organic compounds
E)-undec-2-enoic acid
of (aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de
In the molecule of the title low-melting α,β-unsaturated carboxylic acid, C11H20O2, the least-squares mean line through the octyl chain forms an angle of 60.10 (13)° with the normal to plane of the acrylic acid fragment (r.m.s. deviation = 0.008 Å). In the crystal, centrosymmetrically related molecules are linked by pairs of O—H⋯O hydrogen bonds into dimers, forming layers parallel to the (041) plane.
Keywords: crystal structure; hydrogen bond; dimer; unsaturated carboxylic acid.
CCDC reference: 1401589
1. Related literature
For an adapted direct synthesis of the title compound following the procedure established by Knoevenagel (1898) and Doebner (1902), see: Bikulova et al. (1988); Kemme et al. (2010). For determinations of related unsaturated α,β-carboxylic acids, see, for acrylic acid: Higgs & Sass (1963); Chatani et al. (1963); Boese et al. (1999); Oswald & Urquhart (2011); see, for crotonic acid: Shimizu et al. (1974); see, for (E)-pent-2-enoic acid: Peppel et al. (2015a); see, for (E)-hex-2-enoic acid: Peppel et al. (2015b). For structures of co-crystals containing (E)-hex-2-enoic acid, see: Aakeröy et al. (2003); Stanton & Bak (2008).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2014); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXL2014; software used to prepare material for publication: SHELXL2014.
Supporting information
CCDC reference: 1401589
10.1107/S2056989015009469/rz5160sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015009469/rz5160Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015009469/rz5160Isup3.cml
Malonic acid (25.0g, 240.2 mmol, 1.0 eq) is dissolved in dry pyridine (38.0g, 480.5mmol, 2.0 eq) at room temperature in a three-necked flask equipped with a magnetic stir bar and a reflux condenser under a mild flow of argon. Nonanal (34.2g, 240.2mmol, 1.0 eq) is then added in one portion and the resulting clear solution is further stirred for 72h at room temperature under argon. Afterwards, the resulting light yellow to orange solution is brought to an acidic pH value by adding phosphoric acid at 0 °C (42.5wt. %, 138.5 g, 600.6mmol, 2.5 eq). The resulting two layers are extracted three times with 150mL portions of ethyl acetate and reduced to a volume of ca. 150 mL in vacuo. To remove impurities from aldol condensation the raw acid is converted into the corresponding sodium salt by addition of an aqueous solution of sodium carbonate (20.4 g, 192.2 mmol, 0.8 eq in 200 mL). After stirring for 30 minutes the water phase is separated and extracted three times with 150 mL portions of ethyl acetate. The water phase is then acidified with concentrated hydrochloric acid (37.0wt. %, 35.5 g, 360.4 mmol, 1.5 eq), the organic phase is separated and the water phase is again extracted three times with 150mL portions of ethyl acetate. The combined organic phases are dried over Na2SO4 and evaporated to dryness under diminished pressure. The resulting raw product is further purified by distillation in vacuo yielding the product in purity >99% (GC). m.p. 18°C. 1H NMR (400MHz, CDCl3): δ = 12.24 (br s, 1H, OH); 7.09 (dt, 3J = 15.6 Hz, 3J = 7.0 Hz, 1H, -CH-); 5.82 (dt, 3J = 15.6 Hz, 4J = 1.6 Hz, 1H, -CH-); 2.26-2.19 (m, 2H, -CH2-); 1.50-1.43 (m, 2H, -CH2-); 1.33-1.24 (m, 10H, 5x -CH2-); 0.91-0.85 (m, 3H, -CH3-). 13C NMR (100MHz, CDCl3): δ = 172.50 (CO); 152.69 (CH); 120.76 (CH); 32.47 (CH2); 31.98 (CH2); 29.48 (CH2), 29.32 (CH2), 29.29 (CH2); 28.02 (CH2); 22.79 (CH2); 14.22 (CH3). MS (EI, 70eV): m/z = 184 (M+, 0), 99 (15), 97 (12), 96 (11), 95 (11), 86 (17), 84 (17), 83 (17), 82 (17), 81 (16), 73 (36), 70 (17), 69 (25), 68 (20), 67 (19), 57 (37), 56 (20), 55 (46), 54 (12), 53 (23), 45 (22), 43 (60), 42 (20), 41 (100), 40 (14), 39 (57), 29 (62). HRMS (ESI-TOF/MS): calculated for C11H20O2 ([M—H]-) 183.13905, found 183.13912. Elemental analysis for C11H20O2 % (calc.): C 71.67 (71.70); H 10.83 (10.94). Suitable single crystals were grown by slow evaporation of an ethanolic solution at -30 °C over one week.
H1 could be found from the difference Fourier map and was refined with Uiso(H) fixed at 1.5 Ueq(O) . All other H atoms were placed in idealized positions with d(C—H) = 0.95 Å (CH), 0.99 Å (CH2), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and CH2 and 1.5 Ueq(C) for CH3.
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).C11H20O2 | Z = 2 |
Mr = 184.27 | F(000) = 204 |
Triclinic, P1 | Dx = 1.094 Mg m−3 |
a = 4.6346 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 5.4200 (5) Å | Cell parameters from 7014 reflections |
c = 22.7564 (19) Å | θ = 2.7–29.0° |
α = 88.386 (2)° | µ = 0.07 mm−1 |
β = 88.357 (2)° | T = 150 K |
γ = 78.340 (2)° | Plate, colourless |
V = 559.46 (8) Å3 | 0.50 × 0.41 × 0.12 mm |
Bruker APEXII CCD diffractometer | 2687 independent reflections |
Radiation source: fine-focus sealed tube | 2317 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.022 |
ϕ and ω scans | θmax = 28.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −6→6 |
Tmin = 0.87, Tmax = 0.99 | k = −7→7 |
13660 measured reflections | l = −30→30 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0544P)2 + 0.245P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
2687 reflections | Δρmax = 0.33 e Å−3 |
122 parameters | Δρmin = −0.24 e Å−3 |
C11H20O2 | γ = 78.340 (2)° |
Mr = 184.27 | V = 559.46 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.6346 (4) Å | Mo Kα radiation |
b = 5.4200 (5) Å | µ = 0.07 mm−1 |
c = 22.7564 (19) Å | T = 150 K |
α = 88.386 (2)° | 0.50 × 0.41 × 0.12 mm |
β = 88.357 (2)° |
Bruker APEXII CCD diffractometer | 2687 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 2317 reflections with I > 2σ(I) |
Tmin = 0.87, Tmax = 0.99 | Rint = 0.022 |
13660 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.33 e Å−3 |
2687 reflections | Δρmin = −0.24 e Å−3 |
122 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7148 (3) | −0.2848 (2) | 0.45696 (6) | 0.0231 (3) | |
C2 | 0.8753 (3) | −0.1147 (2) | 0.42422 (6) | 0.0264 (3) | |
H2 | 0.9723 | −0.0090 | 0.4457 | 0.032* | |
C3 | 0.8904 (3) | −0.1026 (2) | 0.36643 (6) | 0.0251 (3) | |
H3 | 0.7934 | −0.2107 | 0.3457 | 0.030* | |
C4 | 1.0477 (3) | 0.0674 (3) | 0.33084 (6) | 0.0278 (3) | |
H4A | 1.2051 | −0.0358 | 0.3066 | 0.033* | |
H4B | 1.1418 | 0.1667 | 0.3576 | 0.033* | |
C5 | 0.8388 (3) | 0.2471 (2) | 0.29077 (6) | 0.0247 (3) | |
H5A | 0.7283 | 0.1481 | 0.2672 | 0.030* | |
H5B | 0.6942 | 0.3622 | 0.3154 | 0.030* | |
C6 | 0.9983 (3) | 0.4033 (2) | 0.24928 (6) | 0.0248 (3) | |
H6A | 1.1150 | 0.4972 | 0.2728 | 0.030* | |
H6B | 1.1374 | 0.2884 | 0.2236 | 0.030* | |
C7 | 0.7898 (3) | 0.5893 (2) | 0.21098 (6) | 0.0249 (3) | |
H7A | 0.6536 | 0.7060 | 0.2367 | 0.030* | |
H7B | 0.6700 | 0.4953 | 0.1883 | 0.030* | |
C8 | 0.9460 (3) | 0.7429 (2) | 0.16835 (6) | 0.0263 (3) | |
H8A | 1.0691 | 0.8340 | 0.1910 | 0.032* | |
H8B | 1.0792 | 0.6263 | 0.1421 | 0.032* | |
C9 | 0.7376 (3) | 0.9326 (2) | 0.13091 (6) | 0.0267 (3) | |
H9A | 0.6155 | 0.8415 | 0.1080 | 0.032* | |
H9B | 0.6036 | 1.0487 | 0.1571 | 0.032* | |
C10 | 0.8949 (3) | 1.0861 (3) | 0.08881 (6) | 0.0329 (3) | |
H10A | 1.0269 | 0.9703 | 0.0622 | 0.039* | |
H10B | 1.0190 | 1.1756 | 0.1116 | 0.039* | |
C11 | 0.6854 (4) | 1.2777 (3) | 0.05206 (7) | 0.0392 (4) | |
H11A | 0.5668 | 1.1901 | 0.0282 | 0.059* | |
H11B | 0.7991 | 1.3723 | 0.0262 | 0.059* | |
H11C | 0.5552 | 1.3943 | 0.0781 | 0.059* | |
O1 | 0.5924 (2) | −0.43092 (19) | 0.42681 (4) | 0.0323 (3) | |
O2 | 0.7045 (2) | −0.28190 (19) | 0.51201 (4) | 0.0320 (3) | |
H1 | 0.490 (5) | −0.520 (4) | 0.4504 (9) | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0225 (6) | 0.0211 (6) | 0.0259 (6) | −0.0050 (5) | −0.0002 (5) | 0.0019 (5) |
C2 | 0.0270 (6) | 0.0256 (6) | 0.0288 (7) | −0.0111 (5) | −0.0007 (5) | 0.0023 (5) |
C3 | 0.0239 (6) | 0.0227 (6) | 0.0294 (7) | −0.0071 (5) | −0.0009 (5) | 0.0031 (5) |
C4 | 0.0263 (7) | 0.0299 (7) | 0.0282 (7) | −0.0093 (5) | 0.0012 (5) | 0.0064 (5) |
C5 | 0.0245 (6) | 0.0253 (6) | 0.0255 (6) | −0.0084 (5) | 0.0012 (5) | 0.0022 (5) |
C6 | 0.0242 (6) | 0.0239 (6) | 0.0267 (6) | −0.0065 (5) | 0.0029 (5) | 0.0030 (5) |
C7 | 0.0243 (6) | 0.0238 (6) | 0.0269 (6) | −0.0065 (5) | 0.0012 (5) | 0.0023 (5) |
C8 | 0.0255 (6) | 0.0239 (6) | 0.0292 (7) | −0.0052 (5) | 0.0028 (5) | 0.0039 (5) |
C9 | 0.0271 (7) | 0.0242 (6) | 0.0288 (7) | −0.0058 (5) | 0.0003 (5) | 0.0030 (5) |
C10 | 0.0353 (8) | 0.0307 (7) | 0.0318 (7) | −0.0059 (6) | 0.0037 (6) | 0.0064 (6) |
C11 | 0.0485 (9) | 0.0335 (8) | 0.0338 (8) | −0.0053 (7) | −0.0004 (7) | 0.0094 (6) |
O1 | 0.0394 (6) | 0.0321 (5) | 0.0302 (5) | −0.0195 (4) | −0.0007 (4) | 0.0029 (4) |
O2 | 0.0413 (6) | 0.0325 (5) | 0.0253 (5) | −0.0157 (4) | 0.0023 (4) | 0.0032 (4) |
C1—O2 | 1.2527 (16) | C7—C8 | 1.5219 (17) |
C1—O1 | 1.2862 (16) | C7—H7A | 0.9900 |
C1—C2 | 1.4717 (17) | C7—H7B | 0.9900 |
C2—C3 | 1.3153 (19) | C8—C9 | 1.5207 (18) |
C2—H2 | 0.9500 | C8—H8A | 0.9900 |
C3—C4 | 1.4942 (17) | C8—H8B | 0.9900 |
C3—H3 | 0.9500 | C9—C10 | 1.5173 (19) |
C4—C5 | 1.5289 (18) | C9—H9A | 0.9900 |
C4—H4A | 0.9900 | C9—H9B | 0.9900 |
C4—H4B | 0.9900 | C10—C11 | 1.520 (2) |
C5—C6 | 1.5239 (17) | C10—H10A | 0.9900 |
C5—H5A | 0.9900 | C10—H10B | 0.9900 |
C5—H5B | 0.9900 | C11—H11A | 0.9800 |
C6—C7 | 1.5215 (17) | C11—H11B | 0.9800 |
C6—H6A | 0.9900 | C11—H11C | 0.9800 |
C6—H6B | 0.9900 | O1—H1 | 0.90 (2) |
O2—C1—O1 | 123.41 (12) | C8—C7—H7A | 108.8 |
O2—C1—C2 | 119.25 (11) | C6—C7—H7B | 108.8 |
O1—C1—C2 | 117.34 (11) | C8—C7—H7B | 108.8 |
C3—C2—C1 | 122.85 (12) | H7A—C7—H7B | 107.7 |
C3—C2—H2 | 118.6 | C9—C8—C7 | 113.76 (11) |
C1—C2—H2 | 118.6 | C9—C8—H8A | 108.8 |
C2—C3—C4 | 125.24 (12) | C7—C8—H8A | 108.8 |
C2—C3—H3 | 117.4 | C9—C8—H8B | 108.8 |
C4—C3—H3 | 117.4 | C7—C8—H8B | 108.8 |
C3—C4—C5 | 111.88 (11) | H8A—C8—H8B | 107.7 |
C3—C4—H4A | 109.2 | C10—C9—C8 | 113.44 (11) |
C5—C4—H4A | 109.2 | C10—C9—H9A | 108.9 |
C3—C4—H4B | 109.2 | C8—C9—H9A | 108.9 |
C5—C4—H4B | 109.2 | C10—C9—H9B | 108.9 |
H4A—C4—H4B | 107.9 | C8—C9—H9B | 108.9 |
C6—C5—C4 | 112.95 (11) | H9A—C9—H9B | 107.7 |
C6—C5—H5A | 109.0 | C9—C10—C11 | 113.21 (13) |
C4—C5—H5A | 109.0 | C9—C10—H10A | 108.9 |
C6—C5—H5B | 109.0 | C11—C10—H10A | 108.9 |
C4—C5—H5B | 109.0 | C9—C10—H10B | 108.9 |
H5A—C5—H5B | 107.8 | C11—C10—H10B | 108.9 |
C7—C6—C5 | 113.02 (11) | H10A—C10—H10B | 107.8 |
C7—C6—H6A | 109.0 | C10—C11—H11A | 109.5 |
C5—C6—H6A | 109.0 | C10—C11—H11B | 109.5 |
C7—C6—H6B | 109.0 | H11A—C11—H11B | 109.5 |
C5—C6—H6B | 109.0 | C10—C11—H11C | 109.5 |
H6A—C6—H6B | 107.8 | H11A—C11—H11C | 109.5 |
C6—C7—C8 | 113.71 (11) | H11B—C11—H11C | 109.5 |
C6—C7—H7A | 108.8 | C1—O1—H1 | 110.8 (13) |
O2—C1—C2—C3 | −178.40 (13) | C4—C5—C6—C7 | −177.83 (11) |
O1—C1—C2—C3 | 1.88 (19) | C5—C6—C7—C8 | −178.77 (11) |
C1—C2—C3—C4 | 179.50 (12) | C6—C7—C8—C9 | −178.82 (11) |
C2—C3—C4—C5 | −119.96 (15) | C7—C8—C9—C10 | 179.63 (11) |
C3—C4—C5—C6 | −173.87 (11) | C8—C9—C10—C11 | −179.27 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.90 (2) | 1.73 (2) | 2.6244 (14) | 172.2 (19) |
Symmetry code: (i) −x+1, −y−1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.90 (2) | 1.73 (2) | 2.6244 (14) | 172.2 (19) |
Symmetry code: (i) −x+1, −y−1, −z+1. |
Acknowledgements
The authors thank P. Thiele (University of Rostock) for the DSC measurements and Professor Dr J. G. de Vries (LIKAT) for helpful support.
References
Aakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 3, 159–165. Web of Science CSD CrossRef Google Scholar
Bikulova, L. M., Verba, G. G., Kamaev, F. G. & Abduvakhabov, A. A. (1988). Khim. Prir. Soedin. pp. 682–683. Google Scholar
Boese, R., Bläser, D., Steller, I., Latz, R. & Bäumen, A. (1999). Acta Cryst. C55 IUC9900006. Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chatani, Y., Sakata, Y. & Nitta, I. (1963). J. Polym. Sci. B Polym. Lett. 1, 419–421. CrossRef Web of Science Google Scholar
Doebner, O. (1902). Ber. Dtsch. Chem. Ges. 35, 1136–1147. CrossRef CAS Google Scholar
Higgs, M. A. & Sass, R. L. (1963). Acta Cryst. 16, 657–661. CSD CrossRef IUCr Journals Web of Science Google Scholar
Kemme, S. T., Šmejkal, T. & Breit, B. (2010). Chem. Eur. J. 16, 3423–3433. CrossRef CAS PubMed Google Scholar
Knoevenagel, E. (1898). Ber. Dtsch. Chem. Ges. 31, 2596–2619. CrossRef CAS Google Scholar
Oswald, I. D. H. & Urquhart, A. J. (2011). CrystEngComm, 13, 4503–4507. Web of Science CSD CrossRef CAS Google Scholar
Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015a). Acta Cryst. E71, o316. CSD CrossRef IUCr Journals Google Scholar
Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015b). Acta Cryst. E71, o323. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shimizu, S., Kekka, S., Kashino, S. & Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627–1631. CrossRef CAS Web of Science Google Scholar
Stanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856–3862. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structure of (E)-undec-2-enoic acid, C11H20O2, an α,β-unsaturated carboxylic acid with a melting point near room temperature (m. p. 18°C), is characterized by acid dimers. The corresponding dimers are connected via intermolecular hydrogen bonds of the carboxylic groups C=O···H–O. The crystal packing of (E)-undec-2-enoic acid is described by layers of acid dimers parallel to the (0 4 1) plane which are featured by layers of polar headgroups and hydrophobic hydrocarbon chains. The carboxylic group and the following three carbon atoms (C2, C3, C4) of the (E)-undec-2-enoic acid molecule lie in one plane (r.m.s. deviation = 0.008 Å), whereas the atoms of the hydrocarbon chain starting from C4 until C11 adopt a nearly fully staggered conformation.