.355, 0.447
No. of measured, independent and
observed [I > 2σ(I)] reflections
14880, 4957, 3710
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.096, 1.08
No. of reflections4957
No. of parameters264
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.31, 0.88

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS2014 (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015), ORTEP-3 (Burnett & Johnson, 1996) and DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

 

Acknowledgements

NRS thanks the Council of Scientific and Industrial Research (India) for a Junior Research Fellowship. MRPK is grateful to UGC, New Delhi, India, for a UGC–BSR one-time grant to Faculty. EM thanks UGC for the financial assistance in the form of a minor research project. We thank the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the diffraction measurements.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEbrahimipour, S. Y., Khabazadeh, H., Castro, J., Sheikhshoaie, I., Crochet, A. & Fromm, K. M. (2015). Inorg. Chim. Acta, 427, 52–61.  CSD CrossRef CAS Google Scholar
First citationGupta, S., Barik, A. K., Pal, S., Hazra, A., Roy, S., Butcher, R. J. & Kar, S. K. (2007). Polyhedron, 26, 133–141.  CSD CrossRef CAS Google Scholar
First citationLei, X. & Chelamalla, N. (2013). Polyhedron, 49, 244–251.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, K., Xiang, Y., Wang, X., Li, J., Hu, R., Tong, A. & Tang, B. Z. (2014). J. Am. Chem. Soc. 136, 1643–1649.  CrossRef CAS PubMed Google Scholar
First citationLiu, H.-Y., Wang, H.-Y., Gao, F., Lu, Z.-S. & Niu, D.-Z. (2006). Acta Cryst. E62, o4495–o4496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaurya, M. R., Dhaka, S. & Avecilla, F. (2014). Polyhedron, 67, 145–159.  CSD CrossRef CAS Google Scholar
First citationMaurya, M. R., Dhaka, S. & Avecilla, F. (2015). New J. Chem. 39, 2130–2139.  CSD CrossRef CAS Google Scholar
First citationNair, R. S., Kuriakose, M., Somasundaram, V., Shenoi, V., Kurup, M. R. P. & Srinivas, P. (2014). Life Sci. 116, 90–97.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNfor, E. N., Husian, A., Majoumo-Mbe, F., Njah, I. N., Offiong, O. E. & Bourne, S. A. (2013). Polyhedron, 63, 207–213.  CSD CrossRef CAS Google Scholar
First citationPal, R., Kumar, V., Gupta, A. K. & Beniwal, V. (2014). Med. Chem. Res. 23, 3327–3335.  CrossRef CAS Google Scholar
First citationPasayat, S., Dash, S. P., Majumder, S., Dinda, R., Sinn, E., Stoeckli-Evans, H., Mukhopadhyay, S., Bhutia, S. K. & Mitra, P. (2014). Polyhedron, 80, 198–205.  CSD CrossRef CAS Google Scholar
First citationPasayat, S., Dash, S. P., Saswati, Majhi, P. K., Patil, Y. P., Nethaji, M., Dash, H. R., Das, S. & Dinda, R. (2012). Polyhedron, 38, 198–204.  CSD CrossRef CAS Google Scholar
First citationPramanik, N. R., Ghosh, S., Raychaudhuri, T. K., Ray, S., Butcher, R. J. & Mandal, S. S. (2004). Polyhedron, 23, 1595–1603.  CSD CrossRef CAS Google Scholar
First citationRai, B. K. (2006). J. Indian Council Chem. 23, 13–16.  CAS Google Scholar
First citationSengupta, D., Gangopadhyay, S., Drew, M. G. B. & Gangopadhyay, P. K. (2015). Dalton Trans. 44, 1323–1331.  CSD CrossRef CAS PubMed Google Scholar
First citationSheeja, S. R., Mangalam, N. A., Prathapachandra Kurup, M. R., Sheena Mary, Y., Raju, K., Varghese, H. T. & Panicker, C. Y. (2010). J. Mol. Struct. 973, 36–46.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSreeja, P. B., Prathapachandra Kurup, M. R., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575–581.  Web of Science CSD CrossRef CAS Google Scholar
First citationSu, X. & Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963–1981.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 702-705
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds