organic compounds
of 2,4-diamino-7-(hydroxymethyl)pteridin-1-ium nitrate
aDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: manavaibala@gmail.com
In the crystal of the title molecular salt, C7H9N6O+·NO3−, the cations and anions are linked via N—H⋯O and O—H⋯O hydrogen bonds, forming sheets parallel to (100). Within the sheets there are numerous hydrogen-bonding ring motifs.
Keywords: crystal structure; pteridine; 2,4-diaminopteridinium; pteridin-1-ium nitrate; hydrogen bonding; ring motifs.
CCDC reference: 1062258
1. Related literature
For background to and the biological activity of pteridine derivatives, see: Benkovic Annu (1980); Blakeley (1969); Van Beelen et al. (1984); Dolphin (1980); Pfleiderer (1982); Blakely & Cocco (1985); Pfleiderer & Taylor (1964); Müller et al. (1991); Weinstock et al. (1968). For related structures, see: Kuyper (1990); Schwalbe & Williams (1986); Robertson et al. (1998). For hydrogen-bond motifs, see: Etter (1990); Bernstein et al. (1995); Allen et al. (1998).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1062258
10.1107/S2056989015008397/su5127sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015008397/su5127Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015008397/su5127Isup3.cml
Pteridine derivatives are found as the core structure of folic acid flavin adenine dinucleotide (FAD) and function as cofactors for enzymes involved in hydroxylation (Benkovic & Annu,1980) and methyl transfer (Blakeley, 1969; Van Beelen et al., 1984), as redox mediators (Dolphin, 1980) and as pigments for eyes and wings in certain insects (Pfleiderer, 1982). Variation of the substituents on the pteridine core of
has provided synthetic anticancer drugs (Blakely & Cocco, 1985; Pfleiderer & Taylor, 1964). Pterdines are metabolites formed by a bicyclic pyrimidine-pyrazine moiety that occurs in a wide range of living systems and contributes in relevant biological functions (Muller et al., 1991). Pteridine derivatives have good diuretic activity and are also used as simple models for therapeutically valuable antifolate drugs (Weinstock et al., 1968). In order to study potential hydrogen bonding interactions, the title compound was synthesized and we report herein on its crystal structure.The title molecular salt, Fig. 1, consists of a 2,4-diamino-7-(hydroxymethyl)pteridinum cation and a nitrate anion. During the synthesis of the molecular salt a proton was transferred from the hydroxyl group of nitric acid to atom N3 of the pteridine ring. The pteridine ring system (C1—C7/N1—N6/O1) is planar with a maximum deviation of 0.001 (1) Å for all the non H atoms. The bond lengths and angles are close to those found for similar compounds, viz. 2,4-diamino-6,7-dimethylpteridine hydrochloride monohydrate (Schwalbe & Williams, 1986) and triamterenium tetraphenylborate acetonitrile solvate (Robertson et al., 1998).
In the crystal, Fig. 2, the protonated N3 atom and the protonated 2-amino group (N6) are hydrogen-bonded to the nitrate O atoms (O2 and O4) via a pair of N3—H1N3···O2 and N6—H2N6···O4 hydrogen bonds, forming an R22(8) ring motif (Bernstein et al., 1995). This type of interaction is similar to the carboxylate-trimethoprim interaction observed in the trimethoprim cation-dihydrofolate reductase complex (Kuyper, 1990) and to the cyclic hydrogen bonded motif observed in many organic crystal structures (Allen et al., 1998). An R12(4) ring motif indicates a bifurcated hydrogen bond formed by N6–H1N6 to the two acceptors (O3 and O4). The 4-amino group and the hydroxyl group form hydrogen bonds with the O atoms of the nitrate ion leading to an R33(8) ring. The three center and bifurcated hydrogen bonds and fork like interaction form an R44(12) ring. Two R33(8) motifs and an R22(8) ring motif generate a new R32(18) ring motif. The above interactions lead to the formation a two dimensional network parallel to the bc plane (Table 1 and Fig. 2).
A few drops of nitric acid were added to a hot methanol solution (20 ml) of 2,4-diamino-6-(hydroxymethyl)pteridine (43 mg, Aldrich) which had been warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title molecular salt appeared after a few days.
Crystal data, data collection and structure
details are summarized in Table 2. The O– and N-bound H atoms were located in a difference Fourier map and freely refined (O–H = 0.94 (6) Å and N–H = 0.78 (5)– 1.03 (5) Å). The C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The N-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details). | |
Fig. 2. A view along the a axis of the crystal packing of the title molecular salt. The N-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details). |
C7H9N6O+·NO3− | F(000) = 528 |
Mr = 255.21 | Dx = 1.628 Mg m−3 |
Orthorhombic, Cmc21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c -2 | Cell parameters from 1083 reflections |
a = 6.4060 (17) Å | θ = 2.7–24.6° |
b = 14.960 (6) Å | µ = 0.14 mm−1 |
c = 10.867 (3) Å | T = 294 K |
V = 1041.4 (6) Å3 | Block, bronze |
Z = 4 | 0.27 × 0.10 × 0.07 mm |
Bruker SMART APEXII Duo CCD area-detector diffractometer | 862 independent reflections |
Radiation source: fine-focus sealed tube | 720 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −5→7 |
Tmin = 0.964, Tmax = 0.991 | k = −17→17 |
2866 measured reflections | l = −8→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0382P)2 + 0.1935P] where P = (Fo2 + 2Fc2)/3 |
862 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.09 e Å−3 |
1 restraint | Δρmin = −0.15 e Å−3 |
C7H9N6O+·NO3− | V = 1041.4 (6) Å3 |
Mr = 255.21 | Z = 4 |
Orthorhombic, Cmc21 | Mo Kα radiation |
a = 6.4060 (17) Å | µ = 0.14 mm−1 |
b = 14.960 (6) Å | T = 294 K |
c = 10.867 (3) Å | 0.27 × 0.10 × 0.07 mm |
Bruker SMART APEXII Duo CCD area-detector diffractometer | 862 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 720 reflections with I > 2σ(I) |
Tmin = 0.964, Tmax = 0.991 | Rint = 0.028 |
2866 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 1 restraint |
wR(F2) = 0.074 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.09 e Å−3 |
862 reflections | Δρmin = −0.15 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.5000 | 0.63088 (17) | 0.8666 (3) | 0.0557 (8) | |
O2 | 0.5000 | 0.2129 (2) | 0.5161 (3) | 0.0585 (9) | |
O3 | 0.5000 | 0.12875 (19) | 0.3553 (3) | 0.0584 (9) | |
O4 | 0.5000 | 0.06903 (19) | 0.5342 (3) | 0.0608 (9) | |
N1 | 0.5000 | 0.4061 (2) | 0.9909 (3) | 0.0415 (9) | |
N2 | 0.5000 | 0.1632 (3) | 0.9791 (4) | 0.0451 (9) | |
N3 | 0.5000 | 0.2207 (2) | 0.7764 (3) | 0.0447 (9) | |
N4 | 0.5000 | 0.3731 (2) | 0.7360 (4) | 0.0499 (10) | |
N5 | 0.5000 | 0.2581 (3) | 1.1464 (4) | 0.0524 (10) | |
H1N5 | 0.5000 | 0.210 (3) | 1.199 (4) | 0.042 (13)* | |
H2N5 | 0.5000 | 0.312 (3) | 1.185 (5) | 0.062 (14)* | |
N6 | 0.5000 | 0.0703 (3) | 0.8120 (4) | 0.0546 (11) | |
H1N6 | 0.5000 | 0.028 (3) | 0.854 (5) | 0.056 (15)* | |
H2N6 | 0.5000 | 0.060 (2) | 0.723 (3) | 0.020 (9)* | |
N7 | 0.5000 | 0.1359 (2) | 0.4687 (4) | 0.0448 (9) | |
C1 | 0.5000 | 0.5648 (3) | 0.9606 (5) | 0.0467 (11) | |
H1A | 0.3776 | 0.5726 | 1.0120 | 0.056* | 0.50 |
H1B | 0.6224 | 0.5726 | 1.0120 | 0.056* | 0.50 |
C2 | 0.5000 | 0.4726 (2) | 0.9092 (4) | 0.0390 (10) | |
C3 | 0.5000 | 0.3228 (3) | 0.9449 (4) | 0.0384 (11) | |
C4 | 0.5000 | 0.2451 (2) | 1.0250 (4) | 0.0401 (10) | |
C5 | 0.5000 | 0.1519 (2) | 0.8573 (5) | 0.0408 (11) | |
C6 | 0.5000 | 0.3074 (2) | 0.8204 (5) | 0.0391 (10) | |
C7 | 0.5000 | 0.4546 (3) | 0.7834 (4) | 0.0498 (13) | |
H7A | 0.5000 | 0.5028 | 0.7293 | 0.060* | |
H1O1 | 0.5000 | 0.689 (4) | 0.901 (6) | 0.072 (14)* | |
H1N3 | 0.5000 | 0.208 (3) | 0.683 (5) | 0.046 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0954 (19) | 0.0284 (13) | 0.0435 (17) | 0.000 | 0.000 | 0.0045 (16) |
O2 | 0.090 (2) | 0.0310 (14) | 0.054 (2) | 0.000 | 0.000 | −0.0078 (16) |
O3 | 0.096 (2) | 0.0401 (17) | 0.039 (2) | 0.000 | 0.000 | −0.0029 (17) |
O4 | 0.093 (2) | 0.0323 (15) | 0.057 (2) | 0.000 | 0.000 | 0.0045 (15) |
N1 | 0.0534 (19) | 0.0299 (17) | 0.041 (2) | 0.000 | 0.000 | 0.0027 (15) |
N2 | 0.062 (2) | 0.0276 (17) | 0.046 (2) | 0.000 | 0.000 | 0.0055 (15) |
N3 | 0.068 (2) | 0.0304 (18) | 0.035 (2) | 0.000 | 0.000 | 0.0005 (14) |
N4 | 0.082 (3) | 0.0300 (15) | 0.038 (2) | 0.000 | 0.000 | 0.0011 (17) |
N5 | 0.086 (2) | 0.035 (2) | 0.036 (2) | 0.000 | 0.000 | 0.0041 (18) |
N6 | 0.082 (3) | 0.0308 (18) | 0.051 (3) | 0.000 | 0.000 | −0.001 (2) |
N7 | 0.058 (2) | 0.036 (2) | 0.040 (2) | 0.000 | 0.000 | −0.0012 (17) |
C1 | 0.069 (3) | 0.034 (2) | 0.037 (2) | 0.000 | 0.000 | 0.0015 (19) |
C2 | 0.056 (2) | 0.032 (2) | 0.029 (2) | 0.000 | 0.000 | 0.0006 (18) |
C3 | 0.046 (2) | 0.027 (2) | 0.041 (3) | 0.000 | 0.000 | 0.0013 (15) |
C4 | 0.049 (2) | 0.032 (2) | 0.040 (3) | 0.000 | 0.000 | 0.007 (2) |
C5 | 0.049 (2) | 0.029 (2) | 0.044 (3) | 0.000 | 0.000 | 0.006 (2) |
C6 | 0.050 (2) | 0.0322 (19) | 0.035 (2) | 0.000 | 0.000 | −0.0005 (18) |
C7 | 0.075 (3) | 0.036 (2) | 0.038 (3) | 0.000 | 0.000 | 0.003 (2) |
O1—C1 | 1.422 (6) | N5—C4 | 1.333 (7) |
O1—H1O1 | 0.94 (6) | N5—H1N5 | 0.92 (5) |
O2—N7 | 1.262 (5) | N5—H2N5 | 0.91 (5) |
O3—N7 | 1.237 (5) | N6—C5 | 1.317 (5) |
O4—N7 | 1.228 (5) | N6—H1N6 | 0.78 (5) |
N1—C2 | 1.334 (5) | N6—H2N6 | 0.98 (4) |
N1—C3 | 1.342 (5) | C1—C2 | 1.487 (6) |
N2—C4 | 1.322 (5) | C1—H1A | 0.9700 |
N2—C5 | 1.334 (7) | C1—H1B | 0.9700 |
N3—C5 | 1.353 (6) | C2—C7 | 1.394 (5) |
N3—C6 | 1.383 (5) | C3—C6 | 1.372 (6) |
N3—H1N3 | 1.03 (5) | C3—C4 | 1.454 (5) |
N4—C7 | 1.323 (5) | C7—H7A | 0.9300 |
N4—C6 | 1.344 (6) | ||
C1—O1—H1O1 | 111 (4) | C2—C1—H1B | 109.2 |
C2—N1—C3 | 116.4 (4) | H1A—C1—H1B | 107.9 |
C4—N2—C5 | 119.5 (4) | N1—C2—C7 | 120.6 (3) |
C5—N3—C6 | 119.3 (4) | N1—C2—C1 | 116.2 (4) |
C5—N3—H1N3 | 120 (2) | C7—C2—C1 | 123.3 (3) |
C6—N3—H1N3 | 121 (2) | N1—C3—C6 | 121.6 (4) |
C7—N4—C6 | 114.1 (5) | N1—C3—C4 | 121.3 (4) |
C4—N5—H1N5 | 120 (3) | C6—C3—C4 | 117.2 (4) |
C4—N5—H2N5 | 126 (3) | N2—C4—N5 | 120.6 (3) |
H1N5—N5—H2N5 | 114 (4) | N2—C4—C3 | 121.0 (5) |
C5—N6—H1N6 | 122 (4) | N5—C4—C3 | 118.4 (4) |
C5—N6—H2N6 | 121 (2) | N6—C5—N2 | 119.3 (4) |
H1N6—N6—H2N6 | 117 (4) | N6—C5—N3 | 117.5 (5) |
O4—N7—O3 | 120.5 (4) | N2—C5—N3 | 123.2 (4) |
O4—N7—O2 | 120.4 (4) | N4—C6—C3 | 123.4 (4) |
O3—N7—O2 | 119.0 (4) | N4—C6—N3 | 116.8 (4) |
O1—C1—C2 | 112.0 (4) | C3—C6—N3 | 119.9 (4) |
O1—C1—H1A | 109.2 | N4—C7—C2 | 124.1 (4) |
C2—C1—H1A | 109.2 | N4—C7—H7A | 118.0 |
O1—C1—H1B | 109.2 | C2—C7—H7A | 118.0 |
C3—N1—C2—C7 | 0.000 (2) | C6—N3—C5—N6 | 180.000 (1) |
C3—N1—C2—C1 | 180.000 (2) | C6—N3—C5—N2 | 0.000 (2) |
O1—C1—C2—N1 | 180.000 (2) | C7—N4—C6—C3 | 0.000 (2) |
O1—C1—C2—C7 | 0.000 (2) | C7—N4—C6—N3 | 180.000 (1) |
C2—N1—C3—C6 | 0.000 (2) | N1—C3—C6—N4 | 0.000 (2) |
C2—N1—C3—C4 | 180.000 (2) | C4—C3—C6—N4 | 180.000 (2) |
C5—N2—C4—N5 | 180.000 (2) | N1—C3—C6—N3 | 180.000 (2) |
C5—N2—C4—C3 | 0.000 (2) | C4—C3—C6—N3 | 0.000 (2) |
N1—C3—C4—N2 | 180.000 (2) | C5—N3—C6—N4 | 180.000 (1) |
C6—C3—C4—N2 | 0.000 (2) | C5—N3—C6—C3 | 0.000 (2) |
N1—C3—C4—N5 | 0.000 (2) | C6—N4—C7—C2 | 0.000 (2) |
C6—C3—C4—N5 | 180.000 (2) | N1—C2—C7—N4 | 0.000 (2) |
C4—N2—C5—N6 | 180.000 (2) | C1—C2—C7—N4 | 180.000 (2) |
C4—N2—C5—N3 | 0.000 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N3···O2 | 1.03 (5) | 1.82 (5) | 2.831 (5) | 167 (4) |
N6—H2N6···O4 | 0.98 (3) | 2.06 (3) | 3.019 (6) | 167 (3) |
O1—H1O1···O2i | 0.95 (6) | 1.93 (6) | 2.846 (4) | 163 (6) |
N5—H1N5···O3ii | 0.92 (4) | 2.09 (4) | 2.983 (6) | 164 (4) |
N5—H2N5···O1i | 0.91 (5) | 2.15 (5) | 2.913 (5) | 141 (4) |
N6—H1N6···O3iii | 0.78 (5) | 2.35 (4) | 3.015 (5) | 145 (5) |
N6—H1N6···O4iii | 0.78 (5) | 2.44 (5) | 3.190 (6) | 162 (5) |
Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) x, y, z+1; (iii) −x+1, −y, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N3···O2 | 1.03 (5) | 1.82 (5) | 2.831 (5) | 167 (4) |
N6—H2N6···O4 | 0.98 (3) | 2.06 (3) | 3.019 (6) | 167 (3) |
O1—H1O1···O2i | 0.95 (6) | 1.93 (6) | 2.846 (4) | 163 (6) |
N5—H1N5···O3ii | 0.92 (4) | 2.09 (4) | 2.983 (6) | 164 (4) |
N5—H2N5···O1i | 0.91 (5) | 2.15 (5) | 2.913 (5) | 141 (4) |
N6—H1N6···O3iii | 0.78 (5) | 2.35 (4) | 3.015 (5) | 145 (5) |
N6—H1N6···O4iii | 0.78 (5) | 2.44 (5) | 3.190 (6) | 162 (5) |
Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) x, y, z+1; (iii) −x+1, −y, z+1/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-5599-2009.
Acknowledgements
PS and KB thank the Department of Science and Technology (DST-SERB), grant No. SB/FT/CS–058/2013, New Delhi, India, for financial support. KT thanks the Academy of Sciences for the Developing World and USM for the TWAS–USM fellowship. The authors also thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and a USM Short Term Grant, No. 304/PFIZIK/6312078, to conduct this work.
References
Allen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044. Web of Science CrossRef Google Scholar
Benkovic, S. J. (1980). Annu. Rev. Biochem. 49, 227–251. CrossRef CAS PubMed Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blakeley, L. (1969). In The Biochemistry of Folic Acid and Related Pteridines. New York: Elsevier. Google Scholar
Blakely, R. L. & Cocco, L. (1985). Biochemistry, 24, 4702–4772. Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolphin, D. (1980). Adv. Chem. Ser. 191, 65–87. CrossRef CAS Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Kuyper, L. F. (1990). Crystallographic and Modeling Methods in Molecular Designs, edited by C. E. Bugg & S. E. Ealick, pp. 56–79. New York: Springer Verlag. Google Scholar
Müller, M. M., Curtius, H. C., Herold, M. & Huber, C. H. (1991). Clin. Chim. Acta, 201, 1–16. PubMed Web of Science Google Scholar
Pfleiderer, W. (1982). In Biochemical and Clinical Aspects of Pteridines, edited by H. Wachter, H. C. Curtius & W. Pfleiderer. Berlin: DeGruyter. Google Scholar
Pfleiderer, W. & Taylor, E. (1964). Editors. In Pteridine Chemistry. Oxford: Pergamon. Google Scholar
Robertson, K. N., Bakshi, P. K., Lantos, S. D., Cameron, T. S. & Knop, O. (1998). Can. J. Chem. 76, 583–611. Web of Science CSD CrossRef CAS Google Scholar
Schwalbe, C. H. & Williams, G. J. B. (1986). Acta Cryst. C42, 1254–1257. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Van Beelen, P., Van Neck, J. W., De Cock, R. M., Vogels, G. D., Guijt, W. & Haasnoot, C. A. G. (1984). Biochemistry, 23, 4448–4454. CrossRef CAS Web of Science Google Scholar
Weinstock, J., Wilson, J. W., Wiebelhaus, V. D., Maass, A. R., Brennan, F. T. & Sosnowski, G. (1968). J. Med. Chem. 11, 573–579. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.