research communications
Crystal structures of (1,4,7,10-tetraazacyclododecane-κ4N)bis(tricyanomethanido-κN)nickel and (1,4,7,10-tetraazacyclododecane-κ4N)(tricyanomethanido-κN)copper tricyanomethanide
aSchool of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
*Correspondence e-mail: liubaoshu@126.com
The structures of two mononuclear transition-metal complexes with tricyanomethanide (tcm−) and 1,4,7,10-tetraazacyclododecane (cyclen) ligands, [Ni(C4N3)2(C8H20N4)], (I), and [Cu(C4N3)(C8H20N4)](C4N3), (II), are reported. In the neutral complex (I), the nickel cation is coordinated by one cyclen ligand and two monodentate N-bound tcm− anions in a distorted octahedral geometry. The tcm− ligands are mutually cis. The CuII atom in (II) displays a distorted tetragonal–pyramidal geometry, with the four N-donor atoms of the cyclen ligand in the equatorial plane, and one tcm− anion bound through a single N atom in an axial site, forming a monocation. The second tcm− molecule acts as a counter-ion not directly coordinating to the copper cation. In both (I) and (II), extensive series of N—H⋯N and C—H⋯N hydrogen bonds generate three-dimensional network structures.
1. Chemical context
Coordination polymers constructed by the tricyanomethanide anion (tcm−) have attracted considerable interest due to their fascinating structural characteristics (Hunt et al., 2015; Hodgson et al., 2014; Chainok et al., 2012; Vreshch et al., 2013) and interesting magnetic properties (Luo et al., 2014; Herchel et al., 2014; Váhovská et al., 2014). To date, with the exception of a doubly interpenetrated (6,3) sheet, observed in Ag(tcm)2− (Abrahams et al., 2003), most binary tcm− complexes display a rutile-like structure (Manson et al., 2000, 1998; Hoshino et al., 1999; Feyerherm et al., 2004). To gain an insight into the influence of co-ligands on the structural and magnetic properties of tcm− complexes, various co-ligands, such as hexamethylenetetramine, 4,4-bipyridyl and 1,2-di(pyridin-4-yl)ethane have been introduced to the binary tcm complexes. Among the CuI or CdII tcm− complexes with such co-ligands, numerous structural types ranging from doubly interpenetrated (4,4) sheets to three-dimensional rutile networks have been observed (Batten et al., 2000, 1998). By contrast, modification of the MnII–tcm binary system with 4,4-bipyridyl as a co-ligand leads to the formation of a one-dimensional chain-like structure (Manson et al., 2004). In addition, the Julve group (Yuste et al., 2007, 2008) recently reported the polymeric structures of copper tcm− complexes with co-ligands such as bis(2-pyridyl)pyrazine, 2,2′-bipyrazine and 2,3,5,6-tetrakis(2-pyridyl)pyrazine and found them to have interesting magnetic properties. 1,4,7,10-Tetraazacyclododecane (cyclen) is a novel co-ligand with four potential nitrogen donor atoms. However, no tcm− complexes incorporating cyclen as a co-ligand have been reported previously. As part of our systematic investigation of the effect of cyclen as a co-ligand on the structures and properties of tcm− complexes, we have prepared two new tcm− complexes and we report herein the syntheses and crystal structures of Ni(cyclen)(C4N3)2 (I) and [Cu(cyclen)(C4N3)]+(C4N3)− (II).
2. Structural commentary
In (I), the nickel cation binds to the four N atoms of the cyclen and two N atoms of two tcm− anions, forming a distorted octahedral geometry with the tcm− ligands mutually cis. The equatorial plane is therefore formed by two N atoms (N1, N3) of the cyclen unit and the N5 and N8 atoms of the coordinating tcm− anions. The apical sites are occupied by N2 and N4 from the cyclen ligand, Fig. 1.
In (II), the copper cation is also bound to the four N atoms (N1, N2, N3, N4) of a cyclen ligand but in the basal plane with the N5 atom of the tcm− ligand in an apical site, forming a five-coordinate cation with a distorted square-pyramidal coordination geometry. The second tcm− anion does not enter the inner coordination sphere of the metal (Fig. 2), but acts as a counter-anion that is linked to the cation in the through an N1—H1⋯N9 hydrogen bond (Fig. 2).
The Ni—N(cyclen) distances in (I) [2.051 (3)–2.134 (3) Å] show some variation, but these values are similar to the corresponding distances in other polyamine-containing nickel complexes (Shirase et al., 2009; Patel et al., 2008). The Ni—N(tcm) distances, 2.062 (3) and 2.101 (3) Å, Table 1, of (I) are not unusual, and these data are comparable to the corresponding distances in other closely related nickel complexes with tcm− ligands (Luo et al., 2014, 2006).
|
In (II), the Cu—N(cyclen) distances range from 2.014 (2) to 2.034 (2) Å, and are similar to distances found in other reported copper complexes with polyamine co-ligands (Qi et al., 2014; Belda et al., 2013). In (II), the Cu—N(tcm) distance [2.097 (2) Å, Table 2) is also similar to the distances found in previously reported copper tcm− complexes (Yuste et al., 2007, 2008).
|
In (I), the N—Ni—N angles, involving two cis-related basal N atoms and the N(apical)—Ni—N(basal) angle range from 84.9 (1) to 97.3 (1)° and 81.6 (1) to 101.2 (1)°, respectively. The corresponding values for (II) are 85.57 (9) to 86.11 (9)° and 101.87 (9) to 109.54 (9)°, respectively, again indicating that the distortion from the octahedral and square-pyramidal geometries in (I) and (II) is not particularly severe.
Each tcm− ligand is almost planar, with the mean deviations from the planes through all atoms of the coordinating tcm− anions being 0.0128 and 0.0322 Å, respectively in (I). For (II), the corresponding deviations from the planes of the coordinating tcm− anion and the tcm− counter-anion are 0.0211 and 0.0074 Å respectively. Bond lengths and angles within the anions are also in good agreement with those found in other tcm− complexes (Batten et al., 1999; Yuste et al., 2008).
3. Supramolecular features
In the , each complex molecule is linked to five others by a series of N—H⋯N and C—H⋯N hydrogen bonds. N1—H1⋯N10 and N2—H2⋯N6 hydrogen bonds each form inversion dimers, joining the complex molecule to two neighbouring molecules and generating R22(16) ring motifs (Bernstein et al., 1995). N3—H3⋯N7 and N4—H4⋯N6 hydrogen bonds link two additional complex molecules. A C4—H4B⋯N9 contact involves the fifth complex. This array of contacts combines to generate an extensive three-dimensional network (Fig. 3, Table 3).
of (I)In the , N1—H1⋯N6 and N3—H3⋯N7 hydrogen bonds each form inversion dimers, also linking the complex cation to two neighbouring cations and generating R22(16) ring motifs. Each complex molecule is also linked via N—H⋯N and C—H⋯N hydrogen bonds to two adjacent complex cations and three tcm− anions, forming another extensive three-dimensional network (Fig. 4, Table 4).
of (II)
|
4. Database survey
Structures of transition-metal complexes with two or more tcm− ligands are quite common with 47 unique compounds recorded in the Cambridge Crystallographic Database (Version 5.36, November 2014 with two updates; Groom & Allen, 2014). Of these the majority, 35, are polymeric or oligomeric systems. Five of these are NiII complexes but only two of them [tris(2-aminoethyl)amine]bis(tricyanomethanide)nickel(II) (Luo et al., 2014) and cis-bis(tricyanomethanide-κN)[tris(2-aminoethyl)amine-κ4N]nickel(II) (Potočňák et al., 2007) are mononuclear, each with a distorted octahedral coordination environment and with the tcm− ligands mutually cis.
The number of transition-metal complexes with the cyclen ligand is huge, with 116 unique hits in the current Database. Among these, there are twenty NiII complexes and nine CuII complexes. Representative Ni complexes include [Ni(cyclen)]2[Pt(CN)4]2·6H2O and [Ni(cyclen)]2[(Ni(CN)4)]2·6H2O (Yeung et al., 2006), while examples of Cu complexes are [Cu(cyclen)(Au(CN)2)]+·[Au(CN)2]− (Yeung et al., 2000) and [Cu(cyclen)(NO3)]+·NO3− (Clay et al., 1979). However, no complexes containing a transition metal coordinated by both cyclen and tcm− ligands were found.
5. Synthesis and crystallization
A 5 ml ethanol solution of 1,4,7,10-tetraazacyclododecane (0.10 mmol, 17.23 mg) and 2 ml of a green aqueous solution of nickel(II) nitrate (0.10 mmol, 29.08 mg) were mixed and stirred for 5 min; the resulting solution was purple. A 3 ml ethanol–water solution (EtOH:H2O = 2:1, v:v) of potassium tricyanomethanide (0.20 mmol, 25.83 mg) was then added. After stirring for another 5 min, the purple solution was filtered and the filtrate slowly evaporated in air. After two weeks, purple block-like crystals of (I) were isolated in 31% yield. Analysis calculated for C16H20N10Ni: C 46.75%, H 4.90%, N 34.07%. Found C 46.91%, H 5.03%, N 34.26%. Using copper(II) nitrate instead of nickel(II) nitrate, blue block-like crystals of (II) were prepared in a similar manner in 25% yield. Analysis calculated for C16H20N10Cu: C 46.20%, H 4.85%, N 33.67%. Found C 46.42%, H 5.01%, N 33.85%.
6. Refinement
Crystal data, data collection and structure . In (I), the H1, H2, H3 and H4 atoms bound to the amine N atoms were found in a difference Fourier map and refined freely with isotropic displacement parameters. The N—H distances ranged from 0.90 (2) to 0.95 (2) Å. H atoms bound to carbon were constrained to an ideal geometry with C—H distances of 0.99 Å, and with Uiso = 1.2Ueq(C) for CH2. In (II), the amine H1, H2, H3 and H4 atoms and the H atoms linked to carbon were refined similarly. The N—H distances were in the range 0.84 (3) to 0.94 (2) Å.
details are summarized in Table 5
|
Supporting information
10.1107/S2056989015009524/sj5461sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015009524/sj5461Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S2056989015009524/sj5461IIsup3.hkl
Supporting information file. DOI: 10.1107/S2056989015009524/sj5461sup4.pdf
Supporting information file. DOI: 10.1107/S2056989015009524/sj5461sup5.pdf
Supporting information file. DOI: 10.1107/S2056989015009524/sj5461sup6.pdf
Coordination polymers constructed by the tricyanomethanide anion (tcm-) have attracted considerable interest due to their fascinating structural characteristics (Hunt et al., 2015; Hodgson et al., 2014; Chainok et al., 2012; Vreshch et al., 2013) and interesting magnetic properties (Luo et al., 2014; Herchel et al., 2014; Váhovská et al., 2014). To date, with the exception of a doubly interpenetrated (6,3) sheet, observed in Ag(tcm)2- (Abrahams et al., 2003), most binary tcm- complexes display a rutile-like structure (Manson et al., 2000, 1998; Hoshino et al., 1999; Feyerherm et al., 2004). To gain an insight into the influence of co-ligands on the structural and magnetic properties of tcm- complexes, various co-ligands, such as hexamethylenetetramine, 4,4-bipyridyl and 1,2-di(pyridin-4-yl)ethane have been introduced to the binary tcm complexes. Among the CuI or CdII tcm- complexes with such co-ligands, numerous structural types ranging from doubly interpenetrated (4,4) sheets to three-dimensional rutile networks have been observed (Batten et al., 2000, 1998). By contrast, modification of the MnII–tcm binary system with 4,4-bipyridyl as a co-ligand leads to the formation of a one-dimensional chain-like structure (Manson et al., 2004). In addition, the Julve group (Yuste et al., 2007, 2008) recently reported the polymeric structures of copper tcm- complexes with co-ligands such as bis(2-pyridyl)pyrazine, 2,2'-bipyrazine and 2,3,5,6-tetrakis(2-pyridyl)pyrazine and found them to have interesting magnetic properties. 1,4,7,10-Tetraazacyclododecane (cyclen) is a novel co-ligand with four potential nitrogen donor atoms. However, no tcm- complexes incorporating cyclen as a co-ligand have been reported previously. As part of our systematic investigation of the effect of cyclen as a co-ligand on the structures and properties of tcm- complexes, we have prepared two new tcm- complexes and we report herein the syntheses and crystal structures of Ni(cyclen)(C4N3)2 (I) and [Cu(cyclen)(C4N3)]+(C4N3)- (II).
In (I), the nickel cation binds to the four N atoms of the cyclen and two N atoms of two tcm- anions, forming a distorted octahedral geometry with the tcm- ligands mutually cis. The equatorial plane is therefore formed by two N atoms (N1, N3) of the cyclen unit and the N5 and N8 atoms of the coordinating tcm- anions. The apical sites are occupied by N2 and N4 from the cyclen ligand, Fig. 1.
In (II), the copper cation is also bound to the four N atoms (N1, N2, N3, N4) of a cyclen ligand but in the basal plane with the N5 atom of the tcm- ligand in an apical site, forming a five-coordinate cation with a distorted square-pyramidal coordination geometry. The second tcm- anion does not enter the inner coordination sphere of the metal (Fig. 2), but acts as a counter-anion that is linked to the cation in the
through an N1—H1···N9 hydrogen bond (Fig. 2).The Ni—N(cyclen) distances in (I) [2.051 (3)–2.134 (3) Å] show some variation, but these values are similar to the corresponding distances in other polyamine-containing nickel complexes (Shirase et al., 2009; Patel et al., 2008). The Ni—N(tcm) distances, 2.062 (3) and 2.101 (3) Å, Table 1, of (I) are not unusual, and these data are comparable to the corresponding distances in other closely related nickel complexes with tcm- ligands (Luo et al., 2014, 2006).
In (II), the Cu—N(cyclen) distances range from 2.014 (2) to 2.034 (2) Å, and are similar to distances found in other reported copper complexes with polyamine co-ligands (Qi et al., 2014; Belda et al., 2013). In (II), the Cu—N(tcm) distance [2.097 (2) Å, Table 2) is also similar to the distances found in previously reported copper tcm- complexes (Yuste et al., 2007, 2008).
In (I), the N—Ni—N angles, involving two cis-related basal N atoms and the N(apical)—Ni—N(basal) angle range from 84.9 (1) to 97.3 (1)° and 81.6 (1) to 101.2 (1)°, respectively. The corresponding values for (II) are 85.57 (9) to 86.11 (9)° and 101.87 (9) to 109.54 (9)°, respectively, again indicating that the distortion from the octahedral and square-pyramidal geometries in (I) and (II) is not particularly severe.
Each tcm- ligand is almost planar, with the mean deviations from the planes through all atoms of the coordinated tcm- anions being 0.0128 and 0.0322 Å, respectively in (I). For (II), the corresponding deviations from the planes of the coordinating tcm- anion and the tcm- counter-anion are 0.0211 and 0.0074 Å respectively. Bond lengths and angles within the anions are also in good agreement with those found in other tcm- complexes (Batten et al., 1999; Yuste et al., 2008).
In the
of (I), each complex molecule is linked to five others by a series of N—H···N and C—H···N hydrogen bonds. N1—H1···N10 and N2—H2···N6 hydrogen bonds each form inversion dimers, joining the complex molecule to two neighbouring molecules and generating R22(16) ring motifs (Bernstein et al., 1995). N3—H3···N7 and N4—H4···N6 hydrogen bonds link two additional complex molecules. A C4—H4B···N9 contact involves the fifth complex. This array of contacts combines to generate an extensive the three-dimensional network (Fig. 3, Table 3).In the
of (II), N1—H1···N6 and N3—H3···N7 hydrogen bonds each form inversion dimers, also linking the complex cation to two neighbouring cations and generating R22(16) ring motifs. Each complex molecule is also linked via N—H···N and C—H···N hydrogen bonds to two adjacent complex cations and three tcm- anions, forming another extensive three-dimensional network (Fig. 4, Table 4).Structures of transition-metal complexes with two or more tcm- ligands are quite common with 47 unique compounds recorded in the Cambridge Crystallographic Database (Version 5.36, November 2014 with two updates; Groom & Allen, 2014). Of these the majority, 35, are polymeric or oligomeric systems. Five of these are NiII complexes but only two of them [tris(2-aminoethyl)amine]bis(tricyanomethanide)nickel(II) (Luo et al., 2014) and cis-bis(tricyanomethanide-κN)[tris(2-aminoethyl)amine-κ4N]nickel(II) (Potocnak et al., 2007) are mononuclear, each with a distorted octahedral coordination environment and with the tcm- ligands mutually cis.
The number of transition-metal complexes with the cyclen ligand is huge, with 116 unique hits in the current Database. Among these, there are twenty NiII complexes and nine CuII complexes. Representative Ni complexes include [Ni(cyclen)]2[Pt(CN)4]2·6H2O and [Ni(cyclen)]2[(Ni(CN)4)]2·6H2O (Yeung et al., 2006), while examples of Cu complexes are [Cu(cyclen)(Au(CN)2)]+·[Au(CN)2]- (Yeung et al., 2000) and [Cu(cyclen)(NO3)]+·NO3- (Clay et al., 1979). However, no complexes containing a transition metal coordinated by both cyclen and tcm- ligands were found.
A 5 ml ethanol solution of 1,4,7,10-tetraazacyclododecane (0.10 mmol, 17.23 mg) and 2 ml of a green aqueous solution of nickel(II) nitrate (0.10 mmol, 29.08 mg) were mixed and stirred for 5 min; the resulting solution was purple. A 3 ml ethanol–water solution (EtOH:H2O = 2:1, v:v) of potassium tricyanomethanide (0.20 mmol, 25.83 mg) was then added. After stirring for another 5 min, the purple solution was filtered and the filtrate slowly evaporated in air. After two weeks, purple block-like crystals of (I) were isolated in 31% yield. Analysis calculated for C16H20N10Ni: C 46.75%, H 4.90%, N 34.07%. Found C 46.91%, H 5.03%, N 34.26%. Using copper(II) nitrate instead of nickel(II) nitrate, blue block-like crystals of (II) were prepared in a similar manner in 25% yield. Analysis calculated for C16H20N10Cu: C 46.20%, H 4.85%, N 33.67%. Found C 46.42%, H 5.01%, N 33.85%.
In (I), the H1, H2, H3 and H4 atoms bound to the amine N atoms were found in a difference Fourier map and refined freely with isotropic displacement parameters. The N—H distances ranged from 0.90 (2) to 0.95 (2) Å. H atoms bound to carbon were constrained to an ideal geometry with C—H distances of 0.99 Å, and with Uiso = 1.2Ueq(C) for CH2. In (II), the amine H1, H2, H3 and H4 atoms and the H atoms linked to carbon were refined similarly. The N—H distances were in the range 0.84 (3) to 0.94 (2) Å.
For both compounds, data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A view of the molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond between the cation and anion is shown as a dashed line. | |
Fig. 3. The three-dimensional network of (I), formed by hydrogen-bonding interactions, viewed along the b axis. Hydrogen bonds are drawn as dashed lines. | |
Fig. 4. The three-dimensional network of (II), formed by hydrogen-bonding interactions, viewed along the a axis. Hydrogen bonds are drawn as dashed lines. |
[Ni(C4N3)2(C8H20N4)] | F(000) = 856 |
Mr = 411.13 | Dx = 1.405 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.6300 (12) Å | Cell parameters from 3344 reflections |
b = 11.0150 (12) Å | θ = 2.5–27.8° |
c = 17.1771 (18) Å | µ = 1.02 mm−1 |
β = 104.828 (2)° | T = 173 K |
V = 1944.3 (4) Å3 | Block, purple |
Z = 4 | 0.06 × 0.05 × 0.04 mm |
Bruker APEXII CCD diffractometer | 3460 reflections with I > 2σ(I) |
ϕ and ω scans | Rint = 0.032 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | θmax = 27.9°, θmin = 2.0° |
Tmin = 0.670, Tmax = 0.746 | h = −10→13 |
12264 measured reflections | k = −14→14 |
4611 independent reflections | l = −20→22 |
Refinement on F2 | 12 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.0532P)2 + 3.2428P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.004 |
4611 reflections | Δρmax = 1.05 e Å−3 |
259 parameters | Δρmin = −0.67 e Å−3 |
[Ni(C4N3)2(C8H20N4)] | V = 1944.3 (4) Å3 |
Mr = 411.13 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.6300 (12) Å | µ = 1.02 mm−1 |
b = 11.0150 (12) Å | T = 173 K |
c = 17.1771 (18) Å | 0.06 × 0.05 × 0.04 mm |
β = 104.828 (2)° |
Bruker APEXII CCD diffractometer | 4611 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3460 reflections with I > 2σ(I) |
Tmin = 0.670, Tmax = 0.746 | Rint = 0.032 |
12264 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 12 restraints |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 1.05 e Å−3 |
4611 reflections | Δρmin = −0.67 e Å−3 |
259 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.31796 (4) | 0.67335 (4) | 0.21935 (2) | 0.02888 (13) | |
N1 | 0.2130 (3) | 0.6100 (3) | 0.29576 (17) | 0.0345 (6) | |
H1 | 0.279 (3) | 0.589 (4) | 0.337 (2) | 0.064 (14)* | |
N2 | 0.2664 (3) | 0.5030 (3) | 0.16203 (18) | 0.0443 (7) | |
H2 | 0.339 (3) | 0.472 (4) | 0.151 (2) | 0.055 (13)* | |
N3 | 0.1611 (4) | 0.7305 (3) | 0.12737 (19) | 0.0530 (9) | |
H3 | 0.091 (4) | 0.711 (3) | 0.150 (2) | 0.079* | |
N4 | 0.2863 (3) | 0.8444 (3) | 0.26943 (19) | 0.0394 (7) | |
H4 | 0.365 (3) | 0.881 (4) | 0.284 (3) | 0.073 (15)* | |
C1 | 0.1384 (4) | 0.5016 (4) | 0.2615 (3) | 0.0506 (10) | |
H1A | 0.0566 | 0.5259 | 0.2224 | 0.061* | |
H1B | 0.1159 | 0.4536 | 0.3048 | 0.061* | |
C2 | 0.2200 (4) | 0.4269 (4) | 0.2202 (3) | 0.0553 (11) | |
H2A | 0.2955 | 0.3931 | 0.2607 | 0.066* | |
H2B | 0.1680 | 0.3582 | 0.1916 | 0.066* | |
C3 | 0.1642 (5) | 0.5211 (5) | 0.0857 (3) | 0.0642 (13) | |
H3A | 0.1869 | 0.4734 | 0.0424 | 0.077* | |
H3B | 0.0802 | 0.4901 | 0.0925 | 0.077* | |
C4 | 0.1492 (5) | 0.6485 (4) | 0.0617 (3) | 0.0611 (13) | |
H4A | 0.2159 | 0.6691 | 0.0328 | 0.073* | |
H4B | 0.0628 | 0.6597 | 0.0237 | 0.073* | |
C5 | 0.1683 (5) | 0.8539 (4) | 0.1225 (3) | 0.0748 (17) | |
H5A | 0.0853 | 0.8850 | 0.0880 | 0.090* | |
H5B | 0.2384 | 0.8753 | 0.0965 | 0.090* | |
C6 | 0.1952 (4) | 0.9164 (4) | 0.2047 (3) | 0.0549 (11) | |
H6A | 0.2333 | 0.9975 | 0.2009 | 0.066* | |
H6B | 0.1119 | 0.9281 | 0.2195 | 0.066* | |
C7 | 0.2311 (4) | 0.8170 (4) | 0.3387 (2) | 0.0448 (9) | |
H7A | 0.1834 | 0.8888 | 0.3508 | 0.054* | |
H7B | 0.3027 | 0.7990 | 0.3869 | 0.054* | |
C8 | 0.1402 (3) | 0.7099 (4) | 0.3202 (2) | 0.0419 (9) | |
H8A | 0.1108 | 0.6868 | 0.3684 | 0.050* | |
H8B | 0.0628 | 0.7303 | 0.2762 | 0.050* | |
N5 | 0.4473 (3) | 0.7223 (3) | 0.15041 (17) | 0.0456 (8) | |
N6 | 0.5442 (3) | 0.6048 (3) | −0.07283 (18) | 0.0410 (7) | |
N7 | 0.8599 (3) | 0.6841 (4) | 0.1448 (2) | 0.0676 (11) | |
C9 | 0.6177 (3) | 0.6745 (3) | 0.07428 (19) | 0.0313 (6) | |
C10 | 0.5245 (3) | 0.7011 (3) | 0.11644 (19) | 0.0341 (7) | |
C11 | 0.5768 (3) | 0.6366 (3) | −0.0066 (2) | 0.0322 (7) | |
C12 | 0.7506 (3) | 0.6795 (4) | 0.1130 (2) | 0.0400 (8) | |
N8 | 0.4834 (3) | 0.6233 (3) | 0.30541 (16) | 0.0351 (6) | |
N9 | 0.8889 (4) | 0.7038 (4) | 0.4340 (2) | 0.0632 (11) | |
N10 | 0.6565 (5) | 0.4491 (7) | 0.5383 (3) | 0.121 (3) | |
C13 | 0.6733 (3) | 0.5974 (3) | 0.42904 (19) | 0.0324 (7) | |
C14 | 0.5682 (3) | 0.6129 (3) | 0.36206 (18) | 0.0300 (7) | |
C15 | 0.7916 (4) | 0.6567 (3) | 0.4323 (2) | 0.0387 (8) | |
C16 | 0.6636 (4) | 0.5171 (5) | 0.4895 (2) | 0.0639 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0232 (2) | 0.0426 (2) | 0.02079 (19) | 0.00588 (18) | 0.00552 (14) | 0.00459 (17) |
N1 | 0.0218 (13) | 0.0488 (17) | 0.0330 (15) | −0.0004 (12) | 0.0069 (11) | 0.0090 (13) |
N2 | 0.0386 (17) | 0.0516 (19) | 0.0366 (16) | 0.0118 (15) | −0.0017 (13) | −0.0061 (14) |
N3 | 0.054 (2) | 0.062 (2) | 0.0366 (17) | 0.0311 (18) | 0.0001 (15) | 0.0008 (15) |
N4 | 0.0309 (15) | 0.0434 (17) | 0.0468 (17) | 0.0001 (13) | 0.0152 (13) | 0.0001 (14) |
C1 | 0.0335 (18) | 0.053 (2) | 0.063 (2) | −0.0105 (18) | 0.0080 (17) | 0.011 (2) |
C2 | 0.044 (2) | 0.045 (2) | 0.068 (3) | −0.0018 (19) | −0.001 (2) | 0.002 (2) |
C3 | 0.057 (3) | 0.075 (3) | 0.046 (2) | 0.022 (2) | −0.013 (2) | −0.016 (2) |
C4 | 0.062 (3) | 0.064 (3) | 0.040 (2) | −0.017 (2) | −0.0205 (19) | 0.0129 (19) |
C5 | 0.076 (3) | 0.044 (2) | 0.078 (3) | −0.003 (2) | −0.028 (3) | 0.016 (2) |
C6 | 0.062 (3) | 0.049 (2) | 0.065 (3) | 0.022 (2) | 0.036 (2) | 0.020 (2) |
C7 | 0.0416 (19) | 0.061 (2) | 0.0325 (18) | 0.0042 (19) | 0.0109 (15) | −0.0095 (17) |
C8 | 0.0279 (16) | 0.070 (3) | 0.0313 (17) | 0.0059 (17) | 0.0147 (14) | 0.0073 (17) |
N5 | 0.0432 (17) | 0.069 (2) | 0.0291 (15) | 0.0105 (16) | 0.0171 (13) | 0.0107 (14) |
N6 | 0.0416 (17) | 0.0470 (18) | 0.0360 (16) | −0.0025 (14) | 0.0126 (13) | −0.0032 (13) |
N7 | 0.0364 (18) | 0.105 (3) | 0.055 (2) | 0.000 (2) | 0.0007 (16) | −0.005 (2) |
C9 | 0.0294 (15) | 0.0376 (17) | 0.0285 (15) | −0.0012 (14) | 0.0103 (12) | 0.0040 (14) |
C10 | 0.0337 (17) | 0.0421 (19) | 0.0264 (15) | 0.0010 (14) | 0.0075 (13) | 0.0079 (13) |
C11 | 0.0275 (16) | 0.0355 (17) | 0.0356 (18) | −0.0026 (13) | 0.0119 (13) | 0.0037 (14) |
C12 | 0.0337 (18) | 0.051 (2) | 0.0357 (18) | 0.0001 (17) | 0.0089 (14) | −0.0001 (16) |
N8 | 0.0265 (14) | 0.0517 (17) | 0.0266 (13) | −0.0004 (13) | 0.0061 (11) | 0.0061 (12) |
N9 | 0.044 (2) | 0.064 (2) | 0.069 (3) | −0.0160 (18) | −0.0102 (18) | 0.0013 (19) |
N10 | 0.062 (3) | 0.217 (7) | 0.075 (3) | −0.003 (4) | 0.002 (2) | 0.095 (4) |
C13 | 0.0279 (16) | 0.0429 (18) | 0.0251 (15) | 0.0065 (14) | 0.0043 (12) | −0.0006 (13) |
C14 | 0.0276 (15) | 0.0385 (17) | 0.0253 (15) | 0.0039 (13) | 0.0093 (12) | 0.0003 (13) |
C15 | 0.0366 (19) | 0.0402 (19) | 0.0315 (17) | 0.0023 (16) | −0.0056 (14) | −0.0071 (14) |
C16 | 0.0330 (19) | 0.120 (4) | 0.035 (2) | 0.007 (2) | 0.0033 (16) | 0.028 (2) |
Ni1—N1 | 2.051 (3) | C3—H3B | 0.9900 |
Ni1—N8 | 2.062 (3) | C4—H4A | 0.9900 |
Ni1—N3 | 2.080 (3) | C4—H4B | 0.9900 |
Ni1—N5 | 2.101 (3) | C5—C6 | 1.529 (7) |
Ni1—N2 | 2.125 (3) | C5—H5A | 0.9900 |
Ni1—N4 | 2.134 (3) | C5—H5B | 0.9900 |
N1—C8 | 1.467 (5) | C6—H6A | 0.9900 |
N1—C1 | 1.470 (5) | C6—H6B | 0.9900 |
N1—H1 | 0.90 (2) | C7—C8 | 1.506 (6) |
N2—C2 | 1.482 (6) | C7—H7A | 0.9900 |
N2—C3 | 1.486 (5) | C7—H7B | 0.9900 |
N2—H2 | 0.91 (2) | C8—H8A | 0.9900 |
N3—C5 | 1.366 (6) | C8—H8B | 0.9900 |
N3—C4 | 1.425 (6) | N5—C10 | 1.146 (4) |
N3—H3 | 0.95 (2) | N6—C11 | 1.155 (4) |
N4—C7 | 1.487 (5) | N7—C12 | 1.152 (5) |
N4—C6 | 1.501 (5) | C9—C12 | 1.399 (5) |
N4—H4 | 0.90 (2) | C9—C10 | 1.400 (4) |
C1—C2 | 1.499 (6) | C9—C11 | 1.409 (5) |
C1—H1A | 0.9900 | N8—C14 | 1.151 (4) |
C1—H1B | 0.9900 | N9—C15 | 1.150 (5) |
C2—H2A | 0.9900 | N10—C16 | 1.140 (6) |
C2—H2B | 0.9900 | C13—C16 | 1.388 (5) |
C3—C4 | 1.460 (6) | C13—C14 | 1.394 (4) |
C3—H3A | 0.9900 | C13—C15 | 1.406 (5) |
N1—Ni1—N8 | 87.4 (1) | C4—C3—N2 | 112.3 (4) |
N1—Ni1—N3 | 97.3 (1) | C4—C3—H3A | 109.1 |
N8—Ni1—N3 | 175.3 (1) | N2—C3—H3A | 109.1 |
N1—Ni1—N5 | 171.8 (1) | C4—C3—H3B | 109.1 |
N8—Ni1—N5 | 84.9 (1) | N2—C3—H3B | 109.1 |
N3—Ni1—N5 | 90.4 (1) | H3A—C3—H3B | 107.9 |
N1—Ni1—N2 | 83.0 (1) | N3—C4—C3 | 113.9 (4) |
N8—Ni1—N2 | 99.7 (1) | N3—C4—H4A | 108.8 |
N3—Ni1—N2 | 81.6 (1) | C3—C4—H4A | 108.8 |
N5—Ni1—N2 | 95.4 (1) | N3—C4—H4B | 108.8 |
N1—Ni1—N4 | 82.8 (1) | C3—C4—H4B | 108.8 |
N8—Ni1—N4 | 98.1 (1) | H4A—C4—H4B | 107.7 |
N3—Ni1—N4 | 82.0 (1) | N3—C5—C6 | 113.1 (4) |
N5—Ni1—N4 | 101.2 (1) | N3—C5—H5A | 109.0 |
N2—Ni1—N4 | 156.7 (1) | C6—C5—H5A | 109.0 |
C8—N1—C1 | 117.0 (3) | N3—C5—H5B | 109.0 |
C8—N1—Ni1 | 109.9 (2) | C6—C5—H5B | 109.0 |
C1—N1—Ni1 | 110.3 (2) | H5A—C5—H5B | 107.8 |
C8—N1—H1 | 109 (3) | N4—C6—C5 | 112.3 (3) |
C1—N1—H1 | 110 (3) | N4—C6—H6A | 109.1 |
Ni1—N1—H1 | 99 (3) | C5—C6—H6A | 109.1 |
C2—N2—C3 | 112.1 (4) | N4—C6—H6B | 109.1 |
C2—N2—Ni1 | 106.1 (2) | C5—C6—H6B | 109.1 |
C3—N2—Ni1 | 109.5 (3) | H6A—C6—H6B | 107.9 |
C2—N2—H2 | 112 (3) | N4—C7—C8 | 110.7 (3) |
C3—N2—H2 | 110 (3) | N4—C7—H7A | 109.5 |
Ni1—N2—H2 | 107 (3) | C8—C7—H7A | 109.5 |
C5—N3—C4 | 125.3 (4) | N4—C7—H7B | 109.5 |
C5—N3—Ni1 | 107.5 (3) | C8—C7—H7B | 109.5 |
C4—N3—Ni1 | 107.5 (3) | H7A—C7—H7B | 108.1 |
C5—N3—H3 | 108 (2) | N1—C8—C7 | 106.9 (3) |
C4—N3—H3 | 105 (2) | N1—C8—H8A | 110.3 |
Ni1—N3—H3 | 101 (3) | C7—C8—H8A | 110.3 |
C7—N4—C6 | 112.9 (3) | N1—C8—H8B | 110.3 |
C7—N4—Ni1 | 106.2 (2) | C7—C8—H8B | 110.3 |
C6—N4—Ni1 | 107.8 (2) | H8A—C8—H8B | 108.6 |
C7—N4—H4 | 113 (3) | C10—N5—Ni1 | 153.1 (3) |
C6—N4—H4 | 111 (3) | C12—C9—C10 | 120.5 (3) |
Ni1—N4—H4 | 106 (3) | C12—C9—C11 | 120.0 (3) |
N1—C1—C2 | 108.5 (3) | C10—C9—C11 | 119.4 (3) |
N1—C1—H1A | 110.0 | N5—C10—C9 | 179.3 (4) |
C2—C1—H1A | 110.0 | N6—C11—C9 | 179.3 (4) |
N1—C1—H1B | 110.0 | N7—C12—C9 | 179.7 (5) |
C2—C1—H1B | 110.0 | C14—N8—Ni1 | 166.7 (3) |
H1A—C1—H1B | 108.4 | C16—C13—C14 | 119.9 (3) |
N2—C2—C1 | 109.9 (3) | C16—C13—C15 | 120.2 (3) |
N2—C2—H2A | 109.7 | C14—C13—C15 | 119.7 (3) |
C1—C2—H2A | 109.7 | N8—C14—C13 | 177.8 (4) |
N2—C2—H2B | 109.7 | N9—C15—C13 | 178.7 (4) |
C1—C2—H2B | 109.7 | N10—C16—C13 | 178.5 (7) |
H2A—C2—H2B | 108.2 | ||
C8—N1—C1—C2 | 164.6 (3) | C4—N3—C5—C6 | −173.8 (4) |
Ni1—N1—C1—C2 | 38.0 (4) | Ni1—N3—C5—C6 | −46.3 (5) |
C3—N2—C2—C1 | −79.0 (4) | C7—N4—C6—C5 | −124.4 (4) |
Ni1—N2—C2—C1 | 40.5 (4) | Ni1—N4—C6—C5 | −7.4 (4) |
N1—C1—C2—N2 | −53.1 (4) | N3—C5—C6—N4 | 36.6 (6) |
C2—N2—C3—C4 | 130.8 (4) | C6—N4—C7—C8 | 80.8 (4) |
Ni1—N2—C3—C4 | 13.3 (5) | Ni1—N4—C7—C8 | −37.2 (3) |
C5—N3—C4—C3 | 170.8 (5) | C1—N1—C8—C7 | −170.0 (3) |
Ni1—N3—C4—C3 | 43.3 (5) | Ni1—N1—C8—C7 | −43.2 (3) |
N2—C3—C4—N3 | −38.4 (6) | N4—C7—C8—N1 | 54.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···N7i | 0.99 | 2.74 | 3.665 (5) | 156 |
N3—H3···N7i | 0.95 (2) | 2.45 (3) | 3.330 (5) | 154 (4) |
N1—H1···N10ii | 0.90 (2) | 2.11 (3) | 2.907 (5) | 148 (4) |
N2—H2···N6iii | 0.91 (2) | 2.22 (3) | 3.064 (4) | 155 (4) |
C4—H4B···N9iv | 0.99 | 2.57 | 3.467 (5) | 151 |
N4—H4···N6v | 0.90 (2) | 2.70 (4) | 3.372 (4) | 133 (4) |
C7—H7B···N6v | 0.99 | 2.70 | 3.397 (5) | 128 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x−1, −y+3/2, z−1/2; (v) x, −y+3/2, z+1/2. |
[Cu(C4N3)(C8H20N4)](C4N3) | Z = 2 |
Mr = 415.96 | F(000) = 430 |
Triclinic, P1 | Dx = 1.417 Mg m−3 |
a = 7.4074 (15) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.552 (2) Å | Cell parameters from 3012 reflections |
c = 11.625 (2) Å | θ = 2.5–27.2° |
α = 89.187 (3)° | µ = 1.14 mm−1 |
β = 88.236 (3)° | T = 173 K |
γ = 78.579 (3)° | Block, blue |
V = 974.6 (3) Å3 | 0.10 × 0.07 × 0.06 mm |
Bruker APEXII CCD diffractometer | 3639 reflections with I > 2σ(I) |
ϕ and ω scans | Rint = 0.021 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | θmax = 27.2°, θmin = 1.8° |
Tmin = 0.680, Tmax = 0.746 | h = −9→9 |
6936 measured reflections | k = −14→12 |
4267 independent reflections | l = −14→14 |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0554P)2 + 0.4093P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max = 0.001 |
4267 reflections | Δρmax = 0.43 e Å−3 |
260 parameters | Δρmin = −0.30 e Å−3 |
[Cu(C4N3)(C8H20N4)](C4N3) | γ = 78.579 (3)° |
Mr = 415.96 | V = 974.6 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.4074 (15) Å | Mo Kα radiation |
b = 11.552 (2) Å | µ = 1.14 mm−1 |
c = 11.625 (2) Å | T = 173 K |
α = 89.187 (3)° | 0.10 × 0.07 × 0.06 mm |
β = 88.236 (3)° |
Bruker APEXII CCD diffractometer | 4267 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3639 reflections with I > 2σ(I) |
Tmin = 0.680, Tmax = 0.746 | Rint = 0.021 |
6936 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 3 restraints |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | Δρmax = 0.43 e Å−3 |
4267 reflections | Δρmin = −0.30 e Å−3 |
260 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.19693 (4) | 0.78312 (3) | 0.28777 (2) | 0.01966 (11) | |
N1 | 0.1556 (3) | 0.70853 (19) | 0.44341 (18) | 0.0247 (5) | |
N2 | 0.3779 (3) | 0.63230 (19) | 0.25312 (19) | 0.0255 (5) | |
H2 | 0.499 (3) | 0.629 (3) | 0.275 (3) | 0.030 (8)* | |
N3 | 0.1539 (3) | 0.7915 (2) | 0.11666 (19) | 0.0262 (5) | |
H3 | 0.244 (5) | 0.823 (4) | 0.078 (3) | 0.069 (13)* | |
N4 | −0.0693 (3) | 0.8686 (2) | 0.30501 (19) | 0.0235 (5) | |
H4 | −0.080 (5) | 0.943 (3) | 0.305 (3) | 0.032 (9)* | |
C1 | 0.2693 (4) | 0.5872 (2) | 0.4435 (2) | 0.0309 (6) | |
H1A | 0.2057 | 0.5339 | 0.4899 | 0.037* | |
H1B | 0.3893 | 0.5877 | 0.4784 | 0.037* | |
C2 | 0.2999 (4) | 0.5431 (2) | 0.3211 (2) | 0.0284 (6) | |
H2A | 0.3864 | 0.4659 | 0.3191 | 0.034* | |
H2B | 0.1818 | 0.5331 | 0.2888 | 0.034* | |
C3 | 0.3874 (4) | 0.6128 (3) | 0.1270 (2) | 0.0320 (6) | |
H3A | 0.4172 | 0.5271 | 0.1109 | 0.038* | |
H3B | 0.4854 | 0.6495 | 0.0911 | 0.038* | |
C4 | 0.2027 (4) | 0.6673 (3) | 0.0775 (2) | 0.0309 (6) | |
H4A | 0.2107 | 0.6645 | −0.0076 | 0.037* | |
H4B | 0.1076 | 0.6232 | 0.1047 | 0.037* | |
C5 | −0.0403 (4) | 0.8503 (3) | 0.0989 (2) | 0.0314 (6) | |
H5A | −0.0867 | 0.8182 | 0.0296 | 0.038* | |
H5B | −0.0483 | 0.9362 | 0.0871 | 0.038* | |
C6 | −0.1553 (4) | 0.8288 (2) | 0.2029 (2) | 0.0278 (6) | |
H6A | −0.2830 | 0.8737 | 0.1960 | 0.033* | |
H6B | −0.1588 | 0.7438 | 0.2102 | 0.033* | |
C7 | −0.1439 (4) | 0.8372 (3) | 0.4181 (2) | 0.0309 (6) | |
H7A | −0.2777 | 0.8392 | 0.4133 | 0.037* | |
H7B | −0.1257 | 0.8950 | 0.4766 | 0.037* | |
C8 | −0.0455 (4) | 0.7147 (3) | 0.4526 (2) | 0.0297 (6) | |
H8A | −0.0816 | 0.6971 | 0.5326 | 0.036* | |
H8B | −0.0804 | 0.6553 | 0.4015 | 0.036* | |
N5 | 0.3467 (3) | 0.9172 (2) | 0.3085 (2) | 0.0302 (5) | |
N6 | 0.4994 (4) | 1.2516 (2) | 0.4130 (3) | 0.0458 (7) | |
N7 | 0.6191 (5) | 1.1120 (3) | 0.0561 (3) | 0.0557 (9) | |
C9 | 0.4066 (3) | 1.0003 (2) | 0.2868 (2) | 0.0234 (5) | |
C10 | 0.4822 (4) | 1.0987 (2) | 0.2587 (2) | 0.0284 (6) | |
C11 | 0.4908 (4) | 1.1832 (2) | 0.3437 (3) | 0.0317 (6) | |
C12 | 0.5559 (4) | 1.1083 (3) | 0.1476 (3) | 0.0370 (7) | |
N8 | 0.2233 (3) | 0.4808 (2) | 0.7239 (2) | 0.0346 (6) | |
N9 | 0.0455 (4) | 0.8693 (2) | 0.7001 (2) | 0.0401 (6) | |
N10 | −0.2516 (5) | 0.6493 (3) | 0.9329 (3) | 0.0533 (8) | |
C13 | 0.0029 (4) | 0.6708 (2) | 0.7860 (2) | 0.0261 (5) | |
C14 | 0.1277 (4) | 0.5668 (2) | 0.7519 (2) | 0.0250 (5) | |
C15 | 0.0259 (4) | 0.7809 (2) | 0.7396 (2) | 0.0283 (6) | |
C16 | −0.1390 (4) | 0.6607 (3) | 0.8655 (3) | 0.0341 (6) | |
H1 | 0.182 (5) | 0.754 (3) | 0.497 (3) | 0.050 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01993 (17) | 0.01743 (17) | 0.02207 (17) | −0.00544 (11) | 0.00296 (11) | 0.00163 (11) |
N1 | 0.0346 (13) | 0.0202 (11) | 0.0210 (10) | −0.0094 (9) | −0.0035 (9) | 0.0010 (8) |
N2 | 0.0224 (11) | 0.0236 (11) | 0.0300 (12) | −0.0038 (9) | 0.0000 (9) | −0.0002 (9) |
N3 | 0.0267 (12) | 0.0276 (12) | 0.0233 (11) | −0.0044 (9) | 0.0063 (9) | 0.0034 (9) |
N4 | 0.0241 (11) | 0.0175 (11) | 0.0287 (11) | −0.0041 (8) | 0.0034 (9) | −0.0007 (9) |
C1 | 0.0408 (17) | 0.0241 (13) | 0.0281 (14) | −0.0071 (12) | −0.0062 (12) | 0.0073 (11) |
C2 | 0.0348 (15) | 0.0184 (12) | 0.0327 (14) | −0.0066 (11) | −0.0027 (11) | 0.0021 (10) |
C3 | 0.0290 (15) | 0.0337 (15) | 0.0299 (14) | 0.0005 (11) | 0.0095 (11) | −0.0043 (11) |
C4 | 0.0348 (16) | 0.0322 (15) | 0.0239 (13) | −0.0030 (12) | 0.0045 (11) | −0.0043 (11) |
C5 | 0.0316 (15) | 0.0304 (15) | 0.0292 (14) | 0.0006 (11) | −0.0039 (11) | 0.0057 (11) |
C6 | 0.0213 (13) | 0.0256 (13) | 0.0354 (15) | −0.0022 (10) | −0.0009 (11) | 0.0000 (11) |
C7 | 0.0306 (15) | 0.0320 (15) | 0.0296 (14) | −0.0062 (11) | 0.0095 (11) | −0.0032 (11) |
C8 | 0.0376 (16) | 0.0313 (15) | 0.0235 (13) | −0.0160 (12) | 0.0068 (11) | 0.0013 (11) |
N5 | 0.0313 (13) | 0.0243 (12) | 0.0369 (13) | −0.0107 (10) | 0.0020 (10) | 0.0006 (10) |
N6 | 0.0563 (19) | 0.0349 (15) | 0.0511 (17) | −0.0208 (13) | 0.0016 (14) | −0.0070 (13) |
N7 | 0.066 (2) | 0.0471 (18) | 0.0529 (18) | −0.0133 (15) | 0.0308 (16) | 0.0102 (14) |
C9 | 0.0169 (12) | 0.0253 (13) | 0.0276 (13) | −0.0041 (10) | 0.0028 (10) | −0.0001 (10) |
C10 | 0.0309 (15) | 0.0214 (13) | 0.0344 (14) | −0.0099 (11) | 0.0051 (11) | 0.0008 (11) |
C11 | 0.0303 (15) | 0.0237 (14) | 0.0432 (16) | −0.0110 (11) | 0.0021 (12) | 0.0051 (12) |
C12 | 0.0390 (17) | 0.0228 (14) | 0.0495 (18) | −0.0085 (12) | 0.0086 (14) | 0.0048 (12) |
N8 | 0.0275 (13) | 0.0274 (13) | 0.0476 (15) | −0.0024 (10) | −0.0018 (11) | −0.0020 (11) |
N9 | 0.0374 (15) | 0.0264 (13) | 0.0558 (17) | −0.0061 (11) | 0.0052 (12) | 0.0008 (11) |
N10 | 0.0554 (19) | 0.0436 (17) | 0.0609 (19) | −0.0139 (14) | 0.0266 (16) | −0.0067 (14) |
C13 | 0.0276 (14) | 0.0237 (13) | 0.0275 (13) | −0.0063 (10) | 0.0004 (11) | −0.0015 (10) |
C14 | 0.0237 (13) | 0.0263 (14) | 0.0265 (13) | −0.0079 (11) | −0.0039 (10) | 0.0013 (10) |
C15 | 0.0233 (13) | 0.0270 (14) | 0.0345 (14) | −0.0044 (11) | 0.0022 (11) | −0.0066 (11) |
C16 | 0.0372 (17) | 0.0253 (14) | 0.0406 (16) | −0.0084 (12) | 0.0040 (13) | −0.0056 (12) |
Cu1—N2 | 2.014 (2) | C4—H4A | 0.9900 |
Cu1—N3 | 2.022 (2) | C4—H4B | 0.9900 |
Cu1—N4 | 2.029 (2) | C5—C6 | 1.504 (4) |
Cu1—N1 | 2.034 (2) | C5—H5A | 0.9900 |
Cu1—N5 | 2.097 (2) | C5—H5B | 0.9900 |
N1—C8 | 1.477 (4) | C6—H6A | 0.9900 |
N1—C1 | 1.486 (4) | C6—H6B | 0.9900 |
N1—H1 | 0.87 (2) | C7—C8 | 1.513 (4) |
N2—C3 | 1.484 (3) | C7—H7A | 0.9900 |
N2—C2 | 1.485 (3) | C7—H7B | 0.9900 |
N2—H2 | 0.94 (2) | C8—H8A | 0.9900 |
N3—C4 | 1.483 (4) | C8—H8B | 0.9900 |
N3—C5 | 1.483 (4) | N5—C9 | 1.157 (3) |
N3—H3 | 0.92 (2) | N6—C11 | 1.148 (4) |
N4—C7 | 1.478 (3) | N7—C12 | 1.152 (4) |
N4—C6 | 1.484 (4) | C9—C10 | 1.393 (4) |
N4—H4 | 0.84 (3) | C10—C12 | 1.399 (4) |
C1—C2 | 1.514 (4) | C10—C11 | 1.411 (4) |
C1—H1A | 0.9900 | N8—C14 | 1.145 (4) |
C1—H1B | 0.9900 | N9—C15 | 1.147 (4) |
C2—H2A | 0.9900 | N10—C16 | 1.152 (4) |
C2—H2B | 0.9900 | C13—C16 | 1.399 (4) |
C3—C4 | 1.515 (4) | C13—C15 | 1.413 (4) |
C3—H3A | 0.9900 | C13—C14 | 1.416 (4) |
C3—H3B | 0.9900 | ||
N2—Cu1—N3 | 85.61 (9) | C4—C3—H3A | 109.9 |
N2—Cu1—N4 | 148.42 (9) | N2—C3—H3B | 109.9 |
N3—Cu1—N4 | 85.57 (9) | C4—C3—H3B | 109.9 |
N2—Cu1—N1 | 86.11 (9) | H3A—C3—H3B | 108.3 |
N3—Cu1—N1 | 148.55 (9) | N3—C4—C3 | 107.7 (2) |
N4—Cu1—N1 | 85.79 (9) | N3—C4—H4A | 110.2 |
N2—Cu1—N5 | 107.9 (1) | C3—C4—H4A | 110.2 |
N3—Cu1—N5 | 101.87 (9) | N3—C4—H4B | 110.2 |
N4—Cu1—N5 | 103.57 (9) | C3—C4—H4B | 110.2 |
N1—Cu1—N5 | 109.54 (9) | H4A—C4—H4B | 108.5 |
C8—N1—C1 | 115.0 (2) | N3—C5—C6 | 109.0 (2) |
C8—N1—Cu1 | 104.5 (2) | N3—C5—H5A | 109.9 |
C1—N1—Cu1 | 107.4 (2) | C6—C5—H5A | 109.9 |
C8—N1—H1 | 106 (3) | N3—C5—H5B | 109.9 |
C1—N1—H1 | 114 (3) | C6—C5—H5B | 109.9 |
Cu1—N1—H1 | 109 (3) | H5A—C5—H5B | 108.3 |
C3—N2—C2 | 114.3 (2) | N4—C6—C5 | 107.4 (2) |
C3—N2—Cu1 | 109.0 (2) | N4—C6—H6A | 110.2 |
C2—N2—Cu1 | 102.7 (2) | C5—C6—H6A | 110.2 |
C3—N2—H2 | 106 (2) | N4—C6—H6B | 110.2 |
C2—N2—H2 | 109 (2) | C5—C6—H6B | 110.2 |
Cu1—N2—H2 | 116 (2) | H6A—C6—H6B | 108.5 |
C4—N3—C5 | 114.9 (2) | N4—C7—C8 | 109.2 (2) |
C4—N3—Cu1 | 104.9 (2) | N4—C7—H7A | 109.8 |
C5—N3—Cu1 | 108.2 (2) | C8—C7—H7A | 109.8 |
C4—N3—H3 | 100 (3) | N4—C7—H7B | 109.8 |
C5—N3—H3 | 117 (3) | C8—C7—H7B | 109.8 |
Cu1—N3—H3 | 111 (3) | H7A—C7—H7B | 108.3 |
C7—N4—C6 | 115.8 (2) | N1—C8—C7 | 109.2 (2) |
C7—N4—Cu1 | 108.7 (2) | N1—C8—H8A | 109.8 |
C6—N4—Cu1 | 102.8 (2) | C7—C8—H8A | 109.8 |
C7—N4—H4 | 106 (2) | N1—C8—H8B | 109.8 |
C6—N4—H4 | 111 (2) | C7—C8—H8B | 109.8 |
Cu1—N4—H4 | 112 (2) | H8A—C8—H8B | 108.3 |
N1—C1—C2 | 109.4 (2) | C9—N5—Cu1 | 158.7 (2) |
N1—C1—H1A | 109.8 | N5—C9—C10 | 178.4 (3) |
C2—C1—H1A | 109.8 | C9—C10—C12 | 118.8 (3) |
N1—C1—H1B | 109.8 | C9—C10—C11 | 119.6 (2) |
C2—C1—H1B | 109.8 | C12—C10—C11 | 121.4 (2) |
H1A—C1—H1B | 108.2 | N6—C11—C10 | 179.4 (4) |
N2—C2—C1 | 107.4 (2) | N7—C12—C10 | 177.6 (3) |
N2—C2—H2A | 110.2 | C16—C13—C15 | 122.2 (3) |
C1—C2—H2A | 110.2 | C16—C13—C14 | 118.5 (2) |
N2—C2—H2B | 110.2 | C15—C13—C14 | 119.3 (2) |
C1—C2—H2B | 110.2 | N8—C14—C13 | 177.6 (3) |
H2A—C2—H2B | 108.5 | N9—C15—C13 | 178.8 (3) |
N2—C3—C4 | 108.8 (2) | N10—C16—C13 | 177.6 (4) |
N2—C3—H3A | 109.9 | ||
C8—N1—C1—C2 | 89.8 (3) | C4—N3—C5—C6 | 89.1 (3) |
Cu1—N1—C1—C2 | −26.1 (3) | Cu1—N3—C5—C6 | −27.7 (3) |
C3—N2—C2—C1 | −170.3 (2) | C7—N4—C6—C5 | −170.4 (2) |
Cu1—N2—C2—C1 | −52.5 (2) | Cu1—N4—C6—C5 | −52.0 (2) |
N1—C1—C2—N2 | 53.8 (3) | N3—C5—C6—N4 | 54.4 (3) |
C2—N2—C3—C4 | 84.5 (3) | C6—N4—C7—C8 | 86.1 (3) |
Cu1—N2—C3—C4 | −29.6 (3) | Cu1—N4—C7—C8 | −29.0 (3) |
C5—N3—C4—C3 | −166.7 (2) | C1—N1—C8—C7 | −164.2 (2) |
Cu1—N3—C4—C3 | −48.1 (2) | Cu1—N1—C8—C7 | −46.6 (2) |
N2—C3—C4—N3 | 52.5 (3) | N4—C7—C8—N1 | 51.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N9 | 0.87 (2) | 2.79 (3) | 3.525 (4) | 143 (3) |
C1—H1B···N6i | 0.99 | 2.54 | 3.273 (4) | 131 |
N1—H1···N6i | 0.87 (2) | 2.60 (3) | 3.206 (4) | 127 (3) |
N4—H4···N9ii | 0.84 (3) | 2.24 (4) | 3.067 (3) | 168 (3) |
N3—H3···N7iii | 0.92 (2) | 2.05 (2) | 2.928 (3) | 159 (4) |
N2—H2···N8iv | 0.94 (2) | 2.19 (2) | 3.003 (3) | 144 (3) |
C3—H3B···N10v | 0.99 | 2.64 | 3.531 (4) | 150 |
C8—H8B···N8vi | 0.99 | 2.56 | 3.538 (4) | 171 |
C3—H3A···N10vi | 0.99 | 2.64 | 3.460 (4) | 140 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+1; (iii) −x+1, −y+2, −z; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z−1; (vi) −x, −y+1, −z+1. |
Ni1—N1 | 2.051 (3) | Ni1—N5 | 2.101 (3) |
Ni1—N8 | 2.062 (3) | Ni1—N2 | 2.125 (3) |
Ni1—N3 | 2.080 (3) | Ni1—N4 | 2.134 (3) |
N1—Ni1—N8 | 87.4 (1) | N3—Ni1—N2 | 81.6 (1) |
N1—Ni1—N3 | 97.3 (1) | N5—Ni1—N2 | 95.4 (1) |
N8—Ni1—N3 | 175.3 (1) | N1—Ni1—N4 | 82.8 (1) |
N1—Ni1—N5 | 171.8 (1) | N8—Ni1—N4 | 98.1 (1) |
N8—Ni1—N5 | 84.9 (1) | N3—Ni1—N4 | 82.0 (1) |
N3—Ni1—N5 | 90.4 (1) | N5—Ni1—N4 | 101.2 (1) |
N1—Ni1—N2 | 83.0 (1) | N2—Ni1—N4 | 156.7 (1) |
N8—Ni1—N2 | 99.7 (1) |
Cu1—N2 | 2.014 (2) | Cu1—N1 | 2.034 (2) |
Cu1—N3 | 2.022 (2) | Cu1—N5 | 2.097 (2) |
Cu1—N4 | 2.029 (2) | ||
N2—Cu1—N3 | 85.61 (9) | N4—Cu1—N1 | 85.79 (9) |
N2—Cu1—N4 | 148.42 (9) | N2—Cu1—N5 | 107.9 (1) |
N3—Cu1—N4 | 85.57 (9) | N3—Cu1—N5 | 101.87 (9) |
N2—Cu1—N1 | 86.11 (9) | N4—Cu1—N5 | 103.57 (9) |
N3—Cu1—N1 | 148.55 (9) | N1—Cu1—N5 | 109.54 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···N7i | 0.99 | 2.74 | 3.665 (5) | 155.7 |
N3—H3···N7i | 0.95 (2) | 2.45 (3) | 3.330 (5) | 154 (4) |
N1—H1···N10ii | 0.90 (2) | 2.11 (3) | 2.907 (5) | 148 (4) |
N2—H2···N6iii | 0.91 (2) | 2.22 (3) | 3.064 (4) | 155 (4) |
C4—H4B···N9iv | 0.99 | 2.57 | 3.467 (5) | 150.9 |
N4—H4···N6v | 0.90 (2) | 2.70 (4) | 3.372 (4) | 133 (4) |
C7—H7B···N6v | 0.99 | 2.70 | 3.397 (5) | 127.7 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x−1, −y+3/2, z−1/2; (v) x, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N9 | 0.87 (2) | 2.79 (3) | 3.525 (4) | 143 (3) |
C1—H1B···N6i | 0.99 | 2.54 | 3.273 (4) | 130.7 |
N1—H1···N6i | 0.87 (2) | 2.60 (3) | 3.206 (4) | 127 (3) |
N4—H4···N9ii | 0.84 (3) | 2.24 (4) | 3.067 (3) | 168 (3) |
N3—H3···N7iii | 0.92 (2) | 2.05 (2) | 2.928 (3) | 159 (4) |
N2—H2···N8iv | 0.94 (2) | 2.19 (2) | 3.003 (3) | 144 (3) |
C3—H3B···N10v | 0.99 | 2.64 | 3.531 (4) | 150.3 |
C8—H8B···N8vi | 0.99 | 2.56 | 3.538 (4) | 170.9 |
C3—H3A···N10vi | 0.99 | 2.64 | 3.460 (4) | 140.2 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+1; (iii) −x+1, −y+2, −z; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z−1; (vi) −x, −y+1, −z+1. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | [Ni(C4N3)2(C8H20N4)] | [Cu(C4N3)(C8H20N4)](C4N3) |
Mr | 411.13 | 415.96 |
Crystal system, space group | Monoclinic, P21/c | Triclinic, P1 |
Temperature (K) | 173 | 173 |
a, b, c (Å) | 10.6300 (12), 11.0150 (12), 17.1771 (18) | 7.4074 (15), 11.552 (2), 11.625 (2) |
α, β, γ (°) | 90, 104.828 (2), 90 | 89.187 (3), 88.236 (3), 78.579 (3) |
V (Å3) | 1944.3 (4) | 974.6 (3) |
Z | 4 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.02 | 1.14 |
Crystal size (mm) | 0.06 × 0.05 × 0.04 | 0.10 × 0.07 × 0.06 |
Data collection | ||
Diffractometer | Bruker APEXII CCD diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.670, 0.746 | 0.680, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12264, 4611, 3460 | 6936, 4267, 3639 |
Rint | 0.032 | 0.021 |
(sin θ/λ)max (Å−1) | 0.659 | 0.644 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.136, 1.05 | 0.033, 0.110, 1.13 |
No. of reflections | 4611 | 4267 |
No. of parameters | 259 | 260 |
No. of restraints | 12 | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.05, −0.67 | 0.43, −0.30 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).
Acknowledgements
This project was supported by the Shanghai Municipal Natural Science Foundation (No. 13ZR1448600).
References
Abrahams, B. F., Batten, S. R., Hoskins, B. F. & Robson, R. (2003). Inorg. Chem. 42, 2654–2664. Web of Science CSD CrossRef PubMed CAS Google Scholar
Batten, S. R., Hoskins, B. F., Moubaraki, B., Murray, K. S. & Robson, R. (1999). J. Chem. Soc. Dalton Trans. pp. 2977–2986. Web of Science CSD CrossRef Google Scholar
Batten, S. R., Hoskins, B. F. & Robson, R. (1998). Inorg. Chem. 37, 3432–3434. Web of Science CSD CrossRef CAS Google Scholar
Batten, S. R., Hoskins, B. F. & Robson, R. (2000). Chem. Eur. J. 6, 156–161. CrossRef PubMed CAS Google Scholar
Belda, R., Blasco, S., Verdejo, B., Jiménez, H. R., Doménech-Carbó, A., Soriano, C., Latorre, J., Terencio, C. & García-España, E. (2013). Dalton Trans. 42, 11194–11204. CSD CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chainok, K., Neville, S. M., Forsyth, C. M., Gee, W. J., Murray, K. S. & Batten, S. R. (2012). CrystEngComm, 14, 3717–3726. CSD CrossRef CAS Google Scholar
Clay, R., Murray-Rust, P. & Murray-Rust, J. (1979). Acta Cryst. B35, 1894–1895. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Feyerherm, R., Loose, A., Landsgesell, S. & Manson, J. L. (2004). Inorg. Chem. 43, 6633–6639. Web of Science CSD CrossRef PubMed CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CrossRef CAS Google Scholar
Herchel, R., Váhovská, L., Potočňák, I. & Trávníček, Z. (2014). Inorg. Chem. 53, 5896–5898. CrossRef CAS PubMed Google Scholar
Hodgson, S. A., Adamson, J., Hunt, S. J., Cliffe, M. J., Cairns, A. B., Thompson, A. L., Tucker, M. G., Funnell, N. P. & Goodwin, A. L. (2014). Chem. Commun. 50, 5264–5266. CSD CrossRef CAS Google Scholar
Hoshino, H., Iida, K., Kawamoto, T. & Mori, T. (1999). Inorg. Chem. 38, 4229–4232. Web of Science CSD CrossRef CAS Google Scholar
Hunt, S. J., Cliffe, M. J., Hill, J. A., Cairns, A. B., Funnell, N. P. & Goodwin, A. L. (2015). CrystEngComm, 17, 361–369. CSD CrossRef CAS PubMed Google Scholar
Luo, J., Gao, Y., Qiu, L.-J., Liu, B.-S., Zhang, X. R., Cui, L. L. & Yang, F. (2014). Inorg. Chim. Acta, 416, 215–221. CSD CrossRef CAS Google Scholar
Luo, J., Shao, Z.-H., Gao, E.-Q., Wang, C.-F., Cai, R.-F. & Zhou, X.-G. (2006). Inorg. Chem. Commun. 9, 196–200. CSD CrossRef CAS Google Scholar
Manson, J. L., Campana, C. & Miller, J. S. (1998). Chem. Commun. pp. 251–252. Web of Science CSD CrossRef Google Scholar
Manson, J. L., Ressouche, E. & Miller, J. S. (2000). Inorg. Chem. 39, 1135–1141. Web of Science CSD CrossRef PubMed CAS Google Scholar
Manson, J. L. & Schlueter, J. A. (2004). Inorg. Chim. Acta, 357, 3975–3979. Web of Science CSD CrossRef CAS Google Scholar
Patel, R. N., Kesharwani, M. K., Singh, A., Patel, D. K. & Choudhary, M. (2008). Transition Met. Chem. 33, 733–738. Web of Science CSD CrossRef CAS Google Scholar
Potočňák, I., Lancz, G., Růžička, A. & Jäger, L. (2007). Acta Cryst. E63, m2072–m2073. Web of Science CSD CrossRef IUCr Journals Google Scholar
Qi, Z.-P., Li, P.-Y., Sun, J.-J., Zhu, L.-L. & Wang, K. (2014). Polyhedron, 68, 365–371. CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shirase, H., Miura, Y. & Fukuda, Y. (2009). Monatsh. Chem. 140, 807–814. CSD CrossRef CAS Google Scholar
Váhovská, L., Potočňák, I., Vitushkina, S., Dušek, M., Titiš, J. & Boča, R. (2014). Polyhedron, 81, 396–408. Google Scholar
Vreshch, V., Nohra, B., Lescop, C. & Réau, R. (2013). Inorg. Chem. 52, 1496–1503. CSD CrossRef CAS PubMed Google Scholar
Yeung, W.-F., Kwong, H.-K., Lau, T.-C., Gao, S., Szeto, L. & Wong, W. T. (2006). Polyhedron, 25, 1256–1262. CSD CrossRef CAS Google Scholar
Yeung, W.-F., Wong, W.-T., Zuo, J.-L. & Lau, T.-C. (2000). J. Chem. Soc. Dalton Trans. pp. 629–631. Web of Science CSD CrossRef Google Scholar
Yuste, C., Armentano, D., Marino, N., Cañadillas-Delgado, L., Delgado, F. S., Ruiz-Pérez, C., Rillema, D. P., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 1583–1596. Web of Science CSD CrossRef Google Scholar
Yuste, C., Bentama, A., Stiriba, S.-E., Armentano, D., De Munno, G., Lloret, F. & Julve, M. (2007). Dalton Trans. pp. 5190–5200. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.