research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 618-620

Crystal structure of 4-[(5-methyl­isoxazol-3-yl)amino­sulfon­yl]anilinium 3,5-di­nitro­salicylate

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
*Correspondence e-mail: tommtrichy@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 2 May 2015; accepted 5 May 2015; online 13 May 2015)

The title mol­ecular salt, C10H12N3O3S+·C7H3N2O7, protonation occurs at the amino N atom attached to the benzene ring of sulfamethoxazole. In the anion, there is an intra­molecular O—H⋯O hydrogen bond and the cation is linked to the anion by an N—H⋯O hydrogen bond. In the extended structure, the cations and anions are linked via N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional framework.

1. Chemical context

Sulfamethoxazole, {4-[(5-methyl­isoxazol-3-yl)amino­sulfon­yl]aniline} (SMZ) is a well-known anti­bacterial and anti­fungal sulfa drug (Ma et al., 2007[Ma, M.-L., Cheng, Y.-Y., Xu, Z.-H., Xu, P., Qu, H.-O., Fang, Y.-J., Xu, T.-W. & Wen, L. (2007). Eur. J. Med. Chem. 42, 93-98.]; Hida et al., 2005[Hida, S., Yoshida, M., Nakabayashi, I., Miura, N. N., Adachi, Y. & Ohno, N. (2005). Biol. Pharm. Bull. 28, 773-778.]). This drug prevents the formation of di­hydro­folic acid, a compound that bacteria must be able to make in order to endure. The structural resemblance of p-amino benzoic acid to the sulfanilamide group enables sulfanilamide block folic acid synthesis in bacteria (Bock et al.,1974[Bock, L., Miller, G. H., Schaper, K. J. & Seydel, J. K. (1974). J. Med. Chem. 17, 23-28.]). SMZ is also known to be effective against gram positive and gram negative bacteria and some protozoans. In clinical practice, SMZ is used as a combinatorial drug along with Trimethoprim (TMP) to treat a variety of bacterial infections. In the last three and half decades, multiple crystalline forms of SMZ (Bettinetti et al., 1982[Bettinetti, G. P., Giordano, F., La Manna, A., Giuseppetti, G. & Tadini, C. (1982). Cryst. Struct. Commun. 11, 821-828.]; Maury et al., 1985[Maury, L., Rambaud, J., Pauvert, B., Lasserre, Y., Berge, G. & Audran, M. (1985). Can. J. Chem. 63, 3012-3018.]; Price et al., 2005[Price, C. P., Grzesiak, A. L. & Matzger, A. J. (2005). J. Am. Chem. Soc. 127, 5512-5517.]), metal complexes (Marques et al., 2006[Marques, L. L., de Oliveira, G. M. & Schulz Lang, E. (2006). Z. Anorg. Allg. Chem. 632, 2310-2314.]; Nakai et al., 1984[Nakai, H., Takasuka, M. & Shiro, M. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1459-1464.]) and salt forms (Nakai et al., 1984[Nakai, H., Takasuka, M. & Shiro, M. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1459-1464.]; Subashini et al., 2007[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o4312-o4313.]) have been reported. We report herein on the crystal structure and supra­molecular packing pattern of the title salt.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title salt (SMZDNS), consists of a sulfamethoxazolium cation and a 3,5-di­nitro­salicylate anion (Fig. 1[link]). The SMZ cation is L-shaped with the dihedral angle between the oxazole and anilinium rings being 81.86 (10)°. The geometry around the sulfur atom is slightly distorted tetra­hedral, which is evident from the O1—S1—O2 angle of 120.44 (8)°. Protonation occurs at the amino atom N1 of the benzene moiety of SMZ. In the cation there is an intra­molecular O—H⋯O hydrogen bond with an S(6) ring motif (Fig. 1[link] and Table 1[link]). The cation is linked to the anion by an N—H⋯O hydrogen bond (Fig. 1[link] and Table 1[link]), and the dihedral angle between the benzene rings of the cation and anion is 78.51 (8)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O5 0.82 1.68 2.4296 (19) 151
N2—H2A⋯O5 0.86 2.12 2.7852 (18) 134
N1—H1A⋯O4i 0.89 1.77 2.661 (2) 177
N1—H1B⋯N3i 0.89 2.24 3.041 (2) 150
N1—H1C⋯O6ii 0.89 2.21 3.064 (2) 160
C5—H5⋯O6ii 0.93 2.60 3.293 (2) 132
C6—H6⋯O8iii 0.93 2.60 3.176 (2) 121
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+1; (iii) x, y, z-1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title mol­ecular salt, showing the atom labelling. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

3. Supra­molecular features

In the crystal of the title salt, there are various hydrogen bonds present linking the anions and cations and forming a three-dimensional network (Figs. 2[link] and 3[link], and Table 1[link]). The ammonium ion of the cation generates a C(3) chain and two R21(6) and R33(10) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The primary inter­action between the cation and anion happens through an N—H⋯O hydrogen bond and it forms a chain of C(3) graph set. The R21(6) motif is formed via N—H⋯O and C—H⋯O hydrogen bonds that link the ammonium N1 phenyl C5 group of SMZ and the hy­droxy O6 group of the anion. The R33(10) ring motif is a result of the linking of two symmetry-related cations and one anion via a pair of N—H⋯O and N—H⋯N hydrogen bonds. This motif is formed by the inter­action of symmetry-related imino N2, oxazole N3, ammonium N1 atoms of the cation and the carboxyl­ate (O4 and O5) group of the anion. The R21(6) and R33(10) motifs are linked by another ring motif with an R33(8) graph set. This motif is formed by linking two symmetry-related cations with an anion via a pair of bifurcated N—H⋯O hydrogen bonds. The amalgamation of the above ring motifs leads to the formation of supra­molecular sheets along the a axis (Fig. 2[link]). The sheets thus formed are linked to adjacent ones through R22(16) and R22(20) motifs. The R22(16) motif is formed by inter­action of ammonium atom N1 and atom O2 of the sulfate group of an inversion-related SMZ ion in an adjacent sheet via a pair of N—H⋯O hydrogen bonds. The other motif, an R22(20) ring, is formed by the linkage of two inversion-related cations along the b axis. Finally, through these arrangements a three-dimensional hydrogen-bonded architecture is formed.

[Figure 2]
Figure 2
A view of the graph set motifs formed in the crystal of the title salt, via N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds (dashed lines; see Table 1[link] for details). The cations are drawn in wire mode and the anions in ball-and-stick mode.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title salt. The hydrogen bonds are drawn as dashed lines (see Table 1[link] for details). H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 4-[(5-methyl­isoxazol-3-yl)amino­sulfon­yl]aniline revealed the presence of only two structures of the protonated form. These include, catena-[bis­(sulfa­methoxazolium)(μ2-chlorido)­tri­chlorido­cadmium(II) monohydrate] [RISZAV; Subashini et al., 2008[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2008). Acta Cryst. E64, m250-m251.]] and 4-[(5-methyl­isoxazol-3-yl)amino­sulfon­yl]anilinium chloride (also known as sulfamethoxazole chloride; SIMJEE; Subashini et al., 2007[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o4312-o4313.]). The dihedral angles between the oxazole ring and anilinium ring is found to be ca 88° in RISZAV, similar to the value of 81.86 (10)° in the title salt, and ca 58° in SIMJEE.

5. Synthesis and crystallization

20 ml of a hot ethano­lic solution of sulfamethoxazole (63 mg) and 3.5 di­nitro­salicylic acid (57 mg) were mixed and warmed at 323 K for 30 min over a water bath. The mixture was then allowed to cool slowly at room temperature. Three weeks later, light-yellow prismatic crystals were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model: O—H = 0.82 Å, N—H = 0.86–0.89 Å, and C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C,O,N) for methyl, hy­droxy and ammonium H atoms and 1.2Ueq(C,N) for aromatic and other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C10H12N3O3S+·C7H3N2O7
Mr 481.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.5551 (1), 10.5000 (2), 12.7576 (3)
α, β, γ (°) 106.463 (1), 100.913 (1), 108.272 (1)
V3) 993.72 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.20 × 0.20 × 0.16
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.955, 0.964
No. of measured, independent and observed [I > 2σ(I)] reflections 24261, 6718, 4911
Rint 0.030
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.05
No. of reflections 6718
No. of parameters 301
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.40
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), POVRay (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Sulfamethoxazole, {4-[(5-methyl­isoxazol-3-yl)amino­sulfonyl]­aniline} (SMZ) is a well-known anti­bacterial and anti­fungal sulfa drug (Ma et al., 2007; Hida et al., 2005). This drug prevents the formation of di­hydro­folic acid, a compound that bacteria must be able to make in order to endure. The structural resemblance of p-amino benzoic acid to the sulfanilamide group enables sulfanilamide block folic acid synthesis in bacteria (Bock et al.,1974). SMZ is also known to be effective against gram positive and gram negative bacteria and some protozoans. In clinical practice, SMZ is used as a combinatorial drug along with Trimethoprim (TMP) to treat a variety of bacterial infections. In the last three and half decades, multiple crystalline forms of SMZ (Bettinetti et al., 1982; Maury et al., 1985; Price et al., 2005), metal complexes (Marques et al., 2006; Nakai et al., 1984) and salt forms (Nakai et al., 1984; Subashini et al., 2007) have been reported. We report herein on the crystal structure and supra­molecular packing pattern of the title salt.

Structural commentary top

The asymmetric unit of the title salt (SMZDNS), consists of a sulfamethoxazolium cation and a 3,5-di­nitro­salicylate anion (Fig. 1). The SMZ cation is L-shaped with the dihedral angle between the oxazole and anilinium rings being 81.86 (10)°. The geometry around the sulfur atom is slightly distorted tetra­hedral, which is evident from the O1—S1—O2 angle of 120.44 (8)°. Protonation occurs at the amino atom N1 of the benzene moiety of SMZ. In the cation there is an intra­molecular O—H···O hydrogen bond with an S(6) ring motif (Fig. 1 and Table 1). The cation is linked to the anion by an N—H···O hydrogen bond (Fig. 1 and Table 1), and the dihedral angle between the benzene rings of the cation and anion is 78.51 (8)°.

Supra­molecular features top

In the crystal of the title salt, there are various hydrogen bonds present linking the anions and cations and forming a three-dimensional framework structure (Figs. 2 and 3, and Table 1). The ammonium ion of the cation generates a C(3) chain and two R21(6) and R33(10) ring motifs (Bernstein et al., 1995). The primary inter­action between the cation and anion happens through an N—H···O hydrogen bond and it forms a chain of C(3) graph set. The R21(6) motif is formed via N—H···O and C—H···O hydrogen bonds that link the ammonium N1 phenyl C5 group of SMZ and the hy­droxy O6 group of the anion. The R33(10) ring motif is a result of the linking of two symmetry related cations and one anion via a pair of N—H···O and N—H···N hydrogen bonds. This motif is formed by the inter­action of symmetry-related imino N2, oxazole N3, ammonium N1 atoms of the cation and the carboxyl­ate (O4 and O5) group of the anion. The R21(6) and R33(10) motifs are linked by another ring motif with an R33(8) graph set. This motif is formed by linking two symmetry-related cations with an anion via a pair of bifurcated N—H···O hydrogen bonds. The amalgamation of the above ring motifs leads to the formation of supra­molecular sheets along the a axis (Fig. 2). The sheets thus formed are linked to adjacent ones through R22(16) and R22(20) motifs. The R22(16) motif is formed by inter­action of ammonium atom N1 and atom O2 of the sulfate group of an inversion-related SMZ ion in an adjacent sheet via a pair of N—H···O hydrogen bonds. The other motif, an R22(20) ring, is formed by the linkage of two inversion-related cations along the b axis. Finally, through these arrangements a three-dimensional hydrogen-bonded architecture is formed.

Database survey top

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) for 4-[(5-methyl­isoxazol-3-yl)amino­sulfonyl]­aniline revealed the presence of only two structures of the protonated form. These include, catena-[bis­(sulfamethoxazolium)(µ2-chlorido)trichloridocadmium(II) monohydrate] [RISZAV; Subashini et al., 2008] and 4-[(5-methyl­isoxazol-3-yl)amino­sulfonyl]­anilinium chloride (synonym: sulfamethoxazole chloride; SIMJEE; Subashini et al., 2007). The dihedral angles between the oxazole ring and anilinium ring is found to be ca 88.33° in RISZAV, similar to the value of 81.86 (10)° in the title salt, and ca 57.98° in SIMJEE.

Synthesis and crystallization top

20 ml of a hot ethano­lic solution of sulfamethoxazole (63 mg) and 3.5 di­nitro­salicylic acid (57 mg) were mixed and warmed at 323 K for 30 min over a water bath. The mixture was then allowed to cool slowly at room temperature. Three weeks later, light-yellow prismatic crystals were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model: O—H = 0.82 Å, N—H = 0.86–0.89 Å, and C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C,O,N) for methyl, hy­droxy and ammonium H atoms and 1.2Ueq(C,N) for aromatic and other H atoms.

Related literature top

For related literature, see: Bernstein et al. (1995); Bettinetti et al. (1982); Bock et al. (1974); Groom & Allen (2014); Hida et al. (2005); Ma et al. (2007); Marques et al. (2006); Maury et al. (1985); Nakai et al. (1984); Price et al. (2005); Subashini et al. (2007, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POVRay (Cason, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecular salt, showing the atom labelling. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. A view of the graph set motifs formed in the crystal of the title salt, via N—H···O, N—H···N and C—H···O hydrogen bonds (dashed lines; see Table 1 for details). The cations are drawn in wire mode and the anions in ball-and-stick mode.
[Figure 3] Fig. 3. A view along the a axis of the crystal packing of the title salt. The hydrogen bonds are drawn as dashed lines (see Table 1 for details). H atoms not involved in hydrogen bonding have been omitted for clarity.
4-{[(5-Methylisoxazol-3-yl)amino]sulfonyl}anilinium 2-hydroxy-3,5-dinitrobenzoate top
Crystal data top
C10H12N3O3S+·C7H3N2O7Z = 2
Mr = 481.41F(000) = 496
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5551 (1) ÅCell parameters from 6718 reflections
b = 10.5000 (2) Åθ = 1.8–32.6°
c = 12.7576 (3) ŵ = 0.23 mm1
α = 106.463 (1)°T = 296 K
β = 100.913 (1)°Prism, yellow
γ = 108.272 (1)°0.20 × 0.20 × 0.16 mm
V = 993.72 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6718 independent reflections
Radiation source: fine-focus sealed tube4911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scanθmax = 32.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.955, Tmax = 0.964k = 1515
24261 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.2293P]
where P = (Fo2 + 2Fc2)/3
6718 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C10H12N3O3S+·C7H3N2O7γ = 108.272 (1)°
Mr = 481.41V = 993.72 (3) Å3
Triclinic, P1Z = 2
a = 8.5551 (1) ÅMo Kα radiation
b = 10.5000 (2) ŵ = 0.23 mm1
c = 12.7576 (3) ÅT = 296 K
α = 106.463 (1)°0.20 × 0.20 × 0.16 mm
β = 100.913 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6718 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4911 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.964Rint = 0.030
24261 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.05Δρmax = 0.40 e Å3
6718 reflectionsΔρmin = 0.40 e Å3
301 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02011 (5)0.65153 (4)0.38510 (3)0.0339 (1)
O10.12139 (15)0.56291 (12)0.26954 (11)0.0467 (4)
O20.09563 (16)0.65425 (13)0.47595 (11)0.0464 (4)
O30.47464 (18)0.55503 (17)0.32047 (14)0.0620 (5)
N10.29162 (18)1.24424 (14)0.38400 (13)0.0425 (4)
N20.13876 (17)0.60279 (14)0.42019 (12)0.0379 (4)
N30.3923 (2)0.57678 (19)0.40572 (15)0.0531 (5)
C10.07470 (18)0.82911 (15)0.38933 (13)0.0317 (4)
C20.2170 (2)0.93167 (19)0.47915 (16)0.0503 (5)
C30.2877 (2)1.06900 (19)0.47852 (16)0.0512 (5)
C40.21460 (19)1.10143 (15)0.38930 (14)0.0346 (4)
C50.0702 (2)1.00106 (18)0.30178 (15)0.0436 (5)
C60.0001 (2)0.86347 (18)0.30136 (15)0.0419 (5)
C70.24792 (19)0.58288 (15)0.35500 (14)0.0351 (4)
C80.2303 (2)0.5656 (2)0.23927 (16)0.0473 (6)
C90.3764 (3)0.55030 (19)0.22403 (18)0.0508 (6)
C100.4458 (3)0.5285 (3)0.1246 (2)0.0749 (10)
O40.51673 (18)0.76879 (19)0.75742 (13)0.0650 (5)
O50.24957 (17)0.72400 (14)0.65907 (10)0.0492 (4)
O60.03386 (14)0.74389 (13)0.75511 (10)0.0423 (3)
O70.1353 (2)0.8493 (3)0.89565 (18)0.0976 (9)
O80.1205 (2)0.7661 (3)1.02988 (15)0.0952 (8)
O90.4658 (2)0.9039 (2)1.25864 (12)0.0710 (6)
O100.66328 (19)0.9064 (2)1.17615 (14)0.0731 (6)
N40.06166 (19)0.8072 (2)0.96064 (14)0.0581 (6)
N50.51517 (19)0.88887 (16)1.17389 (13)0.0476 (5)
C110.31809 (18)0.78573 (15)0.85972 (13)0.0322 (4)
C120.14695 (18)0.77861 (15)0.85294 (13)0.0326 (4)
C130.10795 (19)0.80780 (18)0.95755 (14)0.0386 (4)
C140.2252 (2)0.84029 (18)1.06109 (14)0.0398 (4)
C150.38950 (19)0.84785 (16)1.06265 (13)0.0361 (4)
C160.43768 (18)0.82182 (16)0.96381 (14)0.0352 (4)
C170.3688 (2)0.75745 (17)0.75231 (14)0.0391 (4)
H1A0.358801.241400.338700.0640*
H1B0.354701.308000.454200.0640*
H1C0.208201.270100.355900.0640*
H20.264800.908600.539400.0600*
H2A0.156400.588300.483700.0450*
H30.384101.139100.538100.0610*
H50.020001.025600.243200.0520*
H60.097100.794100.242000.0500*
H80.139300.564900.185800.0570*
H10A0.555800.605600.144300.1120*
H10B0.366800.527700.059800.1120*
H10C0.459500.438200.105600.1120*
H6A0.078600.730900.703700.0630*
H140.194400.856701.128300.0480*
H160.549700.828500.967200.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0360 (2)0.0322 (2)0.0349 (2)0.0131 (1)0.0121 (1)0.0137 (2)
O10.0460 (6)0.0366 (6)0.0424 (7)0.0088 (5)0.0010 (5)0.0093 (5)
O20.0511 (6)0.0500 (7)0.0531 (8)0.0239 (5)0.0301 (6)0.0265 (6)
O30.0505 (7)0.0712 (9)0.0659 (10)0.0312 (7)0.0241 (7)0.0152 (8)
N10.0506 (7)0.0353 (7)0.0509 (9)0.0180 (6)0.0277 (7)0.0199 (6)
N20.0475 (7)0.0421 (7)0.0347 (7)0.0238 (6)0.0164 (6)0.0198 (6)
N30.0485 (8)0.0614 (10)0.0492 (9)0.0275 (7)0.0145 (7)0.0134 (8)
C10.0344 (6)0.0310 (6)0.0310 (7)0.0136 (5)0.0102 (5)0.0120 (6)
C20.0576 (10)0.0412 (9)0.0381 (9)0.0092 (7)0.0054 (7)0.0189 (8)
C30.0529 (9)0.0367 (8)0.0428 (10)0.0026 (7)0.0037 (8)0.0132 (8)
C40.0397 (7)0.0318 (7)0.0399 (8)0.0169 (6)0.0203 (6)0.0156 (6)
C50.0465 (8)0.0430 (8)0.0434 (9)0.0185 (7)0.0060 (7)0.0228 (8)
C60.0393 (7)0.0390 (8)0.0403 (9)0.0115 (6)0.0000 (6)0.0165 (7)
C70.0409 (7)0.0272 (6)0.0368 (8)0.0132 (5)0.0132 (6)0.0106 (6)
C80.0559 (10)0.0513 (10)0.0423 (10)0.0243 (8)0.0220 (8)0.0198 (8)
C90.0598 (10)0.0385 (8)0.0567 (12)0.0173 (8)0.0324 (9)0.0136 (8)
C100.0892 (17)0.0710 (15)0.0808 (18)0.0340 (13)0.0583 (15)0.0270 (13)
O40.0475 (7)0.0968 (12)0.0513 (8)0.0267 (7)0.0256 (6)0.0230 (8)
O50.0571 (7)0.0597 (8)0.0306 (6)0.0233 (6)0.0132 (5)0.0160 (6)
O60.0395 (5)0.0529 (7)0.0314 (6)0.0198 (5)0.0039 (4)0.0138 (5)
O70.0692 (10)0.171 (2)0.0830 (13)0.0813 (13)0.0218 (9)0.0526 (13)
O80.0515 (8)0.167 (2)0.0550 (10)0.0286 (11)0.0271 (8)0.0321 (12)
O90.0746 (10)0.0941 (12)0.0313 (7)0.0259 (9)0.0026 (7)0.0211 (8)
O100.0468 (7)0.0981 (12)0.0612 (10)0.0296 (8)0.0061 (7)0.0238 (9)
N40.0382 (7)0.0850 (12)0.0393 (9)0.0244 (8)0.0082 (6)0.0079 (8)
N50.0474 (8)0.0447 (8)0.0376 (8)0.0141 (6)0.0053 (6)0.0128 (7)
C110.0333 (6)0.0298 (6)0.0305 (7)0.0109 (5)0.0073 (5)0.0098 (6)
C120.0348 (6)0.0304 (6)0.0288 (7)0.0116 (5)0.0041 (5)0.0102 (6)
C130.0327 (7)0.0451 (8)0.0349 (8)0.0158 (6)0.0079 (6)0.0114 (7)
C140.0407 (7)0.0452 (8)0.0294 (8)0.0154 (6)0.0084 (6)0.0109 (7)
C150.0361 (7)0.0346 (7)0.0299 (7)0.0112 (6)0.0004 (6)0.0105 (6)
C160.0321 (6)0.0336 (7)0.0369 (8)0.0124 (5)0.0057 (6)0.0122 (6)
C170.0403 (7)0.0394 (8)0.0365 (8)0.0134 (6)0.0128 (6)0.0140 (7)
Geometric parameters (Å, º) top
S1—O11.4224 (13)C2—C31.381 (3)
S1—O21.4276 (14)C3—C41.373 (3)
S1—N21.6264 (16)C4—C51.370 (2)
S1—C11.7651 (17)C5—C61.378 (3)
O3—N31.408 (2)C7—C81.408 (2)
O3—C91.331 (3)C8—C91.351 (3)
O4—C171.221 (2)C9—C101.490 (3)
O5—C171.288 (2)C2—H20.9300
O6—C121.300 (2)C3—H30.9300
O7—N41.210 (3)C5—H50.9300
O8—N41.212 (3)C6—H60.9300
O9—N51.221 (2)C8—H80.9300
O10—N51.215 (2)C10—H10A0.9600
O6—H6A0.8200C10—H10B0.9600
N1—C41.464 (2)C10—H10C0.9600
N2—C71.388 (2)C11—C161.382 (2)
N3—C71.311 (3)C11—C171.493 (2)
N1—H1B0.8900C11—C121.427 (2)
N1—H1C0.8900C12—C131.410 (2)
N1—H1A0.8900C13—C141.377 (2)
N2—H2A0.8600C14—C151.379 (3)
N4—C131.457 (3)C15—C161.381 (2)
N5—C151.463 (2)C14—H140.9300
C1—C21.380 (2)C16—H160.9300
C1—C61.378 (2)
O1—S1—O2120.44 (8)C8—C9—C10133.9 (2)
O1—S1—N2108.84 (8)O3—C9—C8110.33 (19)
O1—S1—C1107.28 (8)C1—C2—H2120.00
O2—S1—N2104.18 (8)C3—C2—H2120.00
O2—S1—C1109.04 (8)C2—C3—H3120.00
N2—S1—C1106.25 (8)C4—C3—H3120.00
N3—O3—C9108.82 (18)C6—C5—H5120.00
C12—O6—H6A109.00C4—C5—H5120.00
S1—N2—C7124.67 (12)C5—C6—H6120.00
O3—N3—C7104.87 (15)C1—C6—H6120.00
H1B—N1—H1C109.00C9—C8—H8128.00
C4—N1—H1A109.00C7—C8—H8128.00
C4—N1—H1B109.00H10B—C10—H10C109.00
C4—N1—H1C109.00C9—C10—H10B109.00
H1A—N1—H1B109.00C9—C10—H10C110.00
H1A—N1—H1C110.00H10A—C10—H10B109.00
S1—N2—H2A118.00H10A—C10—H10C109.00
C7—N2—H2A118.00C9—C10—H10A109.00
O7—N4—O8123.4 (2)C12—C11—C16121.17 (14)
O7—N4—C13118.79 (19)C12—C11—C17118.90 (14)
O8—N4—C13117.80 (18)C16—C11—C17119.92 (15)
O10—N5—C15117.66 (15)O6—C12—C13122.61 (15)
O9—N5—O10123.92 (17)C11—C12—C13116.05 (14)
O9—N5—C15118.42 (17)O6—C12—C11121.32 (14)
S1—C1—C2121.18 (13)N4—C13—C12120.47 (15)
C2—C1—C6120.80 (16)C12—C13—C14123.04 (16)
S1—C1—C6118.00 (13)N4—C13—C14116.48 (15)
C1—C2—C3119.21 (17)C13—C14—C15118.34 (15)
C2—C3—C4119.55 (17)N5—C15—C16120.25 (15)
C3—C4—C5121.35 (16)C14—C15—C16121.92 (15)
N1—C4—C5118.03 (15)N5—C15—C14117.80 (14)
N1—C4—C3120.61 (16)C11—C16—C15119.46 (15)
C4—C5—C6119.34 (17)O4—C17—C11119.62 (16)
C1—C6—C5119.70 (16)O5—C17—C11115.95 (16)
N3—C7—C8112.03 (16)O4—C17—O5124.43 (17)
N2—C7—C8130.75 (16)C13—C14—H14121.00
N2—C7—N3117.21 (15)C15—C14—H14121.00
C7—C8—C9103.93 (17)C11—C16—H16120.00
O3—C9—C10115.7 (2)C15—C16—H16120.00
O1—S1—N2—C749.04 (16)C2—C3—C4—N1177.26 (16)
O2—S1—N2—C7178.71 (14)C2—C3—C4—C51.5 (3)
C1—S1—N2—C766.19 (15)C3—C4—C5—C62.1 (3)
O1—S1—C1—C2161.03 (14)N1—C4—C5—C6176.66 (16)
O1—S1—C1—C620.36 (16)C4—C5—C6—C10.7 (3)
O2—S1—C1—C267.01 (16)N2—C7—C8—C9179.86 (19)
O2—S1—C1—C6111.60 (14)N3—C7—C8—C90.7 (2)
N2—S1—C1—C244.74 (16)C7—C8—C9—O31.0 (2)
N2—S1—C1—C6136.65 (14)C7—C8—C9—C10179.8 (3)
N3—O3—C9—C80.9 (2)C16—C11—C12—O6179.60 (16)
C9—O3—N3—C70.4 (2)C16—C11—C12—C131.1 (2)
N3—O3—C9—C10179.7 (2)C17—C11—C12—O62.1 (2)
S1—N2—C7—N3164.49 (14)C17—C11—C12—C13179.40 (15)
S1—N2—C7—C816.4 (3)C12—C11—C16—C151.7 (3)
O3—N3—C7—N2179.46 (15)C17—C11—C16—C15179.96 (16)
O3—N3—C7—C80.2 (2)C12—C11—C17—O4177.09 (18)
O7—N4—C13—C14144.2 (2)C12—C11—C17—O51.9 (2)
O8—N4—C13—C12146.3 (2)C16—C11—C17—O41.2 (3)
O7—N4—C13—C1234.7 (3)C16—C11—C17—O5179.75 (16)
O8—N4—C13—C1434.7 (3)O6—C12—C13—N43.2 (3)
O9—N5—C15—C145.4 (3)O6—C12—C13—C14177.93 (17)
O9—N5—C15—C16176.34 (18)C11—C12—C13—N4178.36 (17)
O10—N5—C15—C163.9 (3)C11—C12—C13—C140.5 (3)
O10—N5—C15—C14174.40 (19)N4—C13—C14—C15177.38 (17)
C6—C1—C2—C31.9 (3)C12—C13—C14—C151.6 (3)
S1—C1—C6—C5179.87 (14)C13—C14—C15—N5177.28 (17)
S1—C1—C2—C3179.55 (14)C13—C14—C15—C161.0 (3)
C2—C1—C6—C51.3 (3)N5—C15—C16—C11178.83 (16)
C1—C2—C3—C40.5 (3)C14—C15—C16—C110.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O50.821.682.4296 (19)151
N2—H2A···O50.862.122.7852 (18)134
N1—H1A···O4i0.891.772.661 (2)177
N1—H1B···N3i0.892.243.041 (2)150
N1—H1C···O6ii0.892.213.064 (2)160
C5—H5···O6ii0.932.603.293 (2)132
C6—H6···O8iii0.932.603.176 (2)121
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O50.821.682.4296 (19)151
N2—H2A···O50.862.122.7852 (18)134
N1—H1A···O4i0.891.772.661 (2)177
N1—H1B···N3i0.892.243.041 (2)150
N1—H1C···O6ii0.892.213.064 (2)160
C5—H5···O6ii0.932.603.293 (2)132
C6—H6···O8iii0.932.603.176 (2)121
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC10H12N3O3S+·C7H3N2O7
Mr481.41
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.5551 (1), 10.5000 (2), 12.7576 (3)
α, β, γ (°)106.463 (1), 100.913 (1), 108.272 (1)
V3)993.72 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.20 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.955, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
24261, 6718, 4911
Rint0.030
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.05
No. of reflections6718
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.40

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POVRay (Cason, 2004), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the DST–India (FIST programme) for the use of the Bruker SMART APEXII diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. JSN thanks the UGC–SAP, India, for the award of an RFSMS.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBettinetti, G. P., Giordano, F., La Manna, A., Giuseppetti, G. & Tadini, C. (1982). Cryst. Struct. Commun. 11, 821–828.  CAS Google Scholar
First citationBock, L., Miller, G. H., Schaper, K. J. & Seydel, J. K. (1974). J. Med. Chem. 17, 23–28.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHida, S., Yoshida, M., Nakabayashi, I., Miura, N. N., Adachi, Y. & Ohno, N. (2005). Biol. Pharm. Bull. 28, 773–778.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, M.-L., Cheng, Y.-Y., Xu, Z.-H., Xu, P., Qu, H.-O., Fang, Y.-J., Xu, T.-W. & Wen, L. (2007). Eur. J. Med. Chem. 42, 93–98.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarques, L. L., de Oliveira, G. M. & Schulz Lang, E. (2006). Z. Anorg. Allg. Chem. 632, 2310–2314.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaury, L., Rambaud, J., Pauvert, B., Lasserre, Y., Berge, G. & Audran, M. (1985). Can. J. Chem. 63, 3012–3018.  CrossRef CAS Web of Science Google Scholar
First citationNakai, H., Takasuka, M. & Shiro, M. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1459–1464.  CSD CrossRef Web of Science Google Scholar
First citationPrice, C. P., Grzesiak, A. L. & Matzger, A. J. (2005). J. Am. Chem. Soc. 127, 5512–5517.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o4312–o4313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSubashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2008). Acta Cryst. E64, m250–m251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 618-620
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds