organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o426-o427

Crystal structure of (E)-undec-2-enoic acid

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 13 May 2015; accepted 18 May 2015; online 28 May 2015)

In the mol­ecule of the title low-melting α,β-unsaturated carb­oxy­lic acid, C11H20O2, the least-squares mean line through the octyl chain forms an angle of 60.10 (13)° with the normal to plane of the acrylic acid fragment (r.m.s. deviation = 0.008 Å). In the crystal, centrosymmetrically related mol­ecules are linked by pairs of O—H⋯O hydrogen bonds into dimers, forming layers parallel to the (041) plane.

1. Related literature

For an adapted direct synthesis of the title compound following the procedure established by Knoevenagel (1898[Knoevenagel, E. (1898). Ber. Dtsch. Chem. Ges. 31, 2596-2619.]) and Doebner (1902[Doebner, O. (1902). Ber. Dtsch. Chem. Ges. 35, 1136-1147.]), see: Bikulova et al. (1988[Bikulova, L. M., Verba, G. G., Kamaev, F. G. & Abduvakhabov, A. A. (1988). Khim. Prir. Soedin. pp. 682-683.]); Kemme et al. (2010[Kemme, S. T., Šmejkal, T. & Breit, B. (2010). Chem. Eur. J. 16, 3423-3433.]). For crystal structure determinations of related unsat­urated α,β-carb­oxy­lic acids, see, for acrylic acid: Higgs & Sass (1963[Higgs, M. A. & Sass, R. L. (1963). Acta Cryst. 16, 657-661.]); Chatani et al. (1963[Chatani, Y., Sakata, Y. & Nitta, I. (1963). J. Polym. Sci. B Polym. Lett. 1, 419-421.]); Boese et al. (1999[Boese, R., Bläser, D., Steller, I., Latz, R. & Bäumen, A. (1999). Acta Cryst. C55 IUC9900006.]); Oswald & Urquhart (2011[Oswald, I. D. H. & Urquhart, A. J. (2011). CrystEngComm, 13, 4503-4507.]); see, for crotonic acid: Shimizu et al. (1974[Shimizu, S., Kekka, S., Kashino, S. & Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627-1631.]); see, for (E)-pent-2-enoic acid: Peppel et al. (2015a[Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015a). Acta Cryst. E71, o316.]); see, for (E)-hex-2-enoic acid: Peppel et al. (2015b[Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015b). Acta Cryst. E71, o323.]). For structures of co-crystals containing (E)-hex-2-enoic acid, see: Aakeröy et al. (2003[Aakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 3, 159-165.]); Stanton & Bak (2008[Stanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856-3862.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H20O2

  • Mr = 184.27

  • Triclinic, [P \overline 1]

  • a = 4.6346 (4) Å

  • b = 5.4200 (5) Å

  • c = 22.7564 (19) Å

  • α = 88.386 (2)°

  • β = 88.357 (2)°

  • γ = 78.340 (2)°

  • V = 559.46 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 150 K

  • 0.50 × 0.41 × 0.12 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.87, Tmax = 0.99

  • 13660 measured reflections

  • 2687 independent reflections

  • 2317 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.134

  • S = 1.10

  • 2687 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.90 (2) 1.73 (2) 2.6244 (14) 172.2 (19)
Symmetry code: (i) -x+1, -y-1, -z+1.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXL2014; software used to prepare material for publication: SHELXL2014.

Supporting information


Synthesis and crystallization top

Malonic acid (25.0g, 240.2 mmol, 1.0 eq) is dissolved in dry pyridine (38.0g, 480.5mmol, 2.0 eq) at room temperature in a three-necked flask equipped with a magnetic stir bar and a reflux condenser under a mild flow of argon. Nonanal (34.2g, 240.2mmol, 1.0 eq) is then added in one portion and the resulting clear solution is further stirred for 72h at room temperature under argon. Afterwards, the resulting light yellow to orange solution is brought to an acidic pH value by adding phospho­ric acid at 0 °C (42.5wt. %, 138.5 g, 600.6mmol, 2.5 eq). The resulting two layers are extracted three times with 150mL portions of ethyl acetate and reduced to a volume of ca. 150 mL in vacuo. To remove impurities from aldol condensation the raw acid is converted into the corresponding sodium salt by addition of an aqueous solution of sodium carbonate (20.4 g, 192.2 mmol, 0.8 eq in 200 mL). After stirring for 30 minutes the water phase is separated and extracted three times with 150 mL portions of ethyl acetate. The water phase is then acidified with concentrated hydro­chloric acid (37.0wt. %, 35.5 g, 360.4 mmol, 1.5 eq), the organic phase is separated and the water phase is again extracted three times with 150mL portions of ethyl acetate. The combined organic phases are dried over Na2SO4 and evaporated to dryness under diminished pressure. The resulting raw product is further purified by distillation in vacuo yielding the product in purity >99% (GC). m.p. 18°C. 1H NMR (400MHz, CDCl3): δ = 12.24 (br s, 1H, OH); 7.09 (dt, 3J = 15.6 Hz, 3J = 7.0 Hz, 1H, -CH-); 5.82 (dt, 3J = 15.6 Hz, 4J = 1.6 Hz, 1H, -CH-); 2.26-2.19 (m, 2H, -CH2-); 1.50-1.43 (m, 2H, -CH2-); 1.33-1.24 (m, 10H, 5x -CH2-); 0.91-0.85 (m, 3H, -CH3-). 13C NMR (100MHz, CDCl3): δ = 172.50 (CO); 152.69 (CH); 120.76 (CH); 32.47 (CH2); 31.98 (CH2); 29.48 (CH2), 29.32 (CH2), 29.29 (CH2); 28.02 (CH2); 22.79 (CH2); 14.22 (CH3). MS (EI, 70eV): m/z = 184 (M+, 0), 99 (15), 97 (12), 96 (11), 95 (11), 86 (17), 84 (17), 83 (17), 82 (17), 81 (16), 73 (36), 70 (17), 69 (25), 68 (20), 67 (19), 57 (37), 56 (20), 55 (46), 54 (12), 53 (23), 45 (22), 43 (60), 42 (20), 41 (100), 40 (14), 39 (57), 29 (62). HRMS (ESI-TOF/MS): calculated for C11H20O2 ([M—H]-) 183.13905, found 183.13912. Elemental analysis for C11H20O2 % (calc.): C 71.67 (71.70); H 10.83 (10.94). Suitable single crystals were grown by slow evaporation of an ethano­lic solution at -30 °C over one week.

Refinement top

H1 could be found from the difference Fourier map and was refined with Uiso(H) fixed at 1.5 Ueq(O) . All other H atoms were placed in idealized positions with d(C—H) = 0.95 Å (CH), 0.99 Å (CH2), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and CH2 and 1.5 Ueq(C) for CH3.

Comment top

The crystal structure of (E)-undec-2-enoic acid, C11H20O2, an α,β-unsaturated carboxylic acid with a melting point near room temperature (m. p. 18°C), is characterized by acid dimers. The corresponding dimers are connected via intermolecular hydrogen bonds of the carboxylic groups C=O···H–O. The crystal packing of (E)-undec-2-enoic acid is described by layers of acid dimers parallel to the (0 4 1) plane which are featured by layers of polar headgroups and hydrophobic hydrocarbon chains. The carboxylic group and the following three carbon atoms (C2, C3, C4) of the (E)-undec-2-enoic acid molecule lie in one plane (r.m.s. deviation = 0.008 Å), whereas the atoms of the hydrocarbon chain starting from C4 until C11 adopt a nearly fully staggered conformation.

Related literature top

For an adapted direct synthesis of the title compound following the procedure established by Knoevenagel (1898) and Doebner (1902), see: Bikulova et al. (1988); Kemme et al. (2010). For crystal structure determinations of related unsaturated α,β-carboxylic acids, see, for acrylic acid: Higgs et al. (1963); Chatani et al. (1963); Boese et al. (1999); Oswald et al. (2011); see, for crotonic acid: Shimizu et al. (1974); see, for (E)-pent-2-enoic acid: Peppel et al. (2015a); see, for (E)-hex-2-enoic acid: Peppel et al. (2015b). For structures of co-crystals containing (E)-hex-2-enoic acid, see: Aakeröy et al. (2003); Stanton & Bak (2008).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. Side view of the molecular structure of the title compound (displacement ellipsoids drawn at 30% probability level).
[Figure 3] Fig. 3. Packing diagram showing intermolecular O—H···O hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
(E)-Undec-2-enoic acid top
Crystal data top
C11H20O2Z = 2
Mr = 184.27F(000) = 204
Triclinic, P1Dx = 1.094 Mg m3
a = 4.6346 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.4200 (5) ÅCell parameters from 7014 reflections
c = 22.7564 (19) Åθ = 2.7–29.0°
α = 88.386 (2)°µ = 0.07 mm1
β = 88.357 (2)°T = 150 K
γ = 78.340 (2)°Plate, colourless
V = 559.46 (8) Å30.50 × 0.41 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2687 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.022
ϕ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 66
Tmin = 0.87, Tmax = 0.99k = 77
13660 measured reflectionsl = 3030
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.245P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2687 reflectionsΔρmax = 0.33 e Å3
122 parametersΔρmin = 0.24 e Å3
Crystal data top
C11H20O2γ = 78.340 (2)°
Mr = 184.27V = 559.46 (8) Å3
Triclinic, P1Z = 2
a = 4.6346 (4) ÅMo Kα radiation
b = 5.4200 (5) ŵ = 0.07 mm1
c = 22.7564 (19) ÅT = 150 K
α = 88.386 (2)°0.50 × 0.41 × 0.12 mm
β = 88.357 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2687 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2317 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.99Rint = 0.022
13660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.33 e Å3
2687 reflectionsΔρmin = 0.24 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7148 (3)0.2848 (2)0.45696 (6)0.0231 (3)
C20.8753 (3)0.1147 (2)0.42422 (6)0.0264 (3)
H20.97230.00900.44570.032*
C30.8904 (3)0.1026 (2)0.36643 (6)0.0251 (3)
H30.79340.21070.34570.030*
C41.0477 (3)0.0674 (3)0.33084 (6)0.0278 (3)
H4A1.20510.03580.30660.033*
H4B1.14180.16670.35760.033*
C50.8388 (3)0.2471 (2)0.29077 (6)0.0247 (3)
H5A0.72830.14810.26720.030*
H5B0.69420.36220.31540.030*
C60.9983 (3)0.4033 (2)0.24928 (6)0.0248 (3)
H6A1.11500.49720.27280.030*
H6B1.13740.28840.22360.030*
C70.7898 (3)0.5893 (2)0.21098 (6)0.0249 (3)
H7A0.65360.70600.23670.030*
H7B0.67000.49530.18830.030*
C80.9460 (3)0.7429 (2)0.16835 (6)0.0263 (3)
H8A1.06910.83400.19100.032*
H8B1.07920.62630.14210.032*
C90.7376 (3)0.9326 (2)0.13091 (6)0.0267 (3)
H9A0.61550.84150.10800.032*
H9B0.60361.04870.15710.032*
C100.8949 (3)1.0861 (3)0.08881 (6)0.0329 (3)
H10A1.02690.97030.06220.039*
H10B1.01901.17560.11160.039*
C110.6854 (4)1.2777 (3)0.05206 (7)0.0392 (4)
H11A0.56681.19010.02820.059*
H11B0.79911.37230.02620.059*
H11C0.55521.39430.07810.059*
O10.5924 (2)0.43092 (19)0.42681 (4)0.0323 (3)
O20.7045 (2)0.28190 (19)0.51201 (4)0.0320 (3)
H10.490 (5)0.520 (4)0.4504 (9)0.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0225 (6)0.0211 (6)0.0259 (6)0.0050 (5)0.0002 (5)0.0019 (5)
C20.0270 (6)0.0256 (6)0.0288 (7)0.0111 (5)0.0007 (5)0.0023 (5)
C30.0239 (6)0.0227 (6)0.0294 (7)0.0071 (5)0.0009 (5)0.0031 (5)
C40.0263 (7)0.0299 (7)0.0282 (7)0.0093 (5)0.0012 (5)0.0064 (5)
C50.0245 (6)0.0253 (6)0.0255 (6)0.0084 (5)0.0012 (5)0.0022 (5)
C60.0242 (6)0.0239 (6)0.0267 (6)0.0065 (5)0.0029 (5)0.0030 (5)
C70.0243 (6)0.0238 (6)0.0269 (6)0.0065 (5)0.0012 (5)0.0023 (5)
C80.0255 (6)0.0239 (6)0.0292 (7)0.0052 (5)0.0028 (5)0.0039 (5)
C90.0271 (7)0.0242 (6)0.0288 (7)0.0058 (5)0.0003 (5)0.0030 (5)
C100.0353 (8)0.0307 (7)0.0318 (7)0.0059 (6)0.0037 (6)0.0064 (6)
C110.0485 (9)0.0335 (8)0.0338 (8)0.0053 (7)0.0004 (7)0.0094 (6)
O10.0394 (6)0.0321 (5)0.0302 (5)0.0195 (4)0.0007 (4)0.0029 (4)
O20.0413 (6)0.0325 (5)0.0253 (5)0.0157 (4)0.0023 (4)0.0032 (4)
Geometric parameters (Å, º) top
C1—O21.2527 (16)C7—C81.5219 (17)
C1—O11.2862 (16)C7—H7A0.9900
C1—C21.4717 (17)C7—H7B0.9900
C2—C31.3153 (19)C8—C91.5207 (18)
C2—H20.9500C8—H8A0.9900
C3—C41.4942 (17)C8—H8B0.9900
C3—H30.9500C9—C101.5173 (19)
C4—C51.5289 (18)C9—H9A0.9900
C4—H4A0.9900C9—H9B0.9900
C4—H4B0.9900C10—C111.520 (2)
C5—C61.5239 (17)C10—H10A0.9900
C5—H5A0.9900C10—H10B0.9900
C5—H5B0.9900C11—H11A0.9800
C6—C71.5215 (17)C11—H11B0.9800
C6—H6A0.9900C11—H11C0.9800
C6—H6B0.9900O1—H10.90 (2)
O2—C1—O1123.41 (12)C8—C7—H7A108.8
O2—C1—C2119.25 (11)C6—C7—H7B108.8
O1—C1—C2117.34 (11)C8—C7—H7B108.8
C3—C2—C1122.85 (12)H7A—C7—H7B107.7
C3—C2—H2118.6C9—C8—C7113.76 (11)
C1—C2—H2118.6C9—C8—H8A108.8
C2—C3—C4125.24 (12)C7—C8—H8A108.8
C2—C3—H3117.4C9—C8—H8B108.8
C4—C3—H3117.4C7—C8—H8B108.8
C3—C4—C5111.88 (11)H8A—C8—H8B107.7
C3—C4—H4A109.2C10—C9—C8113.44 (11)
C5—C4—H4A109.2C10—C9—H9A108.9
C3—C4—H4B109.2C8—C9—H9A108.9
C5—C4—H4B109.2C10—C9—H9B108.9
H4A—C4—H4B107.9C8—C9—H9B108.9
C6—C5—C4112.95 (11)H9A—C9—H9B107.7
C6—C5—H5A109.0C9—C10—C11113.21 (13)
C4—C5—H5A109.0C9—C10—H10A108.9
C6—C5—H5B109.0C11—C10—H10A108.9
C4—C5—H5B109.0C9—C10—H10B108.9
H5A—C5—H5B107.8C11—C10—H10B108.9
C7—C6—C5113.02 (11)H10A—C10—H10B107.8
C7—C6—H6A109.0C10—C11—H11A109.5
C5—C6—H6A109.0C10—C11—H11B109.5
C7—C6—H6B109.0H11A—C11—H11B109.5
C5—C6—H6B109.0C10—C11—H11C109.5
H6A—C6—H6B107.8H11A—C11—H11C109.5
C6—C7—C8113.71 (11)H11B—C11—H11C109.5
C6—C7—H7A108.8C1—O1—H1110.8 (13)
O2—C1—C2—C3178.40 (13)C4—C5—C6—C7177.83 (11)
O1—C1—C2—C31.88 (19)C5—C6—C7—C8178.77 (11)
C1—C2—C3—C4179.50 (12)C6—C7—C8—C9178.82 (11)
C2—C3—C4—C5119.96 (15)C7—C8—C9—C10179.63 (11)
C3—C4—C5—C6173.87 (11)C8—C9—C10—C11179.27 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.90 (2)1.73 (2)2.6244 (14)172.2 (19)
Symmetry code: (i) x+1, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.90 (2)1.73 (2)2.6244 (14)172.2 (19)
Symmetry code: (i) x+1, y1, z+1.
 

Acknowledgements

The authors thank P. Thiele (University of Rostock) for the DSC measurements and Professor Dr J. G. de Vries (LIKAT) for helpful support.

References

First citationAakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 3, 159–165.  Web of Science CSD CrossRef Google Scholar
First citationBikulova, L. M., Verba, G. G., Kamaev, F. G. & Abduvakhabov, A. A. (1988). Khim. Prir. Soedin. pp. 682–683.  Google Scholar
First citationBoese, R., Bläser, D., Steller, I., Latz, R. & Bäumen, A. (1999). Acta Cryst. C55 IUC9900006.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatani, Y., Sakata, Y. & Nitta, I. (1963). J. Polym. Sci. B Polym. Lett. 1, 419–421.  CrossRef Web of Science Google Scholar
First citationDoebner, O. (1902). Ber. Dtsch. Chem. Ges. 35, 1136–1147.  CrossRef CAS Google Scholar
First citationHiggs, M. A. & Sass, R. L. (1963). Acta Cryst. 16, 657–661.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKemme, S. T., Šmejkal, T. & Breit, B. (2010). Chem. Eur. J. 16, 3423–3433.  CrossRef CAS PubMed Google Scholar
First citationKnoevenagel, E. (1898). Ber. Dtsch. Chem. Ges. 31, 2596–2619.  CrossRef CAS Google Scholar
First citationOswald, I. D. H. & Urquhart, A. J. (2011). CrystEngComm, 13, 4503–4507.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015a). Acta Cryst. E71, o316.  CSD CrossRef IUCr Journals Google Scholar
First citationPeppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015b). Acta Cryst. E71, o323.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimizu, S., Kekka, S., Kashino, S. & Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627–1631.  CrossRef CAS Web of Science Google Scholar
First citationStanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856–3862.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o426-o427
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds