research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 693-697

Crystal structures of (1,4,7,10-tetra­aza­cyclo­do­decane-κ4N)bis­­(tri­cyano­methanido-κN)nickel and (1,4,7,10-tetra­aza­cyclo­do­decane-κ4N)(tri­cyano­methanido-κN)copper tri­cyano­methanide

aSchool of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
*Correspondence e-mail: liubaoshu@126.com

Edited by J. Simpson, University of Otago, New Zealand (Received 11 May 2015; accepted 19 May 2015; online 23 May 2015)

The structures of two mononuclear transition-metal complexes with tri­cyano­methanide (tcm) and 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) ligands, [Ni(C4N3)2(C8H20N4)], (I), and [Cu(C4N3)(C8H20N4)](C4N3), (II), are reported. In the neutral complex (I), the nickel cation is coordinated by one cyclen ligand and two monodentate N-bound tcm anions in a distorted octa­hedral geometry. The tcm ligands are mutually cis. The CuII atom in (II) displays a distorted tetra­gonal–pyramidal geometry, with the four N-donor atoms of the cyclen ligand in the equatorial plane, and one tcm anion bound through a single N atom in an axial site, forming a monocation. The second tcm molecule acts as a counter-ion not directly coordinating to the copper cation. In both (I) and (II), extensive series of N—H⋯N and C—H⋯N hydrogen bonds generate three-dimensional network structures.

1. Chemical context

Coordination polymers constructed by the tri­cyano­methanide anion (tcm) have attracted considerable inter­est due to their fascinating structural characteristics (Hunt et al., 2015[Hunt, S. J., Cliffe, M. J., Hill, J. A., Cairns, A. B., Funnell, N. P. & Goodwin, A. L. (2015). CrystEngComm, 17, 361-369.]; Hodgson et al., 2014[Hodgson, S. A., Adamson, J., Hunt, S. J., Cliffe, M. J., Cairns, A. B., Thompson, A. L., Tucker, M. G., Funnell, N. P. & Goodwin, A. L. (2014). Chem. Commun. 50, 5264-5266.]; Chainok et al., 2012[Chainok, K., Neville, S. M., Forsyth, C. M., Gee, W. J., Murray, K. S. & Batten, S. R. (2012). CrystEngComm, 14, 3717-3726.]; Vreshch et al., 2013[Vreshch, V., Nohra, B., Lescop, C. & Réau, R. (2013). Inorg. Chem. 52, 1496-1503.]) and inter­esting magnetic properties (Luo et al., 2014[Luo, J., Gao, Y., Qiu, L.-J., Liu, B.-S., Zhang, X. R., Cui, L. L. & Yang, F. (2014). Inorg. Chim. Acta, 416, 215-221.]; Herchel et al., 2014[Herchel, R., Váhovská, L., Potočňák, I. & Trávníček, Z. (2014). Inorg. Chem. 53, 5896-5898.]; Váhovská et al., 2014[Váhovská, L., Potočňák, I., Vitushkina, S., Dušek, M., Titiš, J. & Boča, R. (2014). Polyhedron, 81, 396-408.]). To date, with the exception of a doubly inter­penetrated (6,3) sheet, observed in Ag(tcm)2 (Abrahams et al., 2003[Abrahams, B. F., Batten, S. R., Hoskins, B. F. & Robson, R. (2003). Inorg. Chem. 42, 2654-2664.]), most binary tcm complexes display a rutile-like structure (Manson et al., 2000[Manson, J. L., Ressouche, E. & Miller, J. S. (2000). Inorg. Chem. 39, 1135-1141.], 1998[Manson, J. L., Campana, C. & Miller, J. S. (1998). Chem. Commun. pp. 251-252.]; Hoshino et al., 1999[Hoshino, H., Iida, K., Kawamoto, T. & Mori, T. (1999). Inorg. Chem. 38, 4229-4232.]; Feyerherm et al., 2004[Feyerherm, R., Loose, A., Landsgesell, S. & Manson, J. L. (2004). Inorg. Chem. 43, 6633-6639.]). To gain an insight into the influence of co-ligands on the structural and magnetic properties of tcm complexes, various co-ligands, such as hexa­methyl­ene­tetra­mine, 4,4-bipyridyl and 1,2-di(pyridin-4-yl)ethane have been introduced to the binary tcm complexes. Among the CuI or CdII tcm complexes with such co-ligands, numerous structural types ranging from doubly inter­penetrated (4,4) sheets to three-dimensional rutile networks have been observed (Batten et al., 2000[Batten, S. R., Hoskins, B. F. & Robson, R. (2000). Chem. Eur. J. 6, 156-161.], 1998[Batten, S. R., Hoskins, B. F. & Robson, R. (1998). Inorg. Chem. 37, 3432-3434.]). By contrast, modification of the MnII–tcm binary system with 4,4-bipyridyl as a co-ligand leads to the formation of a one-dimensional chain-like structure (Manson et al., 2004[Manson, J. L. & Schlueter, J. A. (2004). Inorg. Chim. Acta, 357, 3975-3979.]). In addition, the Julve group (Yuste et al., 2007[Yuste, C., Bentama, A., Stiriba, S.-E., Armentano, D., De Munno, G., Lloret, F. & Julve, M. (2007). Dalton Trans. pp. 5190-5200.], 2008[Yuste, C., Armentano, D., Marino, N., Cañadillas-Delgado, L., Delgado, F. S., Ruiz-Pérez, C., Rillema, D. P., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 1583-1596.]) recently reported the polymeric structures of copper tcm complexes with co-ligands such as bis­(2-pyrid­yl)pyrazine, 2,2′-bi­pyrazine and 2,3,5,6-tetra­kis­(2-pyrid­yl)pyrazine and found them to have inter­esting magnetic properties. 1,4,7,10-Tetra­aza­cyclo­dodecane (cyclen) is a novel co-ligand with four potential nitro­gen donor atoms. However, no tcm complexes incorporating cyclen as a co-ligand have been reported previously. As part of our systematic investigation of the effect of cyclen as a co-ligand on the structures and properties of tcm complexes, we have prepared two new tcm complexes and we report herein the syntheses and crystal structures of Ni(cyclen)(C4N3)2 (I)[link] and [Cu(cyclen)(C4N3)]+(C4N3) (II)[link].

[Scheme 1]

2. Structural commentary

In (I)[link], the nickel cation binds to the four N atoms of the cyclen and two N atoms of two tcm anions, forming a distorted octa­hedral geometry with the tcm ligands mutually cis. The equatorial plane is therefore formed by two N atoms (N1, N3) of the cyclen unit and the N5 and N8 atoms of the coordinating tcm anions. The apical sites are occupied by N2 and N4 from the cyclen ligand, Fig. 1[link].

[Figure 1]
Figure 1
View of the mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In (II)[link], the copper cation is also bound to the four N atoms (N1, N2, N3, N4) of a cyclen ligand but in the basal plane with the N5 atom of the tcm ligand in an apical site, forming a five-coordinate cation with a distorted square-pyramidal coordin­ation geometry. The second tcm anion does not enter the inner coordination sphere of the metal (Fig. 2[link]), but acts as a counter-anion that is linked to the cation in the asymmetric unit through an N1—H1⋯N9 hydrogen bond (Fig. 2[link]).

[Figure 2]
Figure 2
A view of the mol­ecule of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond between the cation and anion is shown as a dashed line.

The Ni—N(cyclen) distances in (I)[link] [2.051 (3)–2.134 (3) Å] show some variation, but these values are similar to the corresponding distances in other polyamine-containing nickel complexes (Shirase et al., 2009[Shirase, H., Miura, Y. & Fukuda, Y. (2009). Monatsh. Chem. 140, 807-814.]; Patel et al., 2008[Patel, R. N., Kesharwani, M. K., Singh, A., Patel, D. K. & Choudhary, M. (2008). Transition Met. Chem. 33, 733-738.]). The Ni—N(tcm) distances, 2.062 (3) and 2.101 (3) Å, Table 1[link], of (I)[link] are not unusual, and these data are comparable to the corres­ponding distances in other closely related nickel complexes with tcm ligands (Luo et al., 2014[Luo, J., Gao, Y., Qiu, L.-J., Liu, B.-S., Zhang, X. R., Cui, L. L. & Yang, F. (2014). Inorg. Chim. Acta, 416, 215-221.], 2006[Luo, J., Shao, Z.-H., Gao, E.-Q., Wang, C.-F., Cai, R.-F. & Zhou, X.-G. (2006). Inorg. Chem. Commun. 9, 196-200.]).

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Ni1—N1 2.051 (3) Ni1—N5 2.101 (3)
Ni1—N8 2.062 (3) Ni1—N2 2.125 (3)
Ni1—N3 2.080 (3) Ni1—N4 2.134 (3)
       
N1—Ni1—N8 87.4 (1) N3—Ni1—N2 81.6 (1)
N1—Ni1—N3 97.3 (1) N5—Ni1—N2 95.4 (1)
N8—Ni1—N3 175.3 (1) N1—Ni1—N4 82.8 (1)
N1—Ni1—N5 171.8 (1) N8—Ni1—N4 98.1 (1)
N8—Ni1—N5 84.9 (1) N3—Ni1—N4 82.0 (1)
N3—Ni1—N5 90.4 (1) N5—Ni1—N4 101.2 (1)
N1—Ni1—N2 83.0 (1) N2—Ni1—N4 156.7 (1)
N8—Ni1—N2 99.7 (1)    

In (II)[link], the Cu—N(cyclen) distances range from 2.014 (2) to 2.034 (2) Å, and are similar to distances found in other reported copper complexes with polyamine co-ligands (Qi et al., 2014[Qi, Z.-P., Li, P.-Y., Sun, J.-J., Zhu, L.-L. & Wang, K. (2014). Polyhedron, 68, 365-371.]; Belda et al., 2013[Belda, R., Blasco, S., Verdejo, B., Jiménez, H. R., Doménech-Carbó, A., Soriano, C., Latorre, J., Terencio, C. & García-España, E. (2013). Dalton Trans. 42, 11194-11204.]). In (II)[link], the Cu—N(tcm) distance [2.097 (2) Å, Table 2[link]) is also similar to the distances found in previously reported copper tcm complexes (Yuste et al., 2007[Yuste, C., Bentama, A., Stiriba, S.-E., Armentano, D., De Munno, G., Lloret, F. & Julve, M. (2007). Dalton Trans. pp. 5190-5200.], 2008[Yuste, C., Armentano, D., Marino, N., Cañadillas-Delgado, L., Delgado, F. S., Ruiz-Pérez, C., Rillema, D. P., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 1583-1596.]).

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Cu1—N2 2.014 (2) Cu1—N1 2.034 (2)
Cu1—N3 2.022 (2) Cu1—N5 2.097 (2)
Cu1—N4 2.029 (2)    
       
N2—Cu1—N3 85.61 (9) N4—Cu1—N1 85.79 (9)
N2—Cu1—N4 148.42 (9) N2—Cu1—N5 107.9 (1)
N3—Cu1—N4 85.57 (9) N3—Cu1—N5 101.87 (9)
N2—Cu1—N1 86.11 (9) N4—Cu1—N5 103.57 (9)
N3—Cu1—N1 148.55 (9) N1—Cu1—N5 109.54 (9)

In (I)[link], the N—Ni—N angles, involving two cis-related basal N atoms and the N(apical)—Ni—N(basal) angle range from 84.9 (1) to 97.3 (1)° and 81.6 (1) to 101.2 (1)°, respectively. The corresponding values for (II)[link] are 85.57 (9) to 86.11 (9)° and 101.87 (9) to 109.54 (9)°, respectively, again indicating that the distortion from the octa­hedral and square-pyramidal geom­etries in (I)[link] and (II)[link] is not particularly severe.

Each tcm ligand is almost planar, with the mean deviations from the planes through all atoms of the coordinating tcm anions being 0.0128 and 0.0322 Å, respectively in (I)[link]. For (II)[link], the corresponding deviations from the planes of the coordin­ating tcm anion and the tcm counter-anion are 0.0211 and 0.0074 Å respectively. Bond lengths and angles within the anions are also in good agreement with those found in other tcm complexes (Batten et al., 1999[Batten, S. R., Hoskins, B. F., Moubaraki, B., Murray, K. S. & Robson, R. (1999). J. Chem. Soc. Dalton Trans. pp. 2977-2986.]; Yuste et al., 2008[Yuste, C., Armentano, D., Marino, N., Cañadillas-Delgado, L., Delgado, F. S., Ruiz-Pérez, C., Rillema, D. P., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 1583-1596.]).

3. Supra­molecular features

In the crystal structure of (I)[link], each complex mol­ecule is linked to five others by a series of N—H⋯N and C—H⋯N hydrogen bonds. N1—H1⋯N10 and N2—H2⋯N6 hydrogen bonds each form inversion dimers, joining the complex mol­ecule to two neighbouring mol­ecules and generating R22(16) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). N3—H3⋯N7 and N4—H4⋯N6 hydrogen bonds link two additional complex mol­ecules. A C4—H4B⋯N9 contact involves the fifth complex. This array of contacts combines to generate an extensive three-dimensional network (Fig. 3[link], Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯N7i 0.99 2.74 3.665 (5) 156
N3—H3⋯N7i 0.95 (2) 2.45 (3) 3.330 (5) 154 (4)
N1—H1⋯N10ii 0.90 (2) 2.11 (3) 2.907 (5) 148 (4)
N2—H2⋯N6iii 0.91 (2) 2.22 (3) 3.064 (4) 155 (4)
C4—H4B⋯N9iv 0.99 2.57 3.467 (5) 151
N4—H4⋯N6v 0.90 (2) 2.70 (4) 3.372 (4) 133 (4)
C7—H7B⋯N6v 0.99 2.70 3.397 (5) 128
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The three-dimensional network of (I)[link], formed by hydrogen-bonding inter­actions, viewed along the b axis. Hydrogen bonds are drawn as dashed lines.

In the crystal structure of (II)[link], N1—H1⋯N6 and N3—H3⋯N7 hydrogen bonds each form inversion dimers, also linking the complex cation to two neighbouring cations and generating R22(16) ring motifs. Each complex mol­ecule is also linked via N—H⋯N and C—H⋯N hydrogen bonds to two adjacent complex cations and three tcm anions, forming another extensive three-dimensional network (Fig. 4[link], Table 4[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N9 0.87 (2) 2.79 (3) 3.525 (4) 143 (3)
C1—H1B⋯N6i 0.99 2.54 3.273 (4) 131
N1—H1⋯N6i 0.87 (2) 2.60 (3) 3.206 (4) 127 (3)
N4—H4⋯N9ii 0.84 (3) 2.24 (4) 3.067 (3) 168 (3)
N3—H3⋯N7iii 0.92 (2) 2.05 (2) 2.928 (3) 159 (4)
N2—H2⋯N8iv 0.94 (2) 2.19 (2) 3.003 (3) 144 (3)
C3—H3B⋯N10v 0.99 2.64 3.531 (4) 150
C8—H8B⋯N8vi 0.99 2.56 3.538 (4) 171
C3—H3A⋯N10vi 0.99 2.64 3.460 (4) 140
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+2, -z; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z-1; (vi) -x, -y+1, -z+1.
[Figure 4]
Figure 4
The three-dimensional network of (II)[link], formed by hydrogen-bonding inter­actions, viewed along the a axis. Hydrogen bonds are drawn as dashed lines.

4. Database survey

Structures of transition-metal complexes with two or more tcm ligands are quite common with 47 unique compounds recorded in the Cambridge Crystallographic Database (Version 5.36, November 2014 with two updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). Of these the majority, 35, are polymeric or oligomeric systems. Five of these are NiII complexes but only two of them [tris­(2-amino­eth­yl)amine]­bis­(tri­cyano­meth­an­ide)nickel(II) (Luo et al., 2014[Luo, J., Gao, Y., Qiu, L.-J., Liu, B.-S., Zhang, X. R., Cui, L. L. & Yang, F. (2014). Inorg. Chim. Acta, 416, 215-221.]) and cis-bis­(tri­cyano­methanide-κN)[tris­(2-amino­eth­yl)amine-κ4N]nickel(II) (Potočňák et al., 2007[Potočňák, I., Lancz, G., Růžička, A. & Jäger, L. (2007). Acta Cryst. E63, m2072-m2073.]) are mononuclear, each with a distorted octa­hedral coordination environment and with the tcm ligands mutually cis.

The number of transition-metal complexes with the cyclen ligand is huge, with 116 unique hits in the current Database. Among these, there are twenty NiII complexes and nine CuII complexes. Representative Ni complexes include [Ni(cyclen)]2[Pt(CN)4]2·6H2O and [Ni(cyclen)]2[(Ni(CN)4)]2·6H2O (Yeung et al., 2006[Yeung, W.-F., Kwong, H.-K., Lau, T.-C., Gao, S., Szeto, L. & Wong, W. T. (2006). Polyhedron, 25, 1256-1262.]), while examples of Cu complexes are [Cu(cyclen)(Au(CN)2)]+·[Au(CN)2] (Yeung et al., 2000[Yeung, W.-F., Wong, W.-T., Zuo, J.-L. & Lau, T.-C. (2000). J. Chem. Soc. Dalton Trans. pp. 629-631.]) and [Cu(cyclen)(NO3)]+·NO3 (Clay et al., 1979[Clay, R., Murray-Rust, P. & Murray-Rust, J. (1979). Acta Cryst. B35, 1894-1895.]). However, no complexes containing a transition metal coordinated by both cyclen and tcm ligands were found.

5. Synthesis and crystallization

A 5 ml ethanol solution of 1,4,7,10-tetra­aza­cyclo­dodecane (0.10 mmol, 17.23 mg) and 2 ml of a green aqueous solution of nickel(II) nitrate (0.10 mmol, 29.08 mg) were mixed and stirred for 5 min; the resulting solution was purple. A 3 ml ethanol–water solution (EtOH:H2O = 2:1, v:v) of potassium tri­cyano­methanide (0.20 mmol, 25.83 mg) was then added. After stirring for another 5 min, the purple solution was filtered and the filtrate slowly evaporated in air. After two weeks, purple block-like crystals of (I)[link] were isolated in 31% yield. Analysis calculated for C16H20N10Ni: C 46.75%, H 4.90%, N 34.07%. Found C 46.91%, H 5.03%, N 34.26%. Using copper(II) nitrate instead of nickel(II) nitrate, blue block-like crystals of (II)[link] were prepared in a similar manner in 25% yield. Analysis calculated for C16H20N10Cu: C 46.20%, H 4.85%, N 33.67%. Found C 46.42%, H 5.01%, N 33.85%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. In (I)[link], the H1, H2, H3 and H4 atoms bound to the amine N atoms were found in a difference Fourier map and refined freely with isotropic displacement parameters. The N—H distances ranged from 0.90 (2) to 0.95 (2) Å. H atoms bound to carbon were constrained to an ideal geometry with C—H distances of 0.99 Å, and with Uiso = 1.2Ueq(C) for CH2. In (II)[link], the amine H1, H2, H3 and H4 atoms and the H atoms linked to carbon were refined similarly. The N—H distances were in the range 0.84 (3) to 0.94 (2) Å.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [Ni(C4N3)2(C8H20N4)] [Cu(C4N3)(C8H20N4)](C4N3)
Mr 411.13 415.96
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 173 173
a, b, c (Å) 10.6300 (12), 11.0150 (12), 17.1771 (18) 7.4074 (15), 11.552 (2), 11.625 (2)
α, β, γ (°) 90, 104.828 (2), 90 89.187 (3), 88.236 (3), 78.579 (3)
V3) 1944.3 (4) 974.6 (3)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.02 1.14
Crystal size (mm) 0.06 × 0.05 × 0.04 0.10 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.670, 0.746 0.680, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12264, 4611, 3460 6936, 4267, 3639
Rint 0.032 0.021
(sin θ/λ)max−1) 0.659 0.644
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.136, 1.05 0.033, 0.110, 1.13
No. of reflections 4611 4267
No. of parameters 259 260
No. of restraints 12 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.05, −0.67 0.43, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Chemical context top

Coordination polymers constructed by the tri­cyano­methanide anion (tcm-) have attracted considerable inter­est due to their fascinating structural characteristics (Hunt et al., 2015; Hodgson et al., 2014; Chainok et al., 2012; Vreshch et al., 2013) and inter­esting magnetic properties (Luo et al., 2014; Herchel et al., 2014; Váhovská et al., 2014). To date, with the exception of a doubly inter­penetrated (6,3) sheet, observed in Ag(tcm)2- (Abrahams et al., 2003), most binary tcm- complexes display a rutile-like structure (Manson et al., 2000, 1998; Hoshino et al., 1999; Feyerherm et al., 2004). To gain an insight into the influence of co-ligands on the structural and magnetic properties of tcm- complexes, various co-ligands, such as hexa­methyl­ene­tetra­mine, 4,4-bi­pyridyl and 1,2-di(pyridin-4-yl)ethane have been introduced to the binary tcm complexes. Among the CuI or CdII tcm- complexes with such co-ligands, numerous structural types ranging from doubly inter­penetrated (4,4) sheets to three-dimensional rutile networks have been observed (Batten et al., 2000, 1998). By contrast, modification of the MnII–tcm binary system with 4,4-bi­pyridyl as a co-ligand leads to the formation of a one-dimensional chain-like structure (Manson et al., 2004). In addition, the Julve group (Yuste et al., 2007, 2008) recently reported the polymeric structures of copper tcm- complexes with co-ligands such as bis­(2-pyridyl)­pyrazine, 2,2'-bi­pyrazine and 2,3,5,6-tetra­kis(2-pyridyl)­pyrazine and found them to have inter­esting magnetic properties. 1,4,7,10-Tetra­aza­cyclo­dodecane (cyclen) is a novel co-ligand with four potential nitro­gen donor atoms. However, no tcm- complexes incorporating cyclen as a co-ligand have been reported previously. As part of our systematic investigation of the effect of cyclen as a co-ligand on the structures and properties of tcm- complexes, we have prepared two new tcm- complexes and we report herein the syntheses and crystal structures of Ni(cyclen)(C4N3)2 (I) and [Cu(cyclen)(C4N3)]+(C4N3)- (II).

Structural commentary top

In (I), the nickel cation binds to the four N atoms of the cyclen and two N atoms of two tcm- anions, forming a distorted o­cta­hedral geometry with the tcm- ligands mutually cis. The equatorial plane is therefore formed by two N atoms (N1, N3) of the cyclen unit and the N5 and N8 atoms of the coordinating tcm- anions. The apical sites are occupied by N2 and N4 from the cyclen ligand, Fig. 1.

In (II), the copper cation is also bound to the four N atoms (N1, N2, N3, N4) of a cyclen ligand but in the basal plane with the N5 atom of the tcm- ligand in an apical site, forming a five-coordinate cation with a distorted square-pyramidal coordination geometry. The second tcm- anion does not enter the inner coordination sphere of the metal (Fig. 2), but acts as a counter-anion that is linked to the cation in the asymmetric unit through an N1—H1···N9 hydrogen bond (Fig. 2).

The Ni—N(cyclen) distances in (I) [2.051 (3)–2.134 (3) Å] show some variation, but these values are similar to the corresponding distances in other polyamine-containing nickel complexes (Shirase et al., 2009; Patel et al., 2008). The Ni—N(tcm) distances, 2.062 (3) and 2.101 (3) Å, Table 1, of (I) are not unusual, and these data are comparable to the corresponding distances in other closely related nickel complexes with tcm- ligands (Luo et al., 2014, 2006).

In (II), the Cu—N(cyclen) distances range from 2.014 (2) to 2.034 (2) Å, and are similar to distances found in other reported copper complexes with polyamine co-ligands (Qi et al., 2014; Belda et al., 2013). In (II), the Cu—N(tcm) distance [2.097 (2) Å, Table 2) is also similar to the distances found in previously reported copper tcm- complexes (Yuste et al., 2007, 2008).

In (I), the N—Ni—N angles, involving two cis-related basal N atoms and the N(apical)—Ni—N(basal) angle range from 84.9 (1) to 97.3 (1)° and 81.6 (1) to 101.2 (1)°, respectively. The corresponding values for (II) are 85.57 (9) to 86.11 (9)° and 101.87 (9) to 109.54 (9)°, respectively, again indicating that the distortion from the o­cta­hedral and square-pyramidal geometries in (I) and (II) is not particularly severe.

Each tcm- ligand is almost planar, with the mean deviations from the planes through all atoms of the coordinated tcm- anions being 0.0128 and 0.0322 Å, respectively in (I). For (II), the corresponding deviations from the planes of the coordinating tcm- anion and the tcm- counter-anion are 0.0211 and 0.0074 Å respectively. Bond lengths and angles within the anions are also in good agreement with those found in other tcm- complexes (Batten et al., 1999; Yuste et al., 2008).

Supra­molecular features top

In the crystal structure of (I), each complex molecule is linked to five others by a series of N—H···N and C—H···N hydrogen bonds. N1—H1···N10 and N2—H2···N6 hydrogen bonds each form inversion dimers, joining the complex molecule to two neighbouring molecules and generating R22(16) ring motifs (Bernstein et al., 1995). N3—H3···N7 and N4—H4···N6 hydrogen bonds link two additional complex molecules. A C4—H4B···N9 contact involves the fifth complex. This array of contacts combines to generate an extensive the three-dimensional network (Fig. 3, Table 3).

In the crystal structure of (II), N1—H1···N6 and N3—H3···N7 hydrogen bonds each form inversion dimers, also linking the complex cation to two neighbouring cations and generating R22(16) ring motifs. Each complex molecule is also linked via N—H···N and C—H···N hydrogen bonds to two adjacent complex cations and three tcm- anions, forming another extensive three-dimensional network (Fig. 4, Table 4).

Database survey top

Structures of transition-metal complexes with two or more tcm- ligands are quite common with 47 unique compounds recorded in the Cambridge Crystallographic Database (Version 5.36, November 2014 with two updates; Groom & Allen, 2014). Of these the majority, 35, are polymeric or oligomeric systems. Five of these are NiII complexes but only two of them [tris­(2-amino­ethyl)­amine]­bis­(tri­cyano­methanide)nickel(II) (Luo et al., 2014) and cis-bis­(tri­cyano­methanide-κN)[tris­(2-amino­ethyl)­amine-κ4N]nickel(II) (Potocnak et al., 2007) are mononuclear, each with a distorted o­cta­hedral coordination environment and with the tcm- ligands mutually cis.

The number of transition-metal complexes with the cyclen ligand is huge, with 116 unique hits in the current Database. Among these, there are twenty NiII complexes and nine CuII complexes. Representative Ni complexes include [Ni(cyclen)]2[Pt(CN)4]2·6H2O and [Ni(cyclen)]2[(Ni(CN)4)]2·6H2O (Yeung et al., 2006), while examples of Cu complexes are [Cu(cyclen)(Au(CN)2)]+·[Au(CN)2]- (Yeung et al., 2000) and [Cu(cyclen)(NO3)]+·NO3- (Clay et al., 1979). However, no complexes containing a transition metal coordinated by both cyclen and tcm- ligands were found.

Synthesis and crystallization top

A 5 ml ethanol solution of 1,4,7,10-tetra­aza­cyclo­dodecane (0.10 mmol, 17.23 mg) and 2 ml of a green aqueous solution of nickel(II) nitrate (0.10 mmol, 29.08 mg) were mixed and stirred for 5 min; the resulting solution was purple. A 3 ml ethanol–water solution (EtOH:H2O = 2:1, v:v) of potassium tri­cyano­methanide (0.20 mmol, 25.83 mg) was then added. After stirring for another 5 min, the purple solution was filtered and the filtrate slowly evaporated in air. After two weeks, purple block-like crystals of (I) were isolated in 31% yield. Analysis calculated for C16H20N10Ni: C 46.75%, H 4.90%, N 34.07%. Found C 46.91%, H 5.03%, N 34.26%. Using copper(II) nitrate instead of nickel(II) nitrate, blue block-like crystals of (II) were prepared in a similar manner in 25% yield. Analysis calculated for C16H20N10Cu: C 46.20%, H 4.85%, N 33.67%. Found C 46.42%, H 5.01%, N 33.85%.

Refinement top

In (I), the H1, H2, H3 and H4 atoms bound to the amine N atoms were found in a difference Fourier map and refined freely with isotropic displacement parameters. The N—H distances ranged from 0.90 (2) to 0.95 (2) Å. H atoms bound to carbon were constrained to an ideal geometry with C—H distances of 0.99 Å, and with Uiso = 1.2Ueq(C) for CH2. In (II), the amine H1, H2, H3 and H4 atoms and the H atoms linked to carbon were refined similarly. The N—H distances were in the range 0.84 (3) to 0.94 (2) Å.

Related literature top

For related literature, see: Abrahams et al. (2003); Batten et al. (1998, 1999, 2000); Belda et al. (2013); Bernstein et al. (1995); Chainok et al. (2012); Clay et al. (1979); Feyerherm et al. (2004); Groom & Allen (2014); Herchel et al. (2014); Hodgson et al. (2014); Hoshino et al. (1999); Hunt et al. (2015); Luo et al. (2006, 2014); Manson & Schlueter (2004); Manson et al. (1998, 2000); Patel et al. (2008); Potocnak et al. (2007); Qi et al. (2014); Shirase et al. (2009); Váhovská et al. (2014); Vreshch et al. (2013); Yeung et al. (2000, 2006); Yuste et al. (2007, 2008).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond between the cation and anion is shown as a dashed line.
[Figure 3] Fig. 3. The three-dimensional network of (I), formed by hydrogen-bonding interactions, viewed along the b axis. Hydrogen bonds are drawn as dashed lines.
[Figure 4] Fig. 4. The three-dimensional network of (II), formed by hydrogen-bonding interactions, viewed along the a axis. Hydrogen bonds are drawn as dashed lines.
(I) (1,4,7,10-Tetraazacyclododecane-κ4N)bis(tricyanomethanido-κN)nickel top
Crystal data top
[Ni(C4N3)2(C8H20N4)]F(000) = 856
Mr = 411.13Dx = 1.405 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.6300 (12) ÅCell parameters from 3344 reflections
b = 11.0150 (12) Åθ = 2.5–27.8°
c = 17.1771 (18) ŵ = 1.02 mm1
β = 104.828 (2)°T = 173 K
V = 1944.3 (4) Å3Block, purple
Z = 40.06 × 0.05 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
3460 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 27.9°, θmin = 2.0°
Tmin = 0.670, Tmax = 0.746h = 1013
12264 measured reflectionsk = 1414
4611 independent reflectionsl = 2022
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0532P)2 + 3.2428P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
4611 reflectionsΔρmax = 1.05 e Å3
259 parametersΔρmin = 0.67 e Å3
Crystal data top
[Ni(C4N3)2(C8H20N4)]V = 1944.3 (4) Å3
Mr = 411.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6300 (12) ŵ = 1.02 mm1
b = 11.0150 (12) ÅT = 173 K
c = 17.1771 (18) Å0.06 × 0.05 × 0.04 mm
β = 104.828 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4611 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3460 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.746Rint = 0.032
12264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05312 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.05 e Å3
4611 reflectionsΔρmin = 0.67 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.31796 (4)0.67335 (4)0.21935 (2)0.02888 (13)
N10.2130 (3)0.6100 (3)0.29576 (17)0.0345 (6)
H10.279 (3)0.589 (4)0.337 (2)0.064 (14)*
N20.2664 (3)0.5030 (3)0.16203 (18)0.0443 (7)
H20.339 (3)0.472 (4)0.151 (2)0.055 (13)*
N30.1611 (4)0.7305 (3)0.12737 (19)0.0530 (9)
H30.091 (4)0.711 (3)0.150 (2)0.079*
N40.2863 (3)0.8444 (3)0.26943 (19)0.0394 (7)
H40.365 (3)0.881 (4)0.284 (3)0.073 (15)*
C10.1384 (4)0.5016 (4)0.2615 (3)0.0506 (10)
H1A0.05660.52590.22240.061*
H1B0.11590.45360.30480.061*
C20.2200 (4)0.4269 (4)0.2202 (3)0.0553 (11)
H2A0.29550.39310.26070.066*
H2B0.16800.35820.19160.066*
C30.1642 (5)0.5211 (5)0.0857 (3)0.0642 (13)
H3A0.18690.47340.04240.077*
H3B0.08020.49010.09250.077*
C40.1492 (5)0.6485 (4)0.0617 (3)0.0611 (13)
H4A0.21590.66910.03280.073*
H4B0.06280.65970.02370.073*
C50.1683 (5)0.8539 (4)0.1225 (3)0.0748 (17)
H5A0.08530.88500.08800.090*
H5B0.23840.87530.09650.090*
C60.1952 (4)0.9164 (4)0.2047 (3)0.0549 (11)
H6A0.23330.99750.20090.066*
H6B0.11190.92810.21950.066*
C70.2311 (4)0.8170 (4)0.3387 (2)0.0448 (9)
H7A0.18340.88880.35080.054*
H7B0.30270.79900.38690.054*
C80.1402 (3)0.7099 (4)0.3202 (2)0.0419 (9)
H8A0.11080.68680.36840.050*
H8B0.06280.73030.27620.050*
N50.4473 (3)0.7223 (3)0.15041 (17)0.0456 (8)
N60.5442 (3)0.6048 (3)0.07283 (18)0.0410 (7)
N70.8599 (3)0.6841 (4)0.1448 (2)0.0676 (11)
C90.6177 (3)0.6745 (3)0.07428 (19)0.0313 (6)
C100.5245 (3)0.7011 (3)0.11644 (19)0.0341 (7)
C110.5768 (3)0.6366 (3)0.0066 (2)0.0322 (7)
C120.7506 (3)0.6795 (4)0.1130 (2)0.0400 (8)
N80.4834 (3)0.6233 (3)0.30541 (16)0.0351 (6)
N90.8889 (4)0.7038 (4)0.4340 (2)0.0632 (11)
N100.6565 (5)0.4491 (7)0.5383 (3)0.121 (3)
C130.6733 (3)0.5974 (3)0.42904 (19)0.0324 (7)
C140.5682 (3)0.6129 (3)0.36206 (18)0.0300 (7)
C150.7916 (4)0.6567 (3)0.4323 (2)0.0387 (8)
C160.6636 (4)0.5171 (5)0.4895 (2)0.0639 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0232 (2)0.0426 (2)0.02079 (19)0.00588 (18)0.00552 (14)0.00459 (17)
N10.0218 (13)0.0488 (17)0.0330 (15)0.0004 (12)0.0069 (11)0.0090 (13)
N20.0386 (17)0.0516 (19)0.0366 (16)0.0118 (15)0.0017 (13)0.0061 (14)
N30.054 (2)0.062 (2)0.0366 (17)0.0311 (18)0.0001 (15)0.0008 (15)
N40.0309 (15)0.0434 (17)0.0468 (17)0.0001 (13)0.0152 (13)0.0001 (14)
C10.0335 (18)0.053 (2)0.063 (2)0.0105 (18)0.0080 (17)0.011 (2)
C20.044 (2)0.045 (2)0.068 (3)0.0018 (19)0.001 (2)0.002 (2)
C30.057 (3)0.075 (3)0.046 (2)0.022 (2)0.013 (2)0.016 (2)
C40.062 (3)0.064 (3)0.040 (2)0.017 (2)0.0205 (19)0.0129 (19)
C50.076 (3)0.044 (2)0.078 (3)0.003 (2)0.028 (3)0.016 (2)
C60.062 (3)0.049 (2)0.065 (3)0.022 (2)0.036 (2)0.020 (2)
C70.0416 (19)0.061 (2)0.0325 (18)0.0042 (19)0.0109 (15)0.0095 (17)
C80.0279 (16)0.070 (3)0.0313 (17)0.0059 (17)0.0147 (14)0.0073 (17)
N50.0432 (17)0.069 (2)0.0291 (15)0.0105 (16)0.0171 (13)0.0107 (14)
N60.0416 (17)0.0470 (18)0.0360 (16)0.0025 (14)0.0126 (13)0.0032 (13)
N70.0364 (18)0.105 (3)0.055 (2)0.000 (2)0.0007 (16)0.005 (2)
C90.0294 (15)0.0376 (17)0.0285 (15)0.0012 (14)0.0103 (12)0.0040 (14)
C100.0337 (17)0.0421 (19)0.0264 (15)0.0010 (14)0.0075 (13)0.0079 (13)
C110.0275 (16)0.0355 (17)0.0356 (18)0.0026 (13)0.0119 (13)0.0037 (14)
C120.0337 (18)0.051 (2)0.0357 (18)0.0001 (17)0.0089 (14)0.0001 (16)
N80.0265 (14)0.0517 (17)0.0266 (13)0.0004 (13)0.0061 (11)0.0061 (12)
N90.044 (2)0.064 (2)0.069 (3)0.0160 (18)0.0102 (18)0.0013 (19)
N100.062 (3)0.217 (7)0.075 (3)0.003 (4)0.002 (2)0.095 (4)
C130.0279 (16)0.0429 (18)0.0251 (15)0.0065 (14)0.0043 (12)0.0006 (13)
C140.0276 (15)0.0385 (17)0.0253 (15)0.0039 (13)0.0093 (12)0.0003 (13)
C150.0366 (19)0.0402 (19)0.0315 (17)0.0023 (16)0.0056 (14)0.0071 (14)
C160.0330 (19)0.120 (4)0.035 (2)0.007 (2)0.0033 (16)0.028 (2)
Geometric parameters (Å, º) top
Ni1—N12.051 (3)C3—H3B0.9900
Ni1—N82.062 (3)C4—H4A0.9900
Ni1—N32.080 (3)C4—H4B0.9900
Ni1—N52.101 (3)C5—C61.529 (7)
Ni1—N22.125 (3)C5—H5A0.9900
Ni1—N42.134 (3)C5—H5B0.9900
N1—C81.467 (5)C6—H6A0.9900
N1—C11.470 (5)C6—H6B0.9900
N1—H10.90 (2)C7—C81.506 (6)
N2—C21.482 (6)C7—H7A0.9900
N2—C31.486 (5)C7—H7B0.9900
N2—H20.91 (2)C8—H8A0.9900
N3—C51.366 (6)C8—H8B0.9900
N3—C41.425 (6)N5—C101.146 (4)
N3—H30.95 (2)N6—C111.155 (4)
N4—C71.487 (5)N7—C121.152 (5)
N4—C61.501 (5)C9—C121.399 (5)
N4—H40.90 (2)C9—C101.400 (4)
C1—C21.499 (6)C9—C111.409 (5)
C1—H1A0.9900N8—C141.151 (4)
C1—H1B0.9900N9—C151.150 (5)
C2—H2A0.9900N10—C161.140 (6)
C2—H2B0.9900C13—C161.388 (5)
C3—C41.460 (6)C13—C141.394 (4)
C3—H3A0.9900C13—C151.406 (5)
N1—Ni1—N887.4 (1)C4—C3—N2112.3 (4)
N1—Ni1—N397.3 (1)C4—C3—H3A109.1
N8—Ni1—N3175.3 (1)N2—C3—H3A109.1
N1—Ni1—N5171.8 (1)C4—C3—H3B109.1
N8—Ni1—N584.9 (1)N2—C3—H3B109.1
N3—Ni1—N590.4 (1)H3A—C3—H3B107.9
N1—Ni1—N283.0 (1)N3—C4—C3113.9 (4)
N8—Ni1—N299.7 (1)N3—C4—H4A108.8
N3—Ni1—N281.6 (1)C3—C4—H4A108.8
N5—Ni1—N295.4 (1)N3—C4—H4B108.8
N1—Ni1—N482.8 (1)C3—C4—H4B108.8
N8—Ni1—N498.1 (1)H4A—C4—H4B107.7
N3—Ni1—N482.0 (1)N3—C5—C6113.1 (4)
N5—Ni1—N4101.2 (1)N3—C5—H5A109.0
N2—Ni1—N4156.7 (1)C6—C5—H5A109.0
C8—N1—C1117.0 (3)N3—C5—H5B109.0
C8—N1—Ni1109.9 (2)C6—C5—H5B109.0
C1—N1—Ni1110.3 (2)H5A—C5—H5B107.8
C8—N1—H1109 (3)N4—C6—C5112.3 (3)
C1—N1—H1110 (3)N4—C6—H6A109.1
Ni1—N1—H199 (3)C5—C6—H6A109.1
C2—N2—C3112.1 (4)N4—C6—H6B109.1
C2—N2—Ni1106.1 (2)C5—C6—H6B109.1
C3—N2—Ni1109.5 (3)H6A—C6—H6B107.9
C2—N2—H2112 (3)N4—C7—C8110.7 (3)
C3—N2—H2110 (3)N4—C7—H7A109.5
Ni1—N2—H2107 (3)C8—C7—H7A109.5
C5—N3—C4125.3 (4)N4—C7—H7B109.5
C5—N3—Ni1107.5 (3)C8—C7—H7B109.5
C4—N3—Ni1107.5 (3)H7A—C7—H7B108.1
C5—N3—H3108 (2)N1—C8—C7106.9 (3)
C4—N3—H3105 (2)N1—C8—H8A110.3
Ni1—N3—H3101 (3)C7—C8—H8A110.3
C7—N4—C6112.9 (3)N1—C8—H8B110.3
C7—N4—Ni1106.2 (2)C7—C8—H8B110.3
C6—N4—Ni1107.8 (2)H8A—C8—H8B108.6
C7—N4—H4113 (3)C10—N5—Ni1153.1 (3)
C6—N4—H4111 (3)C12—C9—C10120.5 (3)
Ni1—N4—H4106 (3)C12—C9—C11120.0 (3)
N1—C1—C2108.5 (3)C10—C9—C11119.4 (3)
N1—C1—H1A110.0N5—C10—C9179.3 (4)
C2—C1—H1A110.0N6—C11—C9179.3 (4)
N1—C1—H1B110.0N7—C12—C9179.7 (5)
C2—C1—H1B110.0C14—N8—Ni1166.7 (3)
H1A—C1—H1B108.4C16—C13—C14119.9 (3)
N2—C2—C1109.9 (3)C16—C13—C15120.2 (3)
N2—C2—H2A109.7C14—C13—C15119.7 (3)
C1—C2—H2A109.7N8—C14—C13177.8 (4)
N2—C2—H2B109.7N9—C15—C13178.7 (4)
C1—C2—H2B109.7N10—C16—C13178.5 (7)
H2A—C2—H2B108.2
C8—N1—C1—C2164.6 (3)C4—N3—C5—C6173.8 (4)
Ni1—N1—C1—C238.0 (4)Ni1—N3—C5—C646.3 (5)
C3—N2—C2—C179.0 (4)C7—N4—C6—C5124.4 (4)
Ni1—N2—C2—C140.5 (4)Ni1—N4—C6—C57.4 (4)
N1—C1—C2—N253.1 (4)N3—C5—C6—N436.6 (6)
C2—N2—C3—C4130.8 (4)C6—N4—C7—C880.8 (4)
Ni1—N2—C3—C413.3 (5)Ni1—N4—C7—C837.2 (3)
C5—N3—C4—C3170.8 (5)C1—N1—C8—C7170.0 (3)
Ni1—N3—C4—C343.3 (5)Ni1—N1—C8—C743.2 (3)
N2—C3—C4—N338.4 (6)N4—C7—C8—N154.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···N7i0.992.743.665 (5)156
N3—H3···N7i0.95 (2)2.45 (3)3.330 (5)154 (4)
N1—H1···N10ii0.90 (2)2.11 (3)2.907 (5)148 (4)
N2—H2···N6iii0.91 (2)2.22 (3)3.064 (4)155 (4)
C4—H4B···N9iv0.992.573.467 (5)151
N4—H4···N6v0.90 (2)2.70 (4)3.372 (4)133 (4)
C7—H7B···N6v0.992.703.397 (5)128
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x1, y+3/2, z1/2; (v) x, y+3/2, z+1/2.
(II) (1,4,7,10-Tetraazacyclododecane-κ4N)(tricyanomethanido-κN)copper tricyanomethanide top
Crystal data top
[Cu(C4N3)(C8H20N4)](C4N3)Z = 2
Mr = 415.96F(000) = 430
Triclinic, P1Dx = 1.417 Mg m3
a = 7.4074 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.552 (2) ÅCell parameters from 3012 reflections
c = 11.625 (2) Åθ = 2.5–27.2°
α = 89.187 (3)°µ = 1.14 mm1
β = 88.236 (3)°T = 173 K
γ = 78.579 (3)°Block, blue
V = 974.6 (3) Å30.10 × 0.07 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3639 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.021
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 27.2°, θmin = 1.8°
Tmin = 0.680, Tmax = 0.746h = 99
6936 measured reflectionsk = 1412
4267 independent reflectionsl = 1414
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.4093P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
4267 reflectionsΔρmax = 0.43 e Å3
260 parametersΔρmin = 0.30 e Å3
Crystal data top
[Cu(C4N3)(C8H20N4)](C4N3)γ = 78.579 (3)°
Mr = 415.96V = 974.6 (3) Å3
Triclinic, P1Z = 2
a = 7.4074 (15) ÅMo Kα radiation
b = 11.552 (2) ŵ = 1.14 mm1
c = 11.625 (2) ÅT = 173 K
α = 89.187 (3)°0.10 × 0.07 × 0.06 mm
β = 88.236 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4267 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3639 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.746Rint = 0.021
6936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0333 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.43 e Å3
4267 reflectionsΔρmin = 0.30 e Å3
260 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.19693 (4)0.78312 (3)0.28777 (2)0.01966 (11)
N10.1556 (3)0.70853 (19)0.44341 (18)0.0247 (5)
N20.3779 (3)0.63230 (19)0.25312 (19)0.0255 (5)
H20.499 (3)0.629 (3)0.275 (3)0.030 (8)*
N30.1539 (3)0.7915 (2)0.11666 (19)0.0262 (5)
H30.244 (5)0.823 (4)0.078 (3)0.069 (13)*
N40.0693 (3)0.8686 (2)0.30501 (19)0.0235 (5)
H40.080 (5)0.943 (3)0.305 (3)0.032 (9)*
C10.2693 (4)0.5872 (2)0.4435 (2)0.0309 (6)
H1A0.20570.53390.48990.037*
H1B0.38930.58770.47840.037*
C20.2999 (4)0.5431 (2)0.3211 (2)0.0284 (6)
H2A0.38640.46590.31910.034*
H2B0.18180.53310.28880.034*
C30.3874 (4)0.6128 (3)0.1270 (2)0.0320 (6)
H3A0.41720.52710.11090.038*
H3B0.48540.64950.09110.038*
C40.2027 (4)0.6673 (3)0.0775 (2)0.0309 (6)
H4A0.21070.66450.00760.037*
H4B0.10760.62320.10470.037*
C50.0403 (4)0.8503 (3)0.0989 (2)0.0314 (6)
H5A0.08670.81820.02960.038*
H5B0.04830.93620.08710.038*
C60.1553 (4)0.8288 (2)0.2029 (2)0.0278 (6)
H6A0.28300.87370.19600.033*
H6B0.15880.74380.21020.033*
C70.1439 (4)0.8372 (3)0.4181 (2)0.0309 (6)
H7A0.27770.83920.41330.037*
H7B0.12570.89500.47660.037*
C80.0455 (4)0.7147 (3)0.4526 (2)0.0297 (6)
H8A0.08160.69710.53260.036*
H8B0.08040.65530.40150.036*
N50.3467 (3)0.9172 (2)0.3085 (2)0.0302 (5)
N60.4994 (4)1.2516 (2)0.4130 (3)0.0458 (7)
N70.6191 (5)1.1120 (3)0.0561 (3)0.0557 (9)
C90.4066 (3)1.0003 (2)0.2868 (2)0.0234 (5)
C100.4822 (4)1.0987 (2)0.2587 (2)0.0284 (6)
C110.4908 (4)1.1832 (2)0.3437 (3)0.0317 (6)
C120.5559 (4)1.1083 (3)0.1476 (3)0.0370 (7)
N80.2233 (3)0.4808 (2)0.7239 (2)0.0346 (6)
N90.0455 (4)0.8693 (2)0.7001 (2)0.0401 (6)
N100.2516 (5)0.6493 (3)0.9329 (3)0.0533 (8)
C130.0029 (4)0.6708 (2)0.7860 (2)0.0261 (5)
C140.1277 (4)0.5668 (2)0.7519 (2)0.0250 (5)
C150.0259 (4)0.7809 (2)0.7396 (2)0.0283 (6)
C160.1390 (4)0.6607 (3)0.8655 (3)0.0341 (6)
H10.182 (5)0.754 (3)0.497 (3)0.050 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01993 (17)0.01743 (17)0.02207 (17)0.00544 (11)0.00296 (11)0.00163 (11)
N10.0346 (13)0.0202 (11)0.0210 (10)0.0094 (9)0.0035 (9)0.0010 (8)
N20.0224 (11)0.0236 (11)0.0300 (12)0.0038 (9)0.0000 (9)0.0002 (9)
N30.0267 (12)0.0276 (12)0.0233 (11)0.0044 (9)0.0063 (9)0.0034 (9)
N40.0241 (11)0.0175 (11)0.0287 (11)0.0041 (8)0.0034 (9)0.0007 (9)
C10.0408 (17)0.0241 (13)0.0281 (14)0.0071 (12)0.0062 (12)0.0073 (11)
C20.0348 (15)0.0184 (12)0.0327 (14)0.0066 (11)0.0027 (11)0.0021 (10)
C30.0290 (15)0.0337 (15)0.0299 (14)0.0005 (11)0.0095 (11)0.0043 (11)
C40.0348 (16)0.0322 (15)0.0239 (13)0.0030 (12)0.0045 (11)0.0043 (11)
C50.0316 (15)0.0304 (15)0.0292 (14)0.0006 (11)0.0039 (11)0.0057 (11)
C60.0213 (13)0.0256 (13)0.0354 (15)0.0022 (10)0.0009 (11)0.0000 (11)
C70.0306 (15)0.0320 (15)0.0296 (14)0.0062 (11)0.0095 (11)0.0032 (11)
C80.0376 (16)0.0313 (15)0.0235 (13)0.0160 (12)0.0068 (11)0.0013 (11)
N50.0313 (13)0.0243 (12)0.0369 (13)0.0107 (10)0.0020 (10)0.0006 (10)
N60.0563 (19)0.0349 (15)0.0511 (17)0.0208 (13)0.0016 (14)0.0070 (13)
N70.066 (2)0.0471 (18)0.0529 (18)0.0133 (15)0.0308 (16)0.0102 (14)
C90.0169 (12)0.0253 (13)0.0276 (13)0.0041 (10)0.0028 (10)0.0001 (10)
C100.0309 (15)0.0214 (13)0.0344 (14)0.0099 (11)0.0051 (11)0.0008 (11)
C110.0303 (15)0.0237 (14)0.0432 (16)0.0110 (11)0.0021 (12)0.0051 (12)
C120.0390 (17)0.0228 (14)0.0495 (18)0.0085 (12)0.0086 (14)0.0048 (12)
N80.0275 (13)0.0274 (13)0.0476 (15)0.0024 (10)0.0018 (11)0.0020 (11)
N90.0374 (15)0.0264 (13)0.0558 (17)0.0061 (11)0.0052 (12)0.0008 (11)
N100.0554 (19)0.0436 (17)0.0609 (19)0.0139 (14)0.0266 (16)0.0067 (14)
C130.0276 (14)0.0237 (13)0.0275 (13)0.0063 (10)0.0004 (11)0.0015 (10)
C140.0237 (13)0.0263 (14)0.0265 (13)0.0079 (11)0.0039 (10)0.0013 (10)
C150.0233 (13)0.0270 (14)0.0345 (14)0.0044 (11)0.0022 (11)0.0066 (11)
C160.0372 (17)0.0253 (14)0.0406 (16)0.0084 (12)0.0040 (13)0.0056 (12)
Geometric parameters (Å, º) top
Cu1—N22.014 (2)C4—H4A0.9900
Cu1—N32.022 (2)C4—H4B0.9900
Cu1—N42.029 (2)C5—C61.504 (4)
Cu1—N12.034 (2)C5—H5A0.9900
Cu1—N52.097 (2)C5—H5B0.9900
N1—C81.477 (4)C6—H6A0.9900
N1—C11.486 (4)C6—H6B0.9900
N1—H10.87 (2)C7—C81.513 (4)
N2—C31.484 (3)C7—H7A0.9900
N2—C21.485 (3)C7—H7B0.9900
N2—H20.94 (2)C8—H8A0.9900
N3—C41.483 (4)C8—H8B0.9900
N3—C51.483 (4)N5—C91.157 (3)
N3—H30.92 (2)N6—C111.148 (4)
N4—C71.478 (3)N7—C121.152 (4)
N4—C61.484 (4)C9—C101.393 (4)
N4—H40.84 (3)C10—C121.399 (4)
C1—C21.514 (4)C10—C111.411 (4)
C1—H1A0.9900N8—C141.145 (4)
C1—H1B0.9900N9—C151.147 (4)
C2—H2A0.9900N10—C161.152 (4)
C2—H2B0.9900C13—C161.399 (4)
C3—C41.515 (4)C13—C151.413 (4)
C3—H3A0.9900C13—C141.416 (4)
C3—H3B0.9900
N2—Cu1—N385.61 (9)C4—C3—H3A109.9
N2—Cu1—N4148.42 (9)N2—C3—H3B109.9
N3—Cu1—N485.57 (9)C4—C3—H3B109.9
N2—Cu1—N186.11 (9)H3A—C3—H3B108.3
N3—Cu1—N1148.55 (9)N3—C4—C3107.7 (2)
N4—Cu1—N185.79 (9)N3—C4—H4A110.2
N2—Cu1—N5107.9 (1)C3—C4—H4A110.2
N3—Cu1—N5101.87 (9)N3—C4—H4B110.2
N4—Cu1—N5103.57 (9)C3—C4—H4B110.2
N1—Cu1—N5109.54 (9)H4A—C4—H4B108.5
C8—N1—C1115.0 (2)N3—C5—C6109.0 (2)
C8—N1—Cu1104.5 (2)N3—C5—H5A109.9
C1—N1—Cu1107.4 (2)C6—C5—H5A109.9
C8—N1—H1106 (3)N3—C5—H5B109.9
C1—N1—H1114 (3)C6—C5—H5B109.9
Cu1—N1—H1109 (3)H5A—C5—H5B108.3
C3—N2—C2114.3 (2)N4—C6—C5107.4 (2)
C3—N2—Cu1109.0 (2)N4—C6—H6A110.2
C2—N2—Cu1102.7 (2)C5—C6—H6A110.2
C3—N2—H2106 (2)N4—C6—H6B110.2
C2—N2—H2109 (2)C5—C6—H6B110.2
Cu1—N2—H2116 (2)H6A—C6—H6B108.5
C4—N3—C5114.9 (2)N4—C7—C8109.2 (2)
C4—N3—Cu1104.9 (2)N4—C7—H7A109.8
C5—N3—Cu1108.2 (2)C8—C7—H7A109.8
C4—N3—H3100 (3)N4—C7—H7B109.8
C5—N3—H3117 (3)C8—C7—H7B109.8
Cu1—N3—H3111 (3)H7A—C7—H7B108.3
C7—N4—C6115.8 (2)N1—C8—C7109.2 (2)
C7—N4—Cu1108.7 (2)N1—C8—H8A109.8
C6—N4—Cu1102.8 (2)C7—C8—H8A109.8
C7—N4—H4106 (2)N1—C8—H8B109.8
C6—N4—H4111 (2)C7—C8—H8B109.8
Cu1—N4—H4112 (2)H8A—C8—H8B108.3
N1—C1—C2109.4 (2)C9—N5—Cu1158.7 (2)
N1—C1—H1A109.8N5—C9—C10178.4 (3)
C2—C1—H1A109.8C9—C10—C12118.8 (3)
N1—C1—H1B109.8C9—C10—C11119.6 (2)
C2—C1—H1B109.8C12—C10—C11121.4 (2)
H1A—C1—H1B108.2N6—C11—C10179.4 (4)
N2—C2—C1107.4 (2)N7—C12—C10177.6 (3)
N2—C2—H2A110.2C16—C13—C15122.2 (3)
C1—C2—H2A110.2C16—C13—C14118.5 (2)
N2—C2—H2B110.2C15—C13—C14119.3 (2)
C1—C2—H2B110.2N8—C14—C13177.6 (3)
H2A—C2—H2B108.5N9—C15—C13178.8 (3)
N2—C3—C4108.8 (2)N10—C16—C13177.6 (4)
N2—C3—H3A109.9
C8—N1—C1—C289.8 (3)C4—N3—C5—C689.1 (3)
Cu1—N1—C1—C226.1 (3)Cu1—N3—C5—C627.7 (3)
C3—N2—C2—C1170.3 (2)C7—N4—C6—C5170.4 (2)
Cu1—N2—C2—C152.5 (2)Cu1—N4—C6—C552.0 (2)
N1—C1—C2—N253.8 (3)N3—C5—C6—N454.4 (3)
C2—N2—C3—C484.5 (3)C6—N4—C7—C886.1 (3)
Cu1—N2—C3—C429.6 (3)Cu1—N4—C7—C829.0 (3)
C5—N3—C4—C3166.7 (2)C1—N1—C8—C7164.2 (2)
Cu1—N3—C4—C348.1 (2)Cu1—N1—C8—C746.6 (2)
N2—C3—C4—N352.5 (3)N4—C7—C8—N151.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N90.87 (2)2.79 (3)3.525 (4)143 (3)
C1—H1B···N6i0.992.543.273 (4)131
N1—H1···N6i0.87 (2)2.60 (3)3.206 (4)127 (3)
N4—H4···N9ii0.84 (3)2.24 (4)3.067 (3)168 (3)
N3—H3···N7iii0.92 (2)2.05 (2)2.928 (3)159 (4)
N2—H2···N8iv0.94 (2)2.19 (2)3.003 (3)144 (3)
C3—H3B···N10v0.992.643.531 (4)150
C8—H8B···N8vi0.992.563.538 (4)171
C3—H3A···N10vi0.992.643.460 (4)140
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x+1, y+2, z; (iv) x+1, y+1, z+1; (v) x+1, y, z1; (vi) x, y+1, z+1.
Selected geometric parameters (Å, º) for (I) top
Ni1—N12.051 (3)Ni1—N52.101 (3)
Ni1—N82.062 (3)Ni1—N22.125 (3)
Ni1—N32.080 (3)Ni1—N42.134 (3)
N1—Ni1—N887.4 (1)N3—Ni1—N281.6 (1)
N1—Ni1—N397.3 (1)N5—Ni1—N295.4 (1)
N8—Ni1—N3175.3 (1)N1—Ni1—N482.8 (1)
N1—Ni1—N5171.8 (1)N8—Ni1—N498.1 (1)
N8—Ni1—N584.9 (1)N3—Ni1—N482.0 (1)
N3—Ni1—N590.4 (1)N5—Ni1—N4101.2 (1)
N1—Ni1—N283.0 (1)N2—Ni1—N4156.7 (1)
N8—Ni1—N299.7 (1)
Selected geometric parameters (Å, º) for (II) top
Cu1—N22.014 (2)Cu1—N12.034 (2)
Cu1—N32.022 (2)Cu1—N52.097 (2)
Cu1—N42.029 (2)
N2—Cu1—N385.61 (9)N4—Cu1—N185.79 (9)
N2—Cu1—N4148.42 (9)N2—Cu1—N5107.9 (1)
N3—Cu1—N485.57 (9)N3—Cu1—N5101.87 (9)
N2—Cu1—N186.11 (9)N4—Cu1—N5103.57 (9)
N3—Cu1—N1148.55 (9)N1—Cu1—N5109.54 (9)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···N7i0.992.743.665 (5)155.7
N3—H3···N7i0.95 (2)2.45 (3)3.330 (5)154 (4)
N1—H1···N10ii0.90 (2)2.11 (3)2.907 (5)148 (4)
N2—H2···N6iii0.91 (2)2.22 (3)3.064 (4)155 (4)
C4—H4B···N9iv0.992.573.467 (5)150.9
N4—H4···N6v0.90 (2)2.70 (4)3.372 (4)133 (4)
C7—H7B···N6v0.992.703.397 (5)127.7
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x1, y+3/2, z1/2; (v) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N90.87 (2)2.79 (3)3.525 (4)143 (3)
C1—H1B···N6i0.992.543.273 (4)130.7
N1—H1···N6i0.87 (2)2.60 (3)3.206 (4)127 (3)
N4—H4···N9ii0.84 (3)2.24 (4)3.067 (3)168 (3)
N3—H3···N7iii0.92 (2)2.05 (2)2.928 (3)159 (4)
N2—H2···N8iv0.94 (2)2.19 (2)3.003 (3)144 (3)
C3—H3B···N10v0.992.643.531 (4)150.3
C8—H8B···N8vi0.992.563.538 (4)170.9
C3—H3A···N10vi0.992.643.460 (4)140.2
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x+1, y+2, z; (iv) x+1, y+1, z+1; (v) x+1, y, z1; (vi) x, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni(C4N3)2(C8H20N4)][Cu(C4N3)(C8H20N4)](C4N3)
Mr411.13415.96
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)173173
a, b, c (Å)10.6300 (12), 11.0150 (12), 17.1771 (18)7.4074 (15), 11.552 (2), 11.625 (2)
α, β, γ (°)90, 104.828 (2), 9089.187 (3), 88.236 (3), 78.579 (3)
V3)1944.3 (4)974.6 (3)
Z42
Radiation typeMo KαMo Kα
µ (mm1)1.021.14
Crystal size (mm)0.06 × 0.05 × 0.040.10 × 0.07 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.670, 0.7460.680, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12264, 4611, 3460 6936, 4267, 3639
Rint0.0320.021
(sin θ/λ)max1)0.6590.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.136, 1.05 0.033, 0.110, 1.13
No. of reflections46114267
No. of parameters259260
No. of restraints123
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.05, 0.670.43, 0.30

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Shanghai Municipal Natural Science Foundation (No. 13ZR1448600).

References

First citationAbrahams, B. F., Batten, S. R., Hoskins, B. F. & Robson, R. (2003). Inorg. Chem. 42, 2654–2664.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBatten, S. R., Hoskins, B. F., Moubaraki, B., Murray, K. S. & Robson, R. (1999). J. Chem. Soc. Dalton Trans. pp. 2977–2986.  Web of Science CSD CrossRef Google Scholar
First citationBatten, S. R., Hoskins, B. F. & Robson, R. (1998). Inorg. Chem. 37, 3432–3434.  Web of Science CSD CrossRef CAS Google Scholar
First citationBatten, S. R., Hoskins, B. F. & Robson, R. (2000). Chem. Eur. J. 6, 156–161.  CrossRef PubMed CAS Google Scholar
First citationBelda, R., Blasco, S., Verdejo, B., Jiménez, H. R., Doménech-Carbó, A., Soriano, C., Latorre, J., Terencio, C. & García-España, E. (2013). Dalton Trans. 42, 11194–11204.  CSD CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChainok, K., Neville, S. M., Forsyth, C. M., Gee, W. J., Murray, K. S. & Batten, S. R. (2012). CrystEngComm, 14, 3717–3726.  CSD CrossRef CAS Google Scholar
First citationClay, R., Murray-Rust, P. & Murray-Rust, J. (1979). Acta Cryst. B35, 1894–1895.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFeyerherm, R., Loose, A., Landsgesell, S. & Manson, J. L. (2004). Inorg. Chem. 43, 6633–6639.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHerchel, R., Váhovská, L., Potočňák, I. & Trávníček, Z. (2014). Inorg. Chem. 53, 5896–5898.  CrossRef CAS PubMed Google Scholar
First citationHodgson, S. A., Adamson, J., Hunt, S. J., Cliffe, M. J., Cairns, A. B., Thompson, A. L., Tucker, M. G., Funnell, N. P. & Goodwin, A. L. (2014). Chem. Commun. 50, 5264–5266.  CSD CrossRef CAS Google Scholar
First citationHoshino, H., Iida, K., Kawamoto, T. & Mori, T. (1999). Inorg. Chem. 38, 4229–4232.  Web of Science CSD CrossRef CAS Google Scholar
First citationHunt, S. J., Cliffe, M. J., Hill, J. A., Cairns, A. B., Funnell, N. P. & Goodwin, A. L. (2015). CrystEngComm, 17, 361–369.  CSD CrossRef CAS PubMed Google Scholar
First citationLuo, J., Gao, Y., Qiu, L.-J., Liu, B.-S., Zhang, X. R., Cui, L. L. & Yang, F. (2014). Inorg. Chim. Acta, 416, 215–221.  CSD CrossRef CAS Google Scholar
First citationLuo, J., Shao, Z.-H., Gao, E.-Q., Wang, C.-F., Cai, R.-F. & Zhou, X.-G. (2006). Inorg. Chem. Commun. 9, 196–200.  CSD CrossRef CAS Google Scholar
First citationManson, J. L., Campana, C. & Miller, J. S. (1998). Chem. Commun. pp. 251–252.  Web of Science CSD CrossRef Google Scholar
First citationManson, J. L., Ressouche, E. & Miller, J. S. (2000). Inorg. Chem. 39, 1135–1141.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationManson, J. L. & Schlueter, J. A. (2004). Inorg. Chim. Acta, 357, 3975–3979.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatel, R. N., Kesharwani, M. K., Singh, A., Patel, D. K. & Choudhary, M. (2008). Transition Met. Chem. 33, 733–738.  Web of Science CSD CrossRef CAS Google Scholar
First citationPotočňák, I., Lancz, G., Růžička, A. & Jäger, L. (2007). Acta Cryst. E63, m2072–m2073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQi, Z.-P., Li, P.-Y., Sun, J.-J., Zhu, L.-L. & Wang, K. (2014). Polyhedron, 68, 365–371.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShirase, H., Miura, Y. & Fukuda, Y. (2009). Monatsh. Chem. 140, 807–814.  CSD CrossRef CAS Google Scholar
First citationVáhovská, L., Potočňák, I., Vitushkina, S., Dušek, M., Titiš, J. & Boča, R. (2014). Polyhedron, 81, 396–408.  Google Scholar
First citationVreshch, V., Nohra, B., Lescop, C. & Réau, R. (2013). Inorg. Chem. 52, 1496–1503.  CSD CrossRef CAS PubMed Google Scholar
First citationYeung, W.-F., Kwong, H.-K., Lau, T.-C., Gao, S., Szeto, L. & Wong, W. T. (2006). Polyhedron, 25, 1256–1262.  CSD CrossRef CAS Google Scholar
First citationYeung, W.-F., Wong, W.-T., Zuo, J.-L. & Lau, T.-C. (2000). J. Chem. Soc. Dalton Trans. pp. 629–631.  Web of Science CSD CrossRef Google Scholar
First citationYuste, C., Armentano, D., Marino, N., Cañadillas-Delgado, L., Delgado, F. S., Ruiz-Pérez, C., Rillema, D. P., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 1583–1596.  Web of Science CSD CrossRef Google Scholar
First citationYuste, C., Bentama, A., Stiriba, S.-E., Armentano, D., De Munno, G., Lloret, F. & Julve, M. (2007). Dalton Trans. pp. 5190–5200.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 693-697
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds