organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o421-o422

1-{[(E)-(4-{[(2Z)-2,3-Di­hydro-1,3-thia­zol-2-yl­­idene]sulfamo­yl}phen­yl)iminium­yl]meth­yl}naphthalen-2-olate

aDepartment of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan, and cDepartment of Chemistry, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by S. Parkin, University of Kentucky, USA (Received 9 May 2015; accepted 19 May 2015; online 23 May 2015)

In the title zwitterionic compound, C20H15N3O3S2, the 2-hy­droxy­naphthalene-1-carbaldehyde group A, the anilinic unit B and the 1,3-thia­zol-2(3H)-imine group C are each approximately planar with r.m.s. deviation of 0.0721, 0.0412 and 0.0125 Å, respectively. The dihedral angles between A/B, A/C and B/C are 24.70 (10), 79.97 (7) and 83.14 (6)°, respectively. There is an intra­molecular S(6) motif involving the imine N—H and the naphtho­late O atom. In the crystal, inversion-related mol­ecules form dimers as a result of N—H⋯N and N—H⋯O hydrogen bonds with R22(8) and R12(4) motifs, respectively. Weak ππ inter­actions between the benzene and naphthyl rings of inversion-related mol­ecules have ring centroid–centroid distances of 3.638 (2) and 4.041 (2) Å. A C—H⋯π inter­action occurs between the thia­zol ring and the benzene ring of an adjacent mol­ecule.

1. Related literature

For related structures, see: El-Ghamry et al. (2008[El-Ghamry, H., Issa, R., El-Baradie, K., Isagai, K., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1350-o1351.]); Hebbachi et al. (2013[Hebbachi, R., Mousser, H. & Mousser, A. (2013). Acta Cryst. E69, o67-o68.]); Zhang (2009[Zhang, X.-L. (2009). Acta Cryst. E65, o2274.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H15N3O3S2

  • Mr = 409.47

  • Triclinic, [P \overline 1]

  • a = 9.127 (2) Å

  • b = 10.1417 (12) Å

  • c = 11.355 (3) Å

  • α = 114.526 (6)°

  • β = 91.556 (5)°

  • γ = 102.044 (5)°

  • V = 927.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.32 × 0.26 × 0.18 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.910, Tmax = 0.948

  • 13121 measured reflections

  • 3554 independent reflections

  • 2086 reflections with I > 2σ(I)

  • Rint = 0.052

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.127

  • S = 1.01

  • 3554 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C12—C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.87 2.550 (3) 134
N3—H3A⋯S1i 0.86 2.88 3.729 (2) 168
N3—H3A⋯O2i 0.86 2.44 3.131 (3) 138
N3—H3A⋯N2i 0.86 2.13 2.943 (3) 158
C13—H13⋯O2ii 0.93 2.60 3.257 (4) 128
C19—H19⋯O1iii 0.93 2.57 3.373 (4) 145
C20—H20⋯Cg4iv 0.93 2.99 3.853 (4) 156
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x+1, -y+1, -z+2; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The crystal structures of 1-(4-(diaminomethyleneaminosulfonyl)phenyl iminiomethyl)-2-naphtholate N,N-dimethylformamide solvate (El-Ghamry, 2008), N-(2,3-dihydro-1,3-thiazol-2-ylidene)-4-((2-hydroxybenzylidene)amino) benzenesulfonamide (Zhang, 2009) and 1-(4-((4-((E)-(2-hydroxynaphthalen-1-yl) methylideneamino)phenyl)sulfanyl)phenyl)ethanone unknown solvate (Hebbachi, 2013) have been published, and are related to the title compound (I, Fig. 1). (I) was synthesized to study its biological properties and to explore complexation with different metals.

The title compound crystallizes as a zwitterion. In (I), the 2-hydroxynaphthalene-1-carbaldehyde moiety A (C1–C11/O1), the anilinic moiety B (N1/C12—C17) and the 1,3-thiazol-2(3H) -imine group C (N2/N3/S1/C18/C19/C20) are planar with r.m.s. deviation of 0.0721, 0.0412 and 0.0125 Å, respectively. The dihedral angles between A/B, A/C and B/C are 24.70 (10)°, 79.97 (7)° and 83.14 (6)°, respectively. The sulfonyl group D (S1/O2/O3) is oriented at a dihedral angle of 69.14 (10)° and 55.43 (13)° with B and C, respectively. There exist intermolecular H-bonding of N—H···O type (Table 1, Fig. 1) forming S (6) loop (Bernstein et al., 1995). The molecules are dimerized due to N—H···N type of H-bonding (Table 1, Fig. 2). R12(4) and R22(8) rings (Table 1, Fig. 2) (Bernstein et al., 1995) are formed. There exist strong π···π interactions at a distance of 3.638 (2) Å between the centroids of Cg2— Cg3i and Cg3—Cg2i [i = - 1 - x, - y, 2 - z], where Cg2 and Cg3 are the centroids of E (C4—C9) and F (C1—C4/C9/C10), respectively. Similarly π···π interactions exists between the centeroids of [Cg3—Cg4ii and Cg4—Cg3ii: ii = - x, - y, 2 - z] at a distance of 4.041 (2) Å. There also exist C—H···π interactions (Table 1). All π···π and C—H···π interactions participate in stabilizing the structure.

Related literature top

For related structures, see: El-Ghamry et al. (2008); Hebbachi et al. (2013); Zhang (2009).

Experimental top

Equimolar quantities of 2-hydroxynaphthalene-1-carbaldehyde and 4-amino-N-(1,3-thiazol-2-yl)benzenesulfonamide (Sulfathiazole) were refluxed in methanol for 6 h. The solution was kept at room temperature for crystallization which affoarded light orange plates after 72 h.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93 Å, N—H= 0.86 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small circles of arbitrary radius. The dotted lines show intramolecular H-bonding.
[Figure 2] Fig. 2. A partial packing plot (PLATON; Spek, 2009), which shows that molecules form dimers and are interlinked forming various ring motifs.
1-{[(E)-(4-{[(2Z)-2,3-Dihydro-1,3-thiazol-2-ylidene]sulfamoyl}phenyl)iminiumyl]methyl}naphthalen-2-olate top
Crystal data top
C20H15N3O3S2Z = 2
Mr = 409.47F(000) = 424
Triclinic, P1Dx = 1.466 Mg m3
a = 9.127 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1417 (12) ÅCell parameters from 2086 reflections
c = 11.355 (3) Åθ = 2.3–26.0°
α = 114.526 (6)°µ = 0.31 mm1
β = 91.556 (5)°T = 296 K
γ = 102.044 (5)°Plate, light orange
V = 927.5 (3) Å30.32 × 0.26 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3554 independent reflections
Radiation source: fine-focus sealed tube2086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 7.80 pixels mm-1θmax = 26.0°, θmin = 2.3°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1210
Tmin = 0.910, Tmax = 0.948l = 1313
13121 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0596P)2]
where P = (Fo2 + 2Fc2)/3
3554 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H15N3O3S2γ = 102.044 (5)°
Mr = 409.47V = 927.5 (3) Å3
Triclinic, P1Z = 2
a = 9.127 (2) ÅMo Kα radiation
b = 10.1417 (12) ŵ = 0.31 mm1
c = 11.355 (3) ÅT = 296 K
α = 114.526 (6)°0.32 × 0.26 × 0.18 mm
β = 91.556 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3554 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2086 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.948Rint = 0.052
13121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
3554 reflectionsΔρmin = 0.24 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26196 (9)0.20802 (8)0.46258 (8)0.0436 (2)
S20.57914 (9)0.19236 (8)0.58749 (9)0.0571 (3)
O10.0869 (3)0.3290 (3)1.1505 (2)0.0747 (7)
O20.1538 (2)0.2532 (2)0.4023 (2)0.0580 (6)
O30.2907 (2)0.0638 (2)0.38835 (19)0.0498 (5)
N10.0117 (3)0.1888 (3)0.9256 (2)0.0512 (7)
H10.00350.26990.99640.061*
N20.4105 (3)0.3410 (2)0.5032 (2)0.0449 (6)
N30.6639 (3)0.4405 (2)0.5815 (2)0.0481 (7)
H3A0.66520.51870.56890.058*
C10.1806 (4)0.2077 (4)1.1338 (3)0.0561 (9)
C20.2866 (5)0.2126 (4)1.2278 (4)0.0728 (11)
H20.28250.30161.30070.087*
C30.3895 (4)0.0895 (4)1.2094 (4)0.0691 (10)
H30.45860.09681.26920.083*
C40.4008 (4)0.0546 (4)1.1024 (3)0.0526 (8)
C50.5088 (4)0.1806 (4)1.0914 (4)0.0661 (10)
H50.57710.17091.15200.079*
C60.5151 (4)0.3180 (5)0.9924 (4)0.0789 (11)
H60.58710.40170.98520.095*
C70.4126 (4)0.3300 (4)0.9034 (4)0.0730 (11)
H70.41440.42350.83720.088*
C80.3080 (4)0.2069 (4)0.9106 (3)0.0586 (9)
H80.24180.21860.84820.070*
C90.2989 (3)0.0644 (3)1.0099 (3)0.0471 (8)
C100.1920 (3)0.0706 (3)1.0238 (3)0.0444 (7)
C110.1073 (3)0.0693 (3)0.9224 (3)0.0477 (8)
H110.11890.02060.84870.057*
C120.0678 (3)0.1932 (3)0.8206 (3)0.0432 (7)
C130.0942 (3)0.0669 (3)0.7250 (3)0.0480 (8)
H130.06870.02330.73160.058*
C140.1589 (3)0.0737 (3)0.6188 (3)0.0456 (8)
H140.17590.01260.55340.055*
C150.1990 (3)0.2078 (3)0.6081 (3)0.0402 (7)
C160.1789 (3)0.3370 (3)0.7084 (3)0.0541 (8)
H160.20800.42820.70390.065*
C170.1152 (3)0.3290 (3)0.8155 (3)0.0529 (8)
H170.10420.41580.88430.063*
C180.5396 (3)0.3322 (3)0.5515 (3)0.0396 (7)
C190.7905 (4)0.4204 (4)0.6338 (3)0.0587 (9)
H190.88420.48820.65810.070*
C200.7636 (4)0.2935 (4)0.6456 (3)0.0630 (9)
H200.83540.26250.68090.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0429 (5)0.0418 (4)0.0496 (5)0.0035 (3)0.0057 (4)0.0262 (4)
S20.0582 (6)0.0460 (5)0.0718 (6)0.0055 (4)0.0039 (4)0.0340 (4)
O10.0905 (19)0.0571 (14)0.0641 (16)0.0136 (14)0.0200 (13)0.0156 (12)
O20.0507 (14)0.0628 (13)0.0693 (15)0.0066 (11)0.0034 (11)0.0410 (12)
O30.0565 (14)0.0419 (11)0.0489 (13)0.0080 (10)0.0141 (10)0.0191 (10)
N10.0498 (17)0.0543 (16)0.0462 (16)0.0106 (13)0.0084 (13)0.0193 (13)
N20.0409 (15)0.0411 (14)0.0596 (17)0.0020 (11)0.0073 (13)0.0319 (12)
N30.0494 (17)0.0361 (13)0.0606 (17)0.0035 (12)0.0112 (13)0.0255 (12)
C10.068 (2)0.052 (2)0.053 (2)0.0151 (18)0.0109 (18)0.0261 (17)
C20.100 (3)0.067 (2)0.063 (3)0.033 (2)0.037 (2)0.0310 (19)
C30.077 (3)0.090 (3)0.062 (2)0.038 (2)0.035 (2)0.044 (2)
C40.048 (2)0.078 (2)0.048 (2)0.0256 (18)0.0149 (16)0.0382 (18)
C50.056 (2)0.093 (3)0.069 (3)0.017 (2)0.0168 (19)0.054 (2)
C60.066 (3)0.085 (3)0.087 (3)0.003 (2)0.005 (2)0.049 (3)
C70.077 (3)0.068 (2)0.063 (3)0.004 (2)0.015 (2)0.0234 (19)
C80.056 (2)0.065 (2)0.051 (2)0.0091 (18)0.0108 (17)0.0242 (18)
C90.045 (2)0.062 (2)0.0433 (19)0.0161 (16)0.0071 (15)0.0295 (16)
C100.0411 (19)0.0555 (19)0.0433 (19)0.0162 (15)0.0104 (15)0.0254 (15)
C110.043 (2)0.0460 (18)0.052 (2)0.0091 (15)0.0041 (16)0.0198 (15)
C120.0356 (18)0.0515 (18)0.0451 (19)0.0085 (14)0.0058 (14)0.0241 (15)
C130.046 (2)0.0468 (18)0.060 (2)0.0105 (15)0.0152 (16)0.0312 (16)
C140.047 (2)0.0458 (17)0.049 (2)0.0104 (14)0.0159 (15)0.0252 (15)
C150.0320 (17)0.0415 (16)0.0461 (18)0.0048 (13)0.0063 (13)0.0198 (14)
C160.052 (2)0.0432 (18)0.064 (2)0.0038 (15)0.0133 (17)0.0230 (16)
C170.054 (2)0.0410 (17)0.054 (2)0.0090 (15)0.0138 (17)0.0120 (15)
C180.044 (2)0.0334 (15)0.0400 (17)0.0041 (14)0.0088 (14)0.0165 (13)
C190.042 (2)0.055 (2)0.070 (2)0.0014 (16)0.0001 (17)0.0240 (18)
C200.048 (2)0.061 (2)0.075 (2)0.0089 (17)0.0123 (17)0.0276 (18)
Geometric parameters (Å, º) top
S1—O21.437 (2)C5—H50.9300
S1—O31.4373 (19)C6—C71.382 (5)
S1—N21.599 (2)C6—H60.9300
S1—C151.765 (3)C7—C81.375 (4)
S2—C201.726 (3)C7—H70.9300
S2—C181.731 (3)C8—C91.400 (4)
O1—C11.280 (4)C8—H80.9300
N1—C111.323 (3)C9—C101.451 (4)
N1—C121.424 (4)C10—C111.401 (4)
N1—H10.8600C11—H110.9300
N2—C181.322 (3)C12—C131.366 (4)
N3—C181.325 (3)C12—C171.381 (4)
N3—C191.375 (4)C13—C141.379 (4)
N3—H3A0.8600C13—H130.9300
C1—C101.412 (4)C14—C151.389 (4)
C1—C21.453 (4)C14—H140.9300
C2—C31.329 (5)C15—C161.386 (4)
C2—H20.9300C16—C171.388 (4)
C3—C41.442 (4)C16—H160.9300
C3—H30.9300C17—H170.9300
C4—C51.398 (4)C19—C201.322 (4)
C4—C91.408 (4)C19—H190.9300
C5—C61.367 (5)C20—H200.9300
O2—S1—O3117.41 (13)C9—C8—H8119.3
O2—S1—N2103.97 (12)C8—C9—C4116.5 (3)
O3—S1—N2112.68 (13)C8—C9—C10124.6 (3)
O2—S1—C15108.18 (13)C4—C9—C10118.9 (3)
O3—S1—C15106.92 (12)C11—C10—C1118.7 (3)
N2—S1—C15107.23 (13)C11—C10—C9120.1 (3)
C20—S2—C1890.63 (15)C1—C10—C9121.0 (3)
C11—N1—C12125.0 (3)N1—C11—C10123.7 (3)
C11—N1—H1117.5N1—C11—H11118.1
C12—N1—H1117.5C10—C11—H11118.1
C18—N2—S1121.34 (19)C13—C12—C17120.2 (3)
C18—N3—C19116.1 (2)C13—C12—N1121.6 (3)
C18—N3—H3A122.0C17—C12—N1118.2 (3)
C19—N3—H3A122.0C12—C13—C14119.7 (3)
O1—C1—C10123.0 (3)C12—C13—H13120.2
O1—C1—C2118.7 (3)C14—C13—H13120.2
C10—C1—C2118.2 (3)C13—C14—C15120.9 (3)
C3—C2—C1119.8 (3)C13—C14—H14119.6
C3—C2—H2120.1C15—C14—H14119.6
C1—C2—H2120.1C16—C15—C14119.2 (3)
C2—C3—C4124.1 (3)C16—C15—S1121.3 (2)
C2—C3—H3118.0C14—C15—S1119.4 (2)
C4—C3—H3118.0C15—C16—C17119.4 (3)
C5—C4—C9121.1 (3)C15—C16—H16120.3
C5—C4—C3121.0 (3)C17—C16—H16120.3
C9—C4—C3117.8 (3)C12—C17—C16120.5 (3)
C6—C5—C4120.7 (3)C12—C17—H17119.8
C6—C5—H5119.6C16—C17—H17119.8
C4—C5—H5119.6N2—C18—N3121.3 (3)
C5—C6—C7118.7 (3)N2—C18—S2129.4 (2)
C5—C6—H6120.6N3—C18—S2109.3 (2)
C7—C6—H6120.6C20—C19—N3112.2 (3)
C8—C7—C6121.4 (3)C20—C19—H19123.9
C8—C7—H7119.3N3—C19—H19123.9
C6—C7—H7119.3C19—C20—S2111.8 (3)
C7—C8—C9121.4 (3)C19—C20—H20124.1
C7—C8—H8119.3S2—C20—H20124.1
O2—S1—N2—C18173.8 (2)C9—C10—C11—N1177.4 (3)
O3—S1—N2—C1845.6 (3)C11—N1—C12—C1323.2 (4)
C15—S1—N2—C1871.8 (3)C11—N1—C12—C17155.2 (3)
O1—C1—C2—C3177.0 (3)C17—C12—C13—C144.5 (5)
C10—C1—C2—C30.7 (5)N1—C12—C13—C14173.9 (3)
C1—C2—C3—C42.6 (6)C12—C13—C14—C150.6 (5)
C2—C3—C4—C5177.8 (4)C13—C14—C15—C162.6 (4)
C2—C3—C4—C91.8 (5)C13—C14—C15—S1173.1 (2)
C9—C4—C5—C62.2 (5)O2—S1—C15—C1660.6 (3)
C3—C4—C5—C6177.5 (3)O3—S1—C15—C16172.1 (2)
C4—C5—C6—C70.0 (6)N2—S1—C15—C1651.0 (3)
C5—C6—C7—C81.7 (6)O2—S1—C15—C14115.0 (2)
C6—C7—C8—C91.2 (6)O3—S1—C15—C1412.4 (3)
C7—C8—C9—C40.9 (5)N2—S1—C15—C14133.4 (2)
C7—C8—C9—C10179.9 (3)C14—C15—C16—C171.9 (4)
C5—C4—C9—C82.6 (4)S1—C15—C16—C17173.7 (2)
C3—C4—C9—C8177.1 (3)C13—C12—C17—C165.2 (5)
C5—C4—C9—C10178.2 (3)N1—C12—C17—C16173.2 (3)
C3—C4—C9—C102.1 (4)C15—C16—C17—C121.9 (5)
O1—C1—C10—C116.1 (5)S1—N2—C18—N3177.9 (2)
C2—C1—C10—C11170.0 (3)S1—N2—C18—S22.8 (4)
O1—C1—C10—C9179.3 (3)C19—N3—C18—N2178.6 (3)
C2—C1—C10—C94.6 (5)C19—N3—C18—S20.9 (3)
C8—C9—C10—C1111.7 (5)C20—S2—C18—N2178.0 (3)
C4—C9—C10—C11169.2 (3)C20—S2—C18—N31.4 (2)
C8—C9—C10—C1173.8 (3)C18—N3—C19—C200.4 (4)
C4—C9—C10—C15.3 (4)N3—C19—C20—S21.5 (4)
C12—N1—C11—C10175.4 (3)C18—S2—C20—C191.7 (3)
C1—C10—C11—N12.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C12—C17 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.872.550 (3)134
N3—H3A···S1i0.862.883.729 (2)168
N3—H3A···O2i0.862.443.131 (3)138
N3—H3A···N2i0.862.132.943 (3)158
C13—H13···O2ii0.932.603.257 (4)128
C19—H19···O1iii0.932.573.373 (4)145
C20—H20···Cg4iv0.932.993.853 (4)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C12—C17 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.872.550 (3)134.2
N3—H3A···S1i0.862.883.729 (2)167.9
N3—H3A···O2i0.862.443.131 (3)138.3
N3—H3A···N2i0.862.132.943 (3)158.3
C13—H13···O2ii0.932.603.257 (4)127.7
C19—H19···O1iii0.932.573.373 (4)145.3
C20—H20···Cg4iv0.932.993.853 (4)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Ghamry, H., Issa, R., El-Baradie, K., Isagai, K., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1350–o1351.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHebbachi, R., Mousser, H. & Mousser, A. (2013). Acta Cryst. E69, o67–o68.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-L. (2009). Acta Cryst. E65, o2274.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o421-o422
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds