research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 690-692

Crystal structure of a sodium, zinc and iron(III)-based non-stoichiometric phosphate with an alluaudite-like structure: Na1.67Zn1.67Fe1.33(PO4)3

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: j_khmiyas@yahoo.fr

Edited by S. Parkin, University of Kentucky, USA (Received 4 May 2015; accepted 20 May 2015; online 23 May 2015)

The new title compound, disodium dizinc iron(III) tris­(phosphate), Na1.67Zn1.67Fe1.33(PO4)3, which belongs to the alluaudite family, has been synthesized by solid-state reactions. In this structure, all atoms are in general positions except for four, which are located on special positions of the C2/c space group. This structure is characterized by cation substitutional disorder at two sites, one situated on the special position 4e (2) and the other on the general position 8f. The 4e site is partially occupied by Na+ [0.332 (3)], whereas the 8f site is entirely filled by a mixture of Fe and Zn. The full-occupancy sodium and zinc atoms are located at the Wyckoff positions on the inversion center 4a (-1) and on the twofold rotation axis 4e, respectively. Refinement of the occupancy ratios, bond-valence analysis and the electrical neutrality requirement of the structure lead to the given composition for the title compound. The three-dimensional framework of this structure consists of kinked chains of edge-sharing octa­hedra stacked parallel to [10-1]. The chains are formed by a succession of trimers based on [ZnO6] octa­hedra and the mixed-cation FeIII/ZnII [(Fe/Zn)O6] octa­hedra [FeIII:ZnIII ratio 0.668 (3)/0.332 (3)]. Continuous chains are held together by PO4 phosphate groups, forming polyhedral sheets perpendicular to [010]. The stacked sheets delimit two types of tunnels parallel to the c axis in which the sodium cations are located. Each Na+ cation is coordinated by eight O atoms. The disorder of Na in the tunnel might presage ionic mobility for this material.

1. Chemical context

Alkali transition-metal phosphates belonging to the alluaudite family constitute one of the most diverse and rich classes of minerals, and have been studied intensively over the last few years. Owing to their outstanding physico-chemical properties, these compounds have many potential applications in various fields, such as catalytic activity (Kacimi et al., 2005[Kacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682-693.]) and as promising cathodes for sodium-ion batteries through the presence of mobile cations located in the tunnels of the open three-dimensional framework (Huang et al., 2015[Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851-860.]). In their recent study, Huang et al. (2015[Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851-860.]) point out that the electrochemical performance is not only associated with morphology, but also with the electronic and crystalline structure.

Accordingly, a large number of alluaudite phases with alkali cations in the tunnels have been reported. Nevertheless, the presence of alkali metals in the tunnels of synthetic alluaudite phases is frequently accompanied by cationic distributions that lead to non-stoichiometric compositions, such as: (Na0.38,Ca0.31)MgFe2(PO4)3 (Zid et al., 2005[Zid, M. F., Driss, A. & Jouini, T. (2005). Acta Cryst. E61, i46-i48.]); NaFe3.67(PO4)3 (Korzenski et al., 1998[Korzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152-160.]); Cu1.35Fe3(PO4)3 (Warner et al., 1993[Warner, T. E., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301-309.]); K0.53Mn2.37Fe1.24(PO4)3 (Hidouri & Ben Amara, 2011[Hidouri, M. & Ben Amara, M. (2011). Acta Cryst. E67, i1.]); Na1.79Mg1.79Fe1.21(PO4)3 (Hidouri et al., 2003[Hidouri, M., Lajmi, B., Driss, A. & Ben Amara, M. (2003). Acta Cryst. E59, i7-i9.]); Na1.50Mn2.48Al0.85(PO4)3 (Hatert, 2006[Hatert, F. (2006). Acta Cryst. C62, i1-i2.]); Na1−xLixMnFe2(PO4)3 where x = 0, 0.25, 0.50, and 0.75 (Hermann et al., 2002[Hermann, R. P., Hatert, F., Fransolet, A. M., Long, G. J. & Grandjean, F. (2002). J. Solid State Chem. 4, 507-513.]). As part of our study on alluaudite-related phosphates (Bouraima et al., 2015[Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558-560.]; Assani et al., 2011[Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011). Acta Cryst. E67, i40.]), we report the synthesis and the crystal structure of a new sodium, zinc and iron-based non-stoichiometric phosphate, namely Na1.67Zn1.67Fe1.33(PO4)3.

2. Structural commentary

The alluaudite structure of the title compound crystallizes in the monoclinic space group C2/c, with Z = 4. The principal building units of the crystal structure are represented in Fig. 1[link]. Refinement of the occupancy fractions, bond-valence analysis based on the formula proposed by Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) and the required electrical neutrality of the structure lead to the formula Na1.67Zn1.67Fe1.33(PO4)3 for the title compound. The mixed Fe1 and Zn1 atoms are located at the general position 8f with Fe3+/Zn2+ occupancy fractions of 0.668 (3)/0.332 (3), and form a highly distorted [(Fe1/Zn1)O6] octa­hedral group, with Fe3+/Zn2+—O bond lengths ranging from 1.951 (1) to 2.209 (1)Å. The Zn2 atom is surrounded by six oxygen atoms, building a slightly distorted octa­hedron with an average Zn2—O bond length of 2.153 (1) Å.

[Figure 1]
Figure 1
The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x + [{1\over 2}], y + [{1\over 2}], z; (ii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (iii) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1; (iv) −x + [{3\over 2}], −y + [{3\over 2}], −z; (v) −x + 1, −y + 1, −z; (vi) −x + 1, y, −z + [{1\over 2}]; (vii) x, −y + 1, z + [{1\over 2}]; (viii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (ix) −x + 2, y, −z + [{3\over 2}]; (x) −x + 2, −y + 1, −z + 1; (xi) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (xii) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1; (xiii) x, −y + 1, z − [{1\over 2}].]

The crystal structure of this phosphate compound consists of infinite kinked chains of two edge-sharing [Fe1/Zn1O6] octa­hedra leading to the formation of [(Fe1,Zn1)2O10] dimers that are connected by a common edge to [Zn2O6] octa­hedra, as shown in Fig. 2[link]. These chains are linked by PO4 tetra­hedral groups, forming a stack of sheets perpendicular to [010] and alternating with sodium layers, as shown in Fig. 3[link], which reveal small tunnels along the [201] direction. The three-dimensional framework also encloses two types of large tunnels, in which the Na+ cations reside, as shown in Fig. 4[link]. The site 4e centred on the first tunnel is partially occupied by Na1 [0.332 (3)], whereas Na2 occupies site 4a centred on the second tunnel. Each sodium atom is surrounded by eight oxygen atoms with Na1—O and Na2—O bond lengths in the ranges 2.448 (1)–2.908 (2) Å, and 2.324 (1)–2.901 (1) Å, respectively. The displacement ellipsoids of the partially occupied atom Na1 are rather larger than those of the rest of the atoms. Most probably this is due to the size of the channels, which allows atom Na1 to have more freedom. The disorder of Na in the tunnel may presage ionic mobility for this material.

[Figure 2]
Figure 2
A view along the b axis of a sheet resulting from chains connected by vertices of PO4 tetra­hedra.
[Figure 3]
Figure 3
A stack of layers perpendicular to the b axis, showing small tunnels along the [201] direction.
[Figure 4]
Figure 4
Polyhedral representation of Na1.67Zn1.67Fe1.33(PO4)3 showing tunnels running along the [001] direction.

3. Synthesis and crystallization

Single crystals of Na1.67Zn1.67Fe1.33(PO4)3 were synthesised by conventional solid-state reaction (Girolami et al., 1999[Girolami, G. S., Rauchfuss, T. B. & Angelici, R. J. (1999). Synthesis and Techniques in Inorganic Chemistry, 3rd ed. Mill Valley, CA: University Science Books.]). The nitrate-based sodium, zinc and iron precursors, in addition to the 85 wt% H3PO4 were taken in proportions corresponding to the molar ratio Na:Zn:Fe:P = 2:2:1:3. The resulting reaction mixture was ground in an agate mortar and progressively heated in a platinum crucible to the melting temperature of 1135 K. The melted product was cooled at a rate of 5 K/h. The product was obtained as transparent brown crystals corresponding to the title phosphate.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Refinements of the site-occupancy factors of the metal site 8f revealed the ratio of Fe1:Zn1 = 0.668 (3):0.332 (3), whereas the the occupancy fraction of Na1 was constrained to that of Zn1 in order to maintain electrical neutrality. The highest peak and the deepest hole in the final difference Fourier map are at 0.72 and 0.40 Å from O1 and Zn2, respectively.

Table 1
Experimental details

Crystal data
Chemical formula Na1.67Zn1.67Fe1.33(PO4)3
Mr 506.59
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 11.7545 (4), 12.5080 (4), 6.4014 (2)
β (°) 113.507 (1)
V3) 863.06 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.52
Crystal size (mm) 0.31 × 0.25 × 0.19
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.504, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 18880, 2101, 1997
Rint 0.031
(sin θ/λ)max−1) 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.046, 1.19
No. of reflections 2101
No. of parameters 96
Δρmax, Δρmin (e Å−3) 0.65, −1.21
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Alkali transition-metal phosphates belonging to the alluaudite family constitute one of the most diverse and rich classes of minerals, and have been studied intensively over the last few years. Owing to their outstanding physico-chemical properties, these compounds have many potential applications in various fields, such as catalytic activity (Kacimi et al., 2005) and as promising cathodes for sodium-ion batteries through the presence of mobile cations located in the tunnels of the open three-dimensional framework (Huang et al., 2015). In their recent study, Huang et al. (2015) point out that the electrochemical performance is not only associated with morphology, but also with electronic and crystalline structure.

Accordingly, a large number of alluaudite phases with alkali cations in the tunnels have been reported. Nevertheless, the presence of alkali metals in the tunnels of synthetic alluaudite phases is frequently accompanied by cationic distributions that lead to non-stoichiometric compositions, such as: (Na0.38,Ca0.31)MgFe2(PO4)3 (Zid et al., 2005); NaFe3.67(PO4)3 (Korzenski et al., 1998); Cu1.35Fe3(PO4)3 (Warner et al., 1993); K0.53Mn2.37Fe1.24(PO4)3 (Hidouri & Ben Amara, 2011); Na1.79Mg1.79Fe1.21(PO4)3 (Hidouri et al., 2003); Na1.50Mn2.48Al0.85(PO4)3 (Hatert, 2006); Na1-xLixMnFe2(PO4)3 where x = 0, 0.25, 0.50, and 0.75 (Hermann et al., 2002). As part of our study on alluaudite-related phosphates (Bouraima et al., 2015; Assani et al., 2011), we report the synthesis and the crystal structure of a new sodium, zinc and iron-based non-stoichiometric phosphate, namely Na1.67Zn1.67Fe1.33(PO4)3.

Structural commentary top

The alluaudite structure of the title compound crystallizes in the monoclinic space group C2/c, with Z = 4. The principal building units of the crystal structure are represented in Fig. 1. Refinement of the occupancy fractions, bond-valence analysis based on the formula proposed by Brown & Altermatt (1985) and the required electrical neutrality of the structure lead to the formula Na1.67Zn1.67Fe1.33(PO4)3 for the title compound. The mixed Fe1 and Zn1 atoms are located at the general position 8f with Fe3+/Zn2+ occupancy fractions of 0.668 (3)/0.332 (3), and form a highly distorted [(Fe1/Zn1)O6] o­cta­hedral group, with Fe3+/Zn2+—O bond lengths ranging from 1.951 (1) to 2.209 (1)Å. The Zn2 atom is surrounded by six oxygen atoms, building a slightly distorted o­cta­hedron with an average Zn2—O bond length of 2.153 (1) Å.

The crystal structure of this phosphate compound consists of infinite kinked chains of two edge-sharing [Fe1/Zn1O6] o­cta­hedra leading to the formation of [(Fe1,Zn1)2O10] dimers that are connected by a common edge to [Zn2O6] o­cta­hedra, as shown in Fig. 2. These chains are linked by PO4 tetra­hedral groups, forming a stack of sheets perpendicular to [010] and alternating with sodium layers, as shown in Fig. 3, which reveal small tunnels along the [201] direction. The three-dimensional framework also encloses two types of large tunnels, in which the Na+ cations reside, as shown in Fig. 4. The site 4e centred on the first tunnel is partially occupied by Na1 [0.332 (3)], whereas Na2 occupies site 4a centred on the second tunnel. Each sodium atom is surrounded by eight oxygen atoms with Na1—O and Na2—O bond lengths in the ranges 2.448 (1)–2.908 (2) Å, and 2.324 (1)–2.901 (1) Å, respectively. The displacement ellipsoids of the partially occupied atom Na1 are rather larger than those of the rest of the atoms. Most probably this is due to the size of the channels, which allows atom Na1 to have more freedom. The disorder of Na in the tunnel may presage ionic mobility for this material.

Synthesis and crystallization top

Single crystals of Na1.67Zn1.67Fe1.33(PO4)3 were synthesised by conventional solid-state reaction (Girolami et al., 1999). The nitrate-based sodium, zinc and iron precursors, in addition to the 85 wt% H3PO4 were taken in proportions corresponding to the molar ratio Na:Zn:Fe:P = 2:2:1:3. The resulting reaction mixture was ground in an agate mortar and progressively heated in a platinum crucible to the melting temperature of 1135 K. The melted product was cooled at a rate of 5 K/h. The product was obtained as transparent gray [brown in CIF] crystals corresponding to the title phosphate.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Refinements of the site-occupancy factors of the metal site 8f revealed the ratio of Fe1:Zn1 = 0.668 (3):0.332 (3), whereas the the occupancy fraction of Na1 was constrained to that of Zn1 in order to maintain electrical neutrality. The highest peak and the deepest hole in the final difference Fourier map are at 0.72 and 0.40 Å from O1 and Zn2, respectively.

Related literature top

For related literature, see: Assani et al. (2011); Bouraima et al. (2015); Brown & Altermatt (1985); Girolami et al. (1999); Hatert (2006); Hermann et al. (2002); Hidouri & Ben Amara (2011); Hidouri et al. (2003); Huang et al. (2015); Kacimi et al. (2005); Korzenski et al. (1998); Warner et al. (1993); Zid et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) x + 1/2, y + 1/2, z; (ii) -x + 3/2, y + 1/2, -z + 1/2; (iii) -x + 3/2, -y + 3/2, -z + 1; (iv) -x + 3/2, -y + 3/2, -z; (v) -x + 1, -y + 1, -z; (vi) -x + 1, y, -z + 1/2; (vii) x, -y + 1, z + 1/2; (viii) x - 1/2, -y + 3/2, z - 1/2; (ix) -x + 2, y, -z + 3/2; (x) -x + 2, -y + 1, -z + 1; (xi) x + 1/2, -y + 1/2, z + 1/2; (xii) -x + 3/2, -y + 1/2, -z + 1; (xiii) x, -y + 1, z - 1/2.
[Figure 2] Fig. 2. A view along b axis of a sheet resulting from chains connected by vertices of PO4 tetrahedra.
[Figure 3] Fig. 3. A stack of layers perpendicular to the b axis, showing small tunnels along the [201] direction.
[Figure 4] Fig. 4. Polyhedral representation of Na1.67Zn1.67Fe1.33(PO4)3 showing tunnels running along the [001] direction.
Disodium dizinc iron(III) tris(phosphate) top
Crystal data top
Na1.67Zn1.67Fe1.33(PO4)3F(000) = 977
Mr = 506.59Dx = 3.904 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2ycCell parameters from 2101 reflections
a = 11.7545 (4) Åθ = 2.5–36.3°
b = 12.5080 (4) ŵ = 7.52 mm1
c = 6.4014 (2) ÅT = 296 K
β = 113.507 (1)°Block, brown
V = 863.06 (5) Å30.31 × 0.25 × 0.19 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
2101 independent reflections
Radiation source: fine-focus sealed tube1997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 36.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1916
Tmin = 0.504, Tmax = 0.748k = 2020
18880 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.016P)2 + 1.8532P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max = 0.001
wR(F2) = 0.046Δρmax = 0.65 e Å3
S = 1.19Δρmin = 1.20 e Å3
2101 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
96 parametersExtinction coefficient: 0.0027 (2)
Crystal data top
Na1.67Zn1.67Fe1.33(PO4)3V = 863.06 (5) Å3
Mr = 506.59Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.7545 (4) ŵ = 7.52 mm1
b = 12.5080 (4) ÅT = 296 K
c = 6.4014 (2) Å0.31 × 0.25 × 0.19 mm
β = 113.507 (1)°
Data collection top
Bruker X8 APEX
diffractometer
2101 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1997 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 0.748Rint = 0.031
18880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01796 parameters
wR(F2) = 0.0460 restraints
S = 1.19Δρmax = 0.65 e Å3
2101 reflectionsΔρmin = 1.20 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.71738 (2)0.84648 (2)0.12925 (3)0.00552 (5)0.668 (3)
Zn10.71738 (2)0.84648 (2)0.12925 (3)0.00552 (5)0.332 (3)
Zn20.50000.73133 (2)0.25000.00966 (5)
P10.76212 (3)0.60983 (2)0.37448 (5)0.00388 (6)
P20.50000.28835 (3)0.25000.00330 (7)
Na11.00000.49141 (19)0.75000.0356 (7)0.664 (6)
Na20.50000.50000.00000.01511 (18)
O10.83510 (9)0.66524 (7)0.60760 (15)0.00695 (15)
O20.77771 (9)0.67779 (8)0.18481 (15)0.00760 (15)
O60.45837 (8)0.21761 (8)0.03327 (15)0.00622 (15)
O30.62448 (9)0.60224 (8)0.32496 (16)0.00806 (16)
O50.39712 (9)0.36396 (8)0.24820 (16)0.00747 (16)
O40.82109 (10)0.49950 (8)0.38406 (18)0.01105 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00523 (7)0.00632 (7)0.00583 (7)0.00082 (5)0.00307 (5)0.00067 (5)
Zn10.00523 (7)0.00632 (7)0.00583 (7)0.00082 (5)0.00307 (5)0.00067 (5)
Zn20.01124 (10)0.00917 (10)0.01083 (10)0.0000.00679 (8)0.000
P10.00555 (12)0.00355 (11)0.00280 (11)0.00051 (9)0.00192 (9)0.00023 (8)
P20.00319 (15)0.00365 (15)0.00256 (15)0.0000.00063 (12)0.000
Na10.0167 (8)0.0452 (13)0.0345 (11)0.0000.0008 (7)0.000
Na20.0221 (4)0.0079 (3)0.0091 (3)0.0024 (3)0.0004 (3)0.0006 (3)
O10.0098 (4)0.0072 (4)0.0035 (3)0.0020 (3)0.0022 (3)0.0015 (3)
O20.0090 (4)0.0101 (4)0.0043 (3)0.0022 (3)0.0032 (3)0.0013 (3)
O60.0057 (3)0.0081 (4)0.0044 (3)0.0004 (3)0.0015 (3)0.0024 (3)
O30.0068 (4)0.0083 (4)0.0101 (4)0.0015 (3)0.0044 (3)0.0006 (3)
O50.0055 (3)0.0064 (3)0.0092 (4)0.0012 (3)0.0016 (3)0.0029 (3)
O40.0147 (4)0.0062 (4)0.0125 (4)0.0026 (3)0.0057 (3)0.0019 (3)
Geometric parameters (Å, º) top
Fe1—O5i1.9514 (10)P2—O61.5510 (9)
Fe1—O4ii1.9607 (10)P2—O6vi1.5510 (9)
Fe1—O1iii2.0170 (10)Na1—O4ix2.4476 (11)
Fe1—O2iv2.0567 (10)Na1—O42.4476 (11)
Fe1—O6v2.0684 (9)Na1—O4x2.5713 (12)
Fe1—O22.2091 (10)Na1—O4vii2.5713 (12)
Zn2—O3vi2.1019 (10)Na1—O12.812 (2)
Zn2—O32.1019 (10)Na1—O1ix2.812 (2)
Zn2—O6vii2.1549 (10)Na1—O6xi2.908 (2)
Zn2—O6v2.1549 (10)Na1—O6xii2.908 (2)
Zn2—O1iii2.2028 (9)Na2—O5xiii2.3239 (9)
Zn2—O1viii2.2028 (9)Na2—O5vi2.3239 (9)
P1—O31.5225 (10)Na2—O32.3823 (9)
P1—O41.5345 (10)Na2—O3v2.3824 (9)
P1—O21.5518 (10)Na2—O3xiii2.5179 (10)
P1—O11.5563 (9)Na2—O3vi2.5179 (10)
P2—O51.5317 (10)Na2—O5v2.9008 (10)
P2—O5vi1.5317 (10)Na2—O52.9008 (10)
O5i—Fe1—O4ii95.89 (4)O4—Na1—O155.92 (4)
O5i—Fe1—O1iii109.05 (4)O4x—Na1—O1114.04 (7)
O4ii—Fe1—O1iii88.00 (4)O4vii—Na1—O161.59 (4)
O5i—Fe1—O2iv87.13 (4)O4ix—Na1—O1ix55.92 (4)
O4ii—Fe1—O2iv101.39 (4)O4—Na1—O1ix119.76 (8)
O1iii—Fe1—O2iv160.53 (4)O4x—Na1—O1ix61.58 (4)
O5i—Fe1—O6v161.52 (4)O4vii—Na1—O1ix114.04 (7)
O4ii—Fe1—O6v100.93 (4)O1—Na1—O1ix78.70 (7)
O1iii—Fe1—O6v79.35 (4)O4ix—Na1—O6xi114.24 (8)
O2iv—Fe1—O6v82.12 (4)O4—Na1—O6xi70.35 (5)
O5i—Fe1—O279.41 (4)O4x—Na1—O6xi83.40 (5)
O4ii—Fe1—O2173.23 (4)O4vii—Na1—O6xi101.22 (6)
O1iii—Fe1—O288.95 (4)O1—Na1—O6xi125.27 (3)
O2iv—Fe1—O283.34 (4)O1ix—Na1—O6xi144.38 (3)
O6v—Fe1—O284.43 (4)O4ix—Na1—O6xii70.35 (5)
O3vi—Zn2—O379.62 (5)O4—Na1—O6xii114.24 (8)
O3vi—Zn2—O6vii92.79 (4)O4x—Na1—O6xii101.22 (6)
O3—Zn2—O6vii113.99 (4)O4vii—Na1—O6xii83.40 (5)
O3vi—Zn2—O6v113.99 (4)O1—Na1—O6xii144.38 (3)
O3—Zn2—O6v92.79 (4)O1ix—Na1—O6xii125.27 (3)
O6vii—Zn2—O6v145.51 (5)O6xi—Na1—O6xii51.96 (5)
O3vi—Zn2—O1iii164.40 (4)O5xiii—Na2—O5vi180.00 (3)
O3—Zn2—O1iii86.51 (4)O5xiii—Na2—O3100.43 (3)
O6vii—Zn2—O1iii86.30 (4)O5vi—Na2—O379.57 (3)
O6v—Zn2—O1iii73.53 (3)O5xiii—Na2—O3v79.57 (3)
O3vi—Zn2—O1viii86.51 (4)O5vi—Na2—O3v100.43 (3)
O3—Zn2—O1viii164.40 (4)O3—Na2—O3v180.0
O6vii—Zn2—O1viii73.53 (3)O5xiii—Na2—O3xiii107.29 (3)
O6v—Zn2—O1viii86.30 (4)O5vi—Na2—O3xiii72.71 (3)
O1iii—Zn2—O1viii108.06 (5)O3—Na2—O3xiii113.43 (4)
O3—P1—O4112.20 (6)O3v—Na2—O3xiii66.57 (4)
O3—P1—O2108.58 (5)O5xiii—Na2—O3vi72.71 (3)
O4—P1—O2109.36 (6)O5vi—Na2—O3vi107.29 (3)
O3—P1—O1111.16 (6)O3—Na2—O3vi66.57 (4)
O4—P1—O1107.14 (6)O3v—Na2—O3vi113.43 (4)
O2—P1—O1108.32 (5)O3xiii—Na2—O3vi180.00 (3)
O5—P2—O5vi103.73 (8)O5xiii—Na2—O5v53.55 (4)
O5—P2—O6112.27 (5)O5vi—Na2—O5v126.45 (4)
O5vi—P2—O6109.00 (5)O3—Na2—O5v85.32 (3)
O5—P2—O6vi109.00 (5)O3v—Na2—O5v94.68 (3)
O5vi—P2—O6vi112.28 (5)O3xiii—Na2—O5v67.11 (3)
O6—P2—O6vi110.43 (7)O3vi—Na2—O5v112.89 (3)
O4ix—Na1—O4175.26 (12)O5xiii—Na2—O5126.45 (4)
O4ix—Na1—O4x79.21 (3)O5vi—Na2—O553.55 (4)
O4—Na1—O4x100.58 (3)O3—Na2—O594.68 (3)
O4ix—Na1—O4vii100.58 (3)O3v—Na2—O585.32 (3)
O4—Na1—O4vii79.20 (3)O3xiii—Na2—O5112.89 (3)
O4x—Na1—O4vii174.93 (11)O3vi—Na2—O567.11 (3)
O4ix—Na1—O1119.76 (8)O5v—Na2—O5180.00 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y+3/2, z+1; (iv) x+3/2, y+3/2, z; (v) x+1, y+1, z; (vi) x+1, y, z+1/2; (vii) x, y+1, z+1/2; (viii) x1/2, y+3/2, z1/2; (ix) x+2, y, z+3/2; (x) x+2, y+1, z+1; (xi) x+1/2, y+1/2, z+1/2; (xii) x+3/2, y+1/2, z+1; (xiii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaNa1.67Zn1.67Fe1.33(PO4)3
Mr506.59
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)11.7545 (4), 12.5080 (4), 6.4014 (2)
β (°) 113.507 (1)
V3)863.06 (5)
Z4
Radiation typeMo Kα
µ (mm1)7.52
Crystal size (mm)0.31 × 0.25 × 0.19
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.504, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
18880, 2101, 1997
Rint0.031
(sin θ/λ)max1)0.833
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.046, 1.19
No. of reflections2101
No. of parameters96
Δρmax, Δρmin (e Å3)0.65, 1.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for the financial support.

References

First citationAssani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011). Acta Cryst. E67, i40.  CrossRef IUCr Journals Google Scholar
First citationBouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGirolami, G. S., Rauchfuss, T. B. & Angelici, R. J. (1999). Synthesis and Techniques in Inorganic Chemistry, 3rd ed. Mill Valley, CA: University Science Books.  Google Scholar
First citationHatert, F. (2006). Acta Cryst. C62, i1–i2.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHermann, R. P., Hatert, F., Fransolet, A. M., Long, G. J. & Grandjean, F. (2002). J. Solid State Chem. 4, 507–513.  CAS Google Scholar
First citationHidouri, M. & Ben Amara, M. (2011). Acta Cryst. E67, i1.  CrossRef IUCr Journals Google Scholar
First citationHidouri, M., Lajmi, B., Driss, A. & Ben Amara, M. (2003). Acta Cryst. E59, i7–i9.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851–860.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682–693.  Web of Science CrossRef CAS Google Scholar
First citationKorzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152–160.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarner, T. E., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301–309.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZid, M. F., Driss, A. & Jouini, T. (2005). Acta Cryst. E61, i46–i48.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 690-692
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds