research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 571-573

Crystal structure of (E)-2-hy­dr­oxy-4′-meth­­oxy­aza­stilbene

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bDepartment of Chemistry, Faculty of Science, Thaksin University, Phapayom, Phatthalung 93110, Thailand, cFaculty of Science and Technology, Hatyai University, Hat-Yai, Songkhla 90110, Thailand, dDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia, and eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 April 2015; accepted 28 April 2015; online 7 May 2015)

The title aza­stilbene derivative, C14H13NO2 {systematic name: (E)-2-[(4-meth­oxy­benzyl­idene)amino]­phenol}, is a product of the condensation reaction between 4-meth­oxy­benzaldehyde and 2-amino­phenol. The mol­ecule adopts an E conformation with respect to the azomethine C=N bond and is almost planar, the dihedral angle between the two substituted benzene rings being 3.29 (4)°. The meth­oxy group is coplanar with the benzene ring to which it is attached, the Cmeth­yl—O—C—C torsion angle being −1.14 (12)°. There is an intra­molecular O—H⋯N hydrogen bond generating an S(5) ring motif. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming zigzag chains along [10-1]. The chains are linked via C—H⋯π inter­actions, forming a three-dimensional structure.

1. Chemical context

Aza­stilbenes have been reported to possess various biological activities such as anti­bacterial (Tamizh et al., 2012[Tamizh, M. M., Kesavan, D., Sivakumar, P. M., Mereiter, K., Deepa, M., Kirchner, K., Doble, M. & Karvembu, R. (2012). Chem. Biol. Drug Des. 79, 177-185.]), anti-oxidant (Cheng et al., 2010[Cheng, L.-X., Tang, J.-J., Luo, H., Jin, X.-L., Dai, F., Yang, J., Qian, Y.-P., Li, X.-Z. & Zhou, B. (2010). Bioorg. Med. Chem. Lett. 20, 2417-2420.]; Lu et al., 2012[Lu, J., Li, C., Chai, Y.-F., Yang, D.-Y. & Sun, C.-R. (2012). Bioorg. Med. Chem. Lett. 22, 5744-5747.]), anti­fungal (da Silva et al., 2011[Silva, C. M. da, da Silva, D. L., Martins, C. V. B., de Resende, M. A., Dias, E. S., Magalhães, T. F. F., Rodrigues, L. P., Sabino, A. A., Alves, R. B. & de Fátima, Â. (2011). Chem. Biol. Drug Des. 78, 810-815.]) and anti­proliferative (Fujita et al., 2012[Fujita, Y., Islam, R., Sakai, K., Kaneda, H., Kudo, K., Tamura, D., Aomatsu, K., Nagai, T., Kimura, H., Matsumoto, K., de Velasco, M. A., Arao, T., Okawara, T. & Nishio, K. (2012). Invest. New Drugs, 30, 1878-1886.]) including lipoxygenase inhibitor (Aslam et al., 2012b[Aslam, M., Anis, I., Afza, N., Iqbal, L., Iqbal, S., Hussain, A., Mehmood, R., Hussain, M. T., Khalid, M. & Nawaz, H. (2012b). J. Saudi Chem. Soc. doi: 10.1016/j. jscs. 2012.09.009.]) activities. PdII and RuIII complexes of aza­stilbenes have been synthesized and some have shown potent anti­bacterial activity (Briel et al., 1998[Briel, O., Fehn, A., Polborn, K. & Beck, W. (1998). Polyhedron, 18, 225-242.]; Prabhakaran et al., 2008[Prabhakaran, R., Renukadevi, S. V., Karvembu, R., Huang, R., Mautz, J., Huttner, G., Subashkumar, R. & Natarajan, K. (2008). Eur. J. Med. Chem. 43, 268-273.]; Puthilibai et al., 2009[Puthilibai, G., Vasudhevan, S., Kutti Rani, S. & Rajagopal, G. (2009). Spectrochim. Acta Part A, 72, 796-800.]). The inter­esting biological activities of aza­stilbenes have attracted us to synthesis a series of aza­stilbenes, including the title compound, and to study their anti­bacterial and anti-oxidant activities (Kaewmanee et al., 2013[Kaewmanee, N., Chantrapromma, S., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o903-o904.], 2014[Kaewmanee, N., Chantrapromma, S., Boonnak, N., Quah, C. K. & Fun, H.-K. (2014). Acta Cryst. E70, o62-o63.]). The anti­bacterial assay for the title compound indicated that it possesses moderate to weak anti­bacterial activity against B. subtilis, S. aureus, P. aeruginosa, S. typhi and S. sonnei with the MIC values in the range of 37.5 to 150 µg/ml. In addition, it also shows inter­esting anti­oxidant activity by DPPH assay with the IC50 value of 0.080±0.0004 µg/ml. Herein, we report on the synthesis, spectroscopic and crystallographic characterization of the title compound.

[Scheme 1]

2. Structural commentary

The title aza­stilbene compound (Fig. 1[link]) has an E conformation about the azomethine C7=N1 double bond [1.2825 (10) Å], the C8—N1—C7—C1 torsion angle being −178.67 (8)°. The mol­ecule is almost planar with a dihedral angle of 3.29 (4)° between the two substituted benzene rings. The meth­oxy group is co-planar with the benzene ring to which it is attached, the C14—O1—C4—C5 torsion angle being −1.14 (12)°. There is an intra­molecular O—H⋯N hydrogen bond (Fig. 1[link] and Table 1[link]) that generates an S(5) ring motif. The bond lengths are comparable with those found for some closely related structures (Habibi et al., 2013[Habibi, M. H., Shojaee, E., Ranjbar, M., Memarian, H. R., Kanayama, A. & Suzuki, T. (2013). Spectrochim. Acta Part A, 105, 563-568.]; Aslam et al., 2012a[Aslam, M., Anis, I., Afza, N., Hussain, M. T. & Yousuf, S. (2012a). Acta Cryst. E68, o1447.]; Kaewmanee et al., 2013[Kaewmanee, N., Chantrapromma, S., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o903-o904.], 2014[Kaewmanee, N., Chantrapromma, S., Boonnak, N., Quah, C. K. & Fun, H.-K. (2014). Acta Cryst. E70, o62-o63.]; Sun et al., 2011[Sun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011). Acta Cryst. E67, o1578.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N1 0.774 (18) 2.078 (17) 2.6315 (11) 128.7 (17)
C14—H14B⋯O2i 0.96 2.71 3.2876 (12) 119
C2—H2ACg2ii 0.93 2.93 3.5662 (9) 127
C13—H13ACg1iii 0.93 2.76 3.4671 (9) 134
Symmetry codes: (i) [x-1, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 60% probability level. The intramolecular O—H⋯N hydrogen bond is shown as a dashed line (see Table 1[link]).

3. Supra­molecular features

In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming zigzag chains along [10[\overline{1}]] (Fig. 2[link] and Table 1[link]). The chains are linked via C—H⋯π inter­actions (Fig. 3[link] and Table 1[link]), forming a three-dimensional structure.

[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link] for details).
[Figure 3]
Figure 3
A view of the C—H⋯π inter­actions (dashed lines) in the crystal of the title compound (see Table 1[link] for details; ring centroids are shown as coloured spheres).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for aza­stilbenes gave over 2800 hits. A search for 2-(benzyl­idene­amino)­phenols gave 78 hits, and for 2-[(4-meth­oxy­benzyl­idene)amino]­phenols there were five hits. In the compound that most closely resembles the title compound, namely 5-{[(2-hy­droxy­phen­yl)imino]­meth­yl}-2-meth­oxy­phenol (Habibi et al., 2013[Habibi, M. H., Shojaee, E., Ranjbar, M., Memarian, H. R., Kanayama, A. & Suzuki, T. (2013). Spectrochim. Acta Part A, 105, 563-568.]), the two aromatic rings are inclined to one another by ca 16.9°.

5. Synthesis and crystallization

A solution of 4-meth­oxy­benzaldehyde (2.5 mmol, 0.37 g) in water (20 ml) and 2-amino­phenol (2.5 mmol, 0.25 g) in water (20 ml) were mixed and stirred at room temperature for around 8 h until a white precipitate appeared. The resulting white solid was filtered, washed several times with cold ethanol and then dried in vacuo overnight to yield the desired aza­stilbene (430 mg, 76% yield). Colourless block-shaped crystals, suitable for X-ray structure analysis, were obtained by recrystallization from methanol by slow evaporation at room temperature after several days (m.p. 388–390 K).

UV–Vis (CH3OH) λmax (log): 275 (1.93), 340 (0.61) nm; FT–IR (KBr) ν: 3337, 1595, 1510, 1248, 1027 cm−1.; 1H NMR (300 MHz, DMSO-d6) δ, p.p.m.: 8.87 (s, 1H), 8.61 (s, 1H), 7.98 (d, J = 8.7 Hz, 2H), 7.18 (dd, J = 7.5, 1.2 Hz, 1H), 7.06 (d, J = 8.7 Hz, 2H), 7.03 (td, J = 7.5, 1.2 Hz, 1H), 6.83 (td, J = 7.5, 1.2 Hz, 1H), 6.09 (dd, J = 7.5, 1.2 Hz, 1H), 3.84 (s, –OCH3). The UV–Vis spectroscopic data showed absorption bands of an aza­stilbene (275 and 340 nm) while the FT–IR spectrum exhibited the stretching vibrations of O—H (3337 cm−1), C=N (1595 cm−1), C=C (1510 cm−1), C—N (1248 cm1) and C—O (1027 cm−1). The successful synthesis was also supported by the 1H NMR spectroscopic data, which showed the characteristic signals of an olefinic proton at 8.61 (s, 1H) and para-substituted aromatic protons at 7.98 (d, J = 8.7 Hz, 2H) and 7.06 (d, J = 8.7 Hz, 2H), respectively. Moreover the 1H NMR spectrum also showed typical signals of ortho-substituted aromatic protons at 7.18 (dd, J = 7.5, 1.2 Hz, 1H), 7.03 (td, J = 7.5, 1.2 Hz, 1H), 6.83 (td, J = 7.5, 1.2 Hz, 1H) and 6.09 (dd, J = 7.5, 1.2 Hz, 1H) and a meth­oxy proton at 3.84 (s, –OCH3).

The anti­bacterial activity investigation of the title compound against Gram-positive bacteria, which are B. subtilis, S. aureus, MRSA and E. faecalis, and Gram-negative bacteria, which are P. aeruginosa, S. sonnei and S. typhi, showed moderate, mild or no inhibition. The most inter­esting anti­bacterial activity showed moderate activity against P. aeruginosa with an MIC value of 37.5 µg/ml.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The OH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C14H13NO2
Mr 227.25
Crystal system, space group Monoclinic, Pc
Temperature (K) 100
a, b, c (Å) 8.0357 (3), 5.5554 (2), 12.8733 (5)
β (°) 101.312 (1)
V3) 563.52 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.55 × 0.48 × 0.41
 
Data collection
Diffractometer Bruker APEXII D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.953, 0.964
No. of measured, independent and observed [I > 2σ(I)] reflections 26314, 3449, 3414
Rint 0.023
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.09
No. of reflections 3449
No. of parameters 160
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Aza­stilbenes have been reported to possess various biological activities such as anti­bacterial (Tamizh et al., 2012), anti-oxidant (Cheng et al., 2010; Lu et al., 2012), anti­fungal (da Silva et al., 2011) and anti­proliferative (Fujita et al., 2012) including lipoxygenase inhibitor (Aslam et al., 2012b) activities. PdII and RuIII complexes of aza­stilbenes have been synthesized and some have shown potent anti­bacterial activity (Briel et al., 1998; Prabhakaran et al., 2008; Puthilibai et al., 2009). The inter­esting biological activities of aza­stilbenes have attracted us to synthesis a series of aza­stilbenes, including the title compound, and to study their anti­bacterial and anti-oxidant activities (Kaewmanee et al., 2013, 2014). The anti­bacterial assay for the title compound indicated that it possesses moderate to weak anti­bacterial activity against B. subtilis, S. aureus, P. aeruginosa, S. typhi and S. sonnei with the MIC values in the range of 37.5 to 150 µg/ml. In addition, it also shows inter­esting anti­oxidant activity by DPPH assay with the IC50 value of 0.080±0.0004 µg/ml. Herein, we report on the synthesis and spectroscopic and crystallographic characterization of the title compound.

Structural commentary top

The title aza­stilbene compound (Fig. 1) has an E conformation about the azomethine C7N1 double bond [1.2825 (10) Å], the C8—N1—C7—C1 torsion angle being -178.67 (8)°. The molecule is almost planar with a dihedral angle of 3.29 (4)° between the two substituted benzene rings. The meth­oxy group is co-planar with the benzene ring to which it is attached, the C14—O1—C4—C5 torsion angle being -1.14 (12)°. There is an intra­molecular O—H···N hydrogen bond (Fig. 1 and Table 1) that generates an S(5) ring motif. The bond lengths are comparable with those found for some closely related structures (Habibi et al., 2013; Aslam et al., 2012a; Kaewmanee et al., 2013, 2014; Sun et al., 2011).

Supra­molecular features top

In the crystal, molecules are linked via C—H···O hydrogen bonds, forming zigzag chains along [101] (Fig. 2 and Table 1). The chains are linked via C—H···π inter­actions (Fig. 3 and Table 1), forming a three-dimensional structure.

Database survey top

A search of the Cambridge Structural Database (CSD, Version 5.36; Groom & Allen, 2014) for aza­stilbenes gave over 2800 hits. A search for 2-(benzyl­idene­amino)­phenols gave 78 hits, and for 2-[(4-meth­oxy­benzyl­idene)amino]­phenols there were five hits. In the compound that most closely resembles the title compound, namely 5-{[(2-hy­droxy­phenyl)­imino]­methyl}-2-meth­oxy­phenol (Habibi et al., 2013), the two aromatic rings are inclined to one another by ca 16.9°.

Synthesis and crystallization top

A solution of 4-meth­oxy­benzaldehyde (2.5 mmol, 0.37 g) in water (20 ml) and 2-amino­phenol (2.5 mmol, 0.25 g) in water (20 ml) were mixed and stirred at room temperature for around 8 h until a white precipitate appeared. The resulting white solid was filtered, washed several times with cold ethanol and then dried in vacuo overnight to yield the desired aza­stilbene (430 mg, 76% yield). Colourless block-shaped crystals, suitable for X-ray structure analysis, were obtained by recrystallization from methanol by slow evaporation at room temperature after several days (m.p. 388–390 K).

UV–Vis (CH3OH) λmax (logε): 275 (1.93), 340 (0.61) nm.; FT–IR (KBr) ν: 3337, 1595, 1510, 1248, 1027 cm-1.; 1H NMR (300 MHz, DMSO-d6) δ, p.p.m.: 8.87 (s, 1H), 8.61 (s, 1H), 7.98 (d, J = 8.7 Hz, 2H), 7.18 (dd, J = 7.5, 1.2 Hz, 1H), 7.06 (d, J = 8.7 Hz, 2H), 7.03 (td, J = 7.5, 1.2 Hz, 1H), 6.83 (td, J = 7.5, 1.2 Hz, 1H), 6.09 (dd, J = 7.5, 1.2 Hz, 1H), 3.84 (s, –OCH3). The UV–Vis spectroscopic data showed absorption bands of an aza­stilbene (275 and 340 nm) while the FT–IR spectrum exhibited the stretching vibrations of O—H (3337 cm-1), CN (1595 cm-1), CC (1510 cm-1), C—N (1248 cm-1) and C—O (1027 cm-1). The successfully synthesis was also supported by the 1H NMR spectroscopic data, which showed the characteristic signals of an olefinic proton at 8.61 (s, 1H) and para-substituted aromatic protons at 7.98 (d, J = 8.7 Hz, 2H) and 7.06 (d, J = 8.7 Hz, 2H), respectively. Moreover the 1H NMR spectrum also showed typical signals of ortho-substituted aromatic protons at 7.18 (dd, J = 7.5, 1.2 Hz, 1H), 7.03 (td, J = 7.5, 1.2 Hz, 1H), 6.83 (td, J = 7.5, 1.2 Hz, 1H) and 6.09 (dd, J = 7.5, 1.2 Hz, 1H) and a meth­oxy proton at 3.84 (s, –OCH3).

The anti­bacterial activity investigation of the title compound against Gram-positive bacteria, which are B. subtilis, S. aureus, MRSA, E. faecalis, and Gram-negative bacteria, which are P. aeruginosa, S. sonnei and S. typhi, showed moderate, mild or no inhibition. The most inter­esting anti­bacterial activity showed moderate activity against P. aeruginosa with an MIC value of 37.5 µg/ml.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Aslam et al. (2012a, 2012b); Briel et al. (1998); Cheng et al. (2010); Fujita et al. (2012); Groom & Allen (2014); Habibi et al. (2013); Kaewmanee et al. (2013, 2014); Lu et al. (2012); Prabhakaran et al. (2008); Puthilibai et al. (2009); da Silva et al. (2011); Sun et al. (2011); Tamizh et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 60% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 3] Fig. 3. A view of the C—H···π interactions (dashed lines) in the crystal of the title compound (see Table 1 for details; ring centroids are shown as coloured spheres).
(E)-2-[(4-Methoxybenzylidene)amino]phenol top
Crystal data top
C14H13NO2Dx = 1.339 Mg m3
Mr = 227.25Melting point = 388–390 K
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 8.0357 (3) ÅCell parameters from 3449 reflections
b = 5.5554 (2) Åθ = 2.6–30.5°
c = 12.8733 (5) ŵ = 0.09 mm1
β = 101.312 (1)°T = 100 K
V = 563.52 (4) Å3Block, colorless
Z = 20.55 × 0.48 × 0.41 mm
F(000) = 240
Data collection top
Bruker APEXII D8 Venture
diffractometer
3414 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 30.5°, θmin = 2.6°
Tmin = 0.953, Tmax = 0.964h = 1111
26314 measured reflectionsk = 77
3449 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.0298P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3449 reflectionsΔρmax = 0.37 e Å3
160 parametersΔρmin = 0.28 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.054 (8)
Crystal data top
C14H13NO2V = 563.52 (4) Å3
Mr = 227.25Z = 2
Monoclinic, PcMo Kα radiation
a = 8.0357 (3) ŵ = 0.09 mm1
b = 5.5554 (2) ÅT = 100 K
c = 12.8733 (5) Å0.55 × 0.48 × 0.41 mm
β = 101.312 (1)°
Data collection top
Bruker APEXII D8 Venture
diffractometer
3449 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3414 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.964Rint = 0.023
26314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.37 e Å3
3449 reflectionsΔρmin = 0.28 e Å3
160 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29289 (8)0.08802 (12)0.07528 (5)0.01815 (14)
O20.92146 (10)0.70962 (12)0.58775 (6)0.02323 (15)
H1O20.859 (2)0.653 (3)0.5407 (15)0.028 (3)*
N10.72131 (9)0.33548 (14)0.53665 (5)0.01630 (16)
C10.54115 (10)0.13926 (16)0.38967 (6)0.01455 (16)
C20.55623 (10)0.31817 (15)0.31478 (7)0.01598 (16)
H2A0.62390.45240.33530.019*
C30.47132 (10)0.29620 (15)0.21094 (7)0.01586 (16)
H3A0.48260.41490.16180.019*
C40.36790 (10)0.09459 (15)0.17945 (6)0.01416 (16)
C50.35026 (11)0.08418 (16)0.25290 (6)0.01607 (17)
H5A0.28120.21710.23260.019*
C60.43785 (11)0.05985 (16)0.35704 (6)0.01649 (16)
H6A0.42730.17910.40610.020*
C70.63122 (10)0.15284 (17)0.49969 (6)0.01611 (17)
H7A0.62290.02420.54460.019*
C80.81013 (9)0.34278 (15)0.64262 (6)0.01427 (16)
C90.91560 (10)0.54613 (15)0.66557 (6)0.01633 (16)
C101.01507 (11)0.57944 (17)0.76609 (7)0.01860 (17)
H10A1.08540.71330.78030.022*
C111.00837 (11)0.41075 (16)0.84506 (7)0.01799 (17)
H11A1.07520.43090.91220.022*
C120.90092 (10)0.21016 (17)0.82364 (6)0.01711 (16)
H12A0.89510.09940.87700.021*
C130.80332 (10)0.17641 (15)0.72308 (6)0.01595 (16)
H13A0.73310.04240.70920.019*
C140.19195 (12)0.11830 (17)0.03898 (7)0.02058 (18)
H14A0.15510.10960.03650.031*
H14B0.09480.12250.07200.031*
H14C0.25820.26150.05700.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0188 (3)0.0212 (3)0.0130 (3)0.0025 (2)0.0003 (2)0.0004 (2)
O20.0342 (3)0.0193 (3)0.0161 (3)0.0091 (3)0.0045 (2)0.0009 (2)
N10.0173 (3)0.0180 (4)0.0132 (3)0.0009 (2)0.0019 (3)0.0010 (2)
C10.0157 (4)0.0152 (3)0.0125 (3)0.0003 (3)0.0023 (3)0.0016 (3)
C20.0172 (4)0.0142 (3)0.0162 (4)0.0019 (3)0.0024 (3)0.0010 (3)
C30.0170 (3)0.0146 (3)0.0155 (3)0.0005 (3)0.0021 (3)0.0013 (3)
C40.0133 (3)0.0159 (4)0.0132 (4)0.0003 (3)0.0026 (3)0.0010 (2)
C50.0177 (3)0.0163 (4)0.0142 (4)0.0031 (3)0.0030 (3)0.0013 (3)
C60.0208 (4)0.0158 (3)0.0131 (3)0.0027 (3)0.0039 (3)0.0002 (3)
C70.0176 (4)0.0178 (4)0.0131 (3)0.0008 (3)0.0032 (3)0.0013 (3)
C80.0148 (3)0.0150 (3)0.0131 (3)0.0002 (3)0.0029 (3)0.0014 (3)
C90.0183 (4)0.0166 (3)0.0148 (3)0.0022 (3)0.0050 (3)0.0013 (3)
C100.0188 (4)0.0196 (4)0.0174 (3)0.0040 (3)0.0036 (3)0.0042 (3)
C110.0172 (3)0.0220 (4)0.0141 (3)0.0008 (3)0.0013 (3)0.0030 (3)
C120.0179 (4)0.0184 (4)0.0147 (4)0.0001 (3)0.0025 (3)0.0006 (3)
C130.0172 (3)0.0162 (4)0.0141 (4)0.0016 (3)0.0023 (3)0.0005 (3)
C140.0194 (4)0.0224 (4)0.0178 (4)0.0031 (3)0.0015 (3)0.0028 (3)
Geometric parameters (Å, º) top
O1—C41.3586 (9)C6—H6A0.9300
O1—C141.4287 (10)C7—H7A0.9300
O2—C91.3599 (11)C8—C131.3973 (11)
O2—H1O20.772 (19)C8—C91.4084 (11)
N1—C71.2825 (10)C9—C101.3935 (11)
N1—C81.4107 (10)C10—C111.3915 (13)
C1—C61.3972 (11)C10—H10A0.9300
C1—C21.4065 (11)C11—C121.4035 (12)
C1—C71.4605 (10)C11—H11A0.9300
C2—C31.3818 (11)C12—C131.3884 (11)
C2—H2A0.9300C12—H12A0.9300
C3—C41.4062 (11)C13—H13A0.9300
C3—H3A0.9300C14—H14A0.9600
C4—C51.3975 (11)C14—H14B0.9600
C5—C61.3932 (11)C14—H14C0.9600
C5—H5A0.9300
C4—O1—C14117.25 (7)C13—C8—C9118.98 (7)
C9—O2—H1O2101.3 (12)C13—C8—N1127.73 (7)
C7—N1—C8121.55 (7)C9—C8—N1113.29 (7)
C6—C1—C2118.64 (7)O2—C9—C10119.93 (8)
C6—C1—C7118.99 (7)O2—C9—C8119.18 (7)
C2—C1—C7122.36 (7)C10—C9—C8120.88 (7)
C3—C2—C1120.54 (7)C11—C10—C9119.45 (8)
C3—C2—H2A119.7C11—C10—H10A120.3
C1—C2—H2A119.7C9—C10—H10A120.3
C2—C3—C4120.07 (8)C10—C11—C12120.11 (8)
C2—C3—H3A120.0C10—C11—H11A119.9
C4—C3—H3A120.0C12—C11—H11A119.9
O1—C4—C5124.37 (7)C13—C12—C11120.24 (8)
O1—C4—C3115.38 (7)C13—C12—H12A119.9
C5—C4—C3120.24 (7)C11—C12—H12A119.9
C6—C5—C4118.88 (7)C12—C13—C8120.31 (8)
C6—C5—H5A120.6C12—C13—H13A119.8
C4—C5—H5A120.6C8—C13—H13A119.8
C5—C6—C1121.63 (8)O1—C14—H14A109.5
C5—C6—H6A119.2O1—C14—H14B109.5
C1—C6—H6A119.2H14A—C14—H14B109.5
N1—C7—C1122.48 (7)O1—C14—H14C109.5
N1—C7—H7A118.8H14A—C14—H14C109.5
C1—C7—H7A118.8H14B—C14—H14C109.5
C6—C1—C2—C30.41 (12)C2—C1—C7—N14.45 (12)
C7—C1—C2—C3178.77 (7)C7—N1—C8—C136.46 (13)
C1—C2—C3—C40.40 (12)C7—N1—C8—C9173.81 (7)
C14—O1—C4—C51.14 (12)C13—C8—C9—O2179.42 (8)
C14—O1—C4—C3177.64 (7)N1—C8—C9—O20.34 (11)
C2—C3—C4—O1178.73 (7)C13—C8—C9—C101.49 (12)
C2—C3—C4—C50.10 (12)N1—C8—C9—C10178.75 (7)
O1—C4—C5—C6178.14 (7)O2—C9—C10—C11179.85 (8)
C3—C4—C5—C60.58 (12)C8—C9—C10—C110.77 (13)
C4—C5—C6—C10.57 (13)C9—C10—C11—C120.61 (14)
C2—C1—C6—C50.09 (13)C10—C11—C12—C131.27 (13)
C7—C1—C6—C5179.29 (7)C11—C12—C13—C80.54 (13)
C8—N1—C7—C1178.67 (8)C9—C8—C13—C120.82 (12)
C6—C1—C7—N1176.38 (8)N1—C8—C13—C12179.45 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N10.774 (18)2.078 (17)2.6315 (11)128.7 (17)
C14—H14B···O2i0.962.713.2876 (12)119
C2—H2A···Cg2ii0.932.933.5662 (9)127
C13—H13A···Cg1iii0.932.763.4671 (9)134
Symmetry codes: (i) x1, y+1, z1/2; (ii) x, y+1, z1/2; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N10.774 (18)2.078 (17)2.6315 (11)128.7 (17)
C14—H14B···O2i0.962.713.2876 (12)119
C2—H2A···Cg2ii0.932.933.5662 (9)127
C13—H13A···Cg1iii0.932.763.4671 (9)134
Symmetry codes: (i) x1, y+1, z1/2; (ii) x, y+1, z1/2; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13NO2
Mr227.25
Crystal system, space groupMonoclinic, Pc
Temperature (K)100
a, b, c (Å)8.0357 (3), 5.5554 (2), 12.8733 (5)
β (°) 101.312 (1)
V3)563.52 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.48 × 0.41
Data collection
DiffractometerBruker APEXII D8 Venture
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.953, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
26314, 3449, 3414
Rint0.023
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.09
No. of reflections3449
No. of parameters160
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hfun.c@ksu.edu.sa. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Department of Chemistry, Faculty of Science, Prince of Songkla University, for research facilities. The authors extend their appreciation to The Deanship of Scientific Research at King Saud University for funding this work through research group project No. RGP-VPP-207.

References

First citationAslam, M., Anis, I., Afza, N., Hussain, M. T. & Yousuf, S. (2012a). Acta Cryst. E68, o1447.  CSD CrossRef IUCr Journals Google Scholar
First citationAslam, M., Anis, I., Afza, N., Iqbal, L., Iqbal, S., Hussain, A., Mehmood, R., Hussain, M. T., Khalid, M. & Nawaz, H. (2012b). J. Saudi Chem. Soc. doi: 10.1016/j. jscs. 2012.09.009.  Google Scholar
First citationBriel, O., Fehn, A., Polborn, K. & Beck, W. (1998). Polyhedron, 18, 225–242.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, L.-X., Tang, J.-J., Luo, H., Jin, X.-L., Dai, F., Yang, J., Qian, Y.-P., Li, X.-Z. & Zhou, B. (2010). Bioorg. Med. Chem. Lett. 20, 2417–2420.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFujita, Y., Islam, R., Sakai, K., Kaneda, H., Kudo, K., Tamura, D., Aomatsu, K., Nagai, T., Kimura, H., Matsumoto, K., de Velasco, M. A., Arao, T., Okawara, T. & Nishio, K. (2012). Invest. New Drugs, 30, 1878–1886.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHabibi, M. H., Shojaee, E., Ranjbar, M., Memarian, H. R., Kanayama, A. & Suzuki, T. (2013). Spectrochim. Acta Part A, 105, 563–568.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaewmanee, N., Chantrapromma, S., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o903–o904.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaewmanee, N., Chantrapromma, S., Boonnak, N., Quah, C. K. & Fun, H.-K. (2014). Acta Cryst. E70, o62–o63.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, J., Li, C., Chai, Y.-F., Yang, D.-Y. & Sun, C.-R. (2012). Bioorg. Med. Chem. Lett. 22, 5744–5747.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrabhakaran, R., Renukadevi, S. V., Karvembu, R., Huang, R., Mautz, J., Huttner, G., Subashkumar, R. & Natarajan, K. (2008). Eur. J. Med. Chem. 43, 268–273.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPuthilibai, G., Vasudhevan, S., Kutti Rani, S. & Rajagopal, G. (2009). Spectrochim. Acta Part A, 72, 796–800.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, C. M. da, da Silva, D. L., Martins, C. V. B., de Resende, M. A., Dias, E. S., Magalhães, T. F. F., Rodrigues, L. P., Sabino, A. A., Alves, R. B. & de Fátima, Â. (2011). Chem. Biol. Drug Des. 78, 810–815.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011). Acta Cryst. E67, o1578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTamizh, M. M., Kesavan, D., Sivakumar, P. M., Mereiter, K., Deepa, M., Kirchner, K., Doble, M. & Karvembu, R. (2012). Chem. Biol. Drug Des. 79, 177–185.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 571-573
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds