organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o410-o411

Crystal structure of benzyl­tri­phenyl­phospho­nium chloride monohydrate

aDepartment of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Malaysia, and bDepartment of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
*Correspondence e-mail: howfiona@iium.edu.my

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 May 2015; accepted 13 May 2015; online 20 May 2015)

The title compound, Ph3(PhCH2)P+·Cl·H2O, was obtained unintentionally as the product of an attempted synthesis of a silver di­thio­carbamate complex using benzyl­tri­phenyl­phospho­nium as the counter-ion. The asymmetric unit consists of a phospho­nium cation and a chloride anion, and a water mol­ecule of crystallization. In the crystal, the chloride ion is linked to the water mol­ecule by an O—H⋯Cl hydrogen bond. The three units are further linked via C—H⋯Cl and C—H⋯O hydrogen bonds and C—H⋯ π inter­actions, forming a three-dimensional structure.

1. Related literature

For some structures containing the Ph3(PhCH2)P+ cation, see: Li & He (2011[Li, L. & He, X. (2011). Acta Cryst. E67, o1635.]); Fischer & Wiebelhaus (1997[Fischer, A. & Wiebelhaus, D. (1997). Z. Kristallogr. New Cryst. Struct. 212, 335-336.]); Skapski & Stephens (1974[Skapski, A. C. & Stephens, F. A. (1974). J. Cryst. Mol. Struct. 4, 77-85.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C25H22P+·Cl·H2O

  • Mr = 406.86

  • Monoclinic, P 21 /c

  • a = 9.7368 (8) Å

  • b = 19.7474 (17) Å

  • c = 11.4170 (9) Å

  • β = 109.728 (9)°

  • V = 2066.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd. Yarnton, England.]) Tmin = 0.813, Tmax = 1.000

  • 12625 measured reflections

  • 5434 independent reflections

  • 3901 reflections with I > 2σ(I)

  • Rint = 0.067

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.194

  • S = 1.07

  • 5434 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of rings C8-C13 and C20-C25, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯Cl1i 0.85 2.27 3.114 (3) 170
C7—H7A⋯Cl1 0.97 2.57 3.511 (3) 162
C7—H7B⋯Cl1ii 0.97 2.60 3.528 (2) 160
C12—H12⋯O1iii 0.93 2.47 3.207 (5) 136
C17—H17⋯Cl1iv 0.93 2.81 3.562 (3) 139
C3—H3⋯Cg4v 0.93 2.83 3.584 (3) 139
C18—H18⋯Cg2vi 0.93 2.98 3.720 (3) 137
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x, -y+1, -z; (v) x+1, y, z; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd. Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

The title compound was obtained unintentionally as the product of an attempted synthesis of silver complex of di­thio­carbamate using benzyl­tri­phenyl­phospho­nium as the counter ion. Colourless crystals were obtained upon slow evaporation of the methano­lic solution at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms of the water molecule were located in a Fourier difference map. The water molecule was then refined as a rigid group with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Results and discussion top

The asymmetric unit of the title compound, shown in Fig. 1, consists of one independent cation, one independent anion and a hydrated water molecule. The central phosphine atom coordinates with the ligands in a slightly distorted tetra­hedral environment. The C—P—C bond angles vary from 108.56 (12) to 110.51 (11) °, deviating slightly from the ideal tetra­hedral angle of 109.5 °. The P–C bond distances, that vary from 1.792 (2) to 1.800 (3) Å, are comparable to values found for related compounds containing the Ph3(PhCH2)P+ cation (Li & He, 2011; Fischer & Wiebelhaus, 1997; Skapski & Stephens, 1974).

In the crystal, the chloride ion is linked to the water molecule by an O—H···Cl hydrogen bond (Table 1 and Fig. 1). The three units are further linked via C—H···Cl and C—H···O hydrogen bonds and C—H··· π inter­actions (Table 1) forming a three-dimensional structure.

Related literature top

For some structures containing the Ph3(PhCH2)P+ cation, see: Li & He (2011); Fischer & Wiebelhaus (1997); Skapski & Stephens (1974).

Experimental top

The title compound was obtained unintentionally as the product of an attempted synthesis of silver complex of dithiocarbamate using benzyltriphenylphosphonium as the counter ion. The colourless crystal was obtained upon slow evaporation of the methanolic solution at room temperature.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: OLEX2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Dotted line denotes the O—H···Cl hydrogen bond (see Table 1 for details).
Benzyltriphenylphosphonium chloride monohydrate top
Crystal data top
C25H22P+·Cl·H2OF(000) = 856
Mr = 406.86Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7368 (8) ÅCell parameters from 2649 reflections
b = 19.7474 (17) Åθ = 3.6–30.1°
c = 11.4170 (9) ŵ = 0.28 mm1
β = 109.728 (9)°T = 100 K
V = 2066.4 (3) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
5434 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3901 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.067
Detector resolution: 10.4041 pixels mm-1θmax = 30.3°, θmin = 3.0°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent 2013)
k = 2618
Tmin = 0.813, Tmax = 1.000l = 1615
12625 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0844P)2 + 1.2017P]
where P = (Fo2 + 2Fc2)/3
5434 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
C25H22P+·Cl·H2OV = 2066.4 (3) Å3
Mr = 406.86Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7368 (8) ŵ = 0.28 mm1
b = 19.7474 (17) ÅT = 100 K
c = 11.4170 (9) Å0.30 × 0.25 × 0.20 mm
β = 109.728 (9)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
5434 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent 2013)
3901 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 1.000Rint = 0.067
12625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.07Δρmax = 0.90 e Å3
5434 reflectionsΔρmin = 0.72 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2Ueq(C). H atoms in water molecule (O–H 0.85 Å) were refined using a riding model with Uiso(H) = 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25025 (7)0.57674 (4)0.31223 (6)0.02397 (19)
P10.34083 (7)0.36232 (3)0.34126 (5)0.01553 (18)
C180.2330 (3)0.37275 (14)0.0334 (2)0.0213 (5)
H180.27750.36450.09230.026*
C70.4679 (3)0.43096 (13)0.3966 (2)0.0178 (5)
H7A0.41410.47270.39330.021*
H7B0.52620.42270.48290.021*
C80.4377 (3)0.28343 (13)0.3638 (2)0.0173 (5)
C240.0575 (3)0.29764 (17)0.5078 (2)0.0270 (6)
H240.01030.25740.51310.032*
C30.7862 (3)0.41102 (16)0.2782 (3)0.0260 (6)
H30.87120.38560.29600.031*
C130.5493 (3)0.27260 (14)0.4777 (2)0.0219 (6)
H130.57100.30550.53960.026*
C200.2189 (3)0.36118 (14)0.4295 (2)0.0187 (5)
C50.6222 (3)0.49415 (15)0.1536 (2)0.0239 (6)
H50.59770.52520.08850.029*
C60.5303 (3)0.48535 (14)0.2233 (2)0.0205 (5)
H60.44410.51000.20420.025*
C40.7491 (3)0.45721 (15)0.1805 (2)0.0246 (6)
H40.80980.46310.13340.030*
C150.0985 (3)0.39724 (15)0.1413 (2)0.0226 (6)
H150.05350.40580.19980.027*
C140.2409 (3)0.37351 (13)0.1790 (2)0.0163 (5)
C190.3092 (3)0.36202 (13)0.0909 (2)0.0195 (5)
H190.40540.34720.11610.023*
C10.5683 (3)0.43952 (13)0.3214 (2)0.0174 (5)
C100.4851 (3)0.17419 (15)0.2931 (3)0.0257 (6)
H100.46400.14120.23130.031*
C110.5955 (3)0.16351 (16)0.4041 (3)0.0290 (6)
H110.64910.12360.41710.035*
C160.0233 (3)0.40826 (16)0.0154 (2)0.0263 (6)
H160.07220.42410.01030.032*
C170.0900 (3)0.39582 (15)0.0711 (2)0.0240 (6)
H170.03910.40290.15520.029*
C90.4051 (3)0.23357 (14)0.2723 (2)0.0215 (5)
H90.32970.24020.19730.026*
C220.1048 (3)0.41462 (18)0.5617 (3)0.0313 (7)
H220.08920.45280.60310.038*
C250.1486 (3)0.30063 (15)0.4365 (2)0.0223 (6)
H250.16240.26250.39390.027*
C120.6270 (3)0.21230 (16)0.4971 (3)0.0282 (6)
H120.70060.20450.57270.034*
C210.1962 (3)0.41847 (16)0.4911 (2)0.0255 (6)
H210.24180.45910.48510.031*
C20.6968 (3)0.40286 (15)0.3491 (2)0.0224 (6)
H20.72290.37270.41550.027*
C230.0372 (3)0.35462 (17)0.5707 (2)0.0294 (7)
H230.02240.35230.61930.035*
O10.8349 (4)0.22715 (17)0.2572 (3)0.0728 (10)
H1A0.85510.22820.33570.109*
H1B0.80420.18790.23010.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0225 (3)0.0253 (4)0.0235 (3)0.0063 (3)0.0070 (2)0.0027 (2)
P10.0149 (3)0.0154 (3)0.0171 (3)0.0005 (2)0.0063 (2)0.0006 (2)
C180.0283 (14)0.0186 (13)0.0210 (11)0.0047 (11)0.0135 (10)0.0034 (10)
C70.0177 (12)0.0158 (13)0.0201 (11)0.0006 (10)0.0066 (9)0.0017 (9)
C80.0164 (11)0.0161 (13)0.0228 (11)0.0015 (10)0.0112 (9)0.0031 (9)
C240.0219 (13)0.0311 (16)0.0307 (14)0.0016 (13)0.0124 (11)0.0099 (12)
C30.0193 (13)0.0267 (16)0.0328 (14)0.0012 (12)0.0098 (11)0.0016 (11)
C130.0210 (13)0.0214 (14)0.0240 (12)0.0010 (11)0.0083 (10)0.0020 (10)
C200.0163 (12)0.0243 (14)0.0147 (11)0.0036 (11)0.0043 (9)0.0014 (9)
C50.0281 (14)0.0210 (14)0.0211 (12)0.0041 (12)0.0063 (10)0.0025 (10)
C60.0183 (12)0.0174 (13)0.0245 (12)0.0019 (11)0.0054 (9)0.0005 (10)
C40.0250 (14)0.0258 (16)0.0278 (13)0.0045 (12)0.0152 (11)0.0001 (11)
C150.0200 (13)0.0278 (15)0.0206 (11)0.0038 (12)0.0079 (10)0.0007 (10)
C140.0177 (12)0.0157 (12)0.0157 (10)0.0024 (10)0.0059 (9)0.0013 (9)
C190.0194 (12)0.0171 (13)0.0242 (12)0.0001 (10)0.0102 (10)0.0008 (10)
C10.0147 (11)0.0151 (12)0.0217 (11)0.0028 (10)0.0053 (9)0.0020 (9)
C100.0310 (15)0.0169 (14)0.0336 (14)0.0013 (12)0.0165 (12)0.0020 (11)
C110.0287 (15)0.0198 (15)0.0414 (15)0.0066 (13)0.0157 (12)0.0032 (12)
C160.0208 (13)0.0320 (17)0.0242 (13)0.0045 (12)0.0053 (10)0.0010 (11)
C170.0291 (14)0.0220 (14)0.0187 (11)0.0037 (12)0.0053 (10)0.0013 (10)
C90.0232 (13)0.0172 (13)0.0253 (12)0.0002 (11)0.0097 (10)0.0007 (10)
C220.0288 (15)0.042 (2)0.0265 (13)0.0001 (14)0.0136 (12)0.0091 (12)
C250.0245 (13)0.0207 (14)0.0247 (12)0.0017 (11)0.0124 (10)0.0041 (10)
C120.0243 (14)0.0256 (16)0.0332 (14)0.0043 (12)0.0076 (11)0.0080 (12)
C210.0232 (13)0.0265 (16)0.0289 (13)0.0035 (12)0.0115 (11)0.0078 (11)
C20.0191 (12)0.0230 (14)0.0243 (12)0.0028 (11)0.0063 (10)0.0028 (10)
C230.0230 (13)0.047 (2)0.0214 (12)0.0061 (14)0.0116 (11)0.0058 (12)
O10.080 (2)0.053 (2)0.0685 (19)0.0064 (18)0.0032 (18)0.0002 (15)
Geometric parameters (Å, º) top
P1—C71.800 (3)C4—H40.9300
P1—C81.794 (3)C15—H150.9300
P1—C201.798 (3)C15—C141.387 (4)
P1—C141.792 (2)C15—C161.393 (4)
C18—H180.9300C14—C191.398 (3)
C18—C191.378 (3)C19—H190.9300
C18—C171.388 (4)C1—C21.386 (4)
C7—H7A0.9700C10—H100.9300
C7—H7B0.9700C10—C111.374 (4)
C7—C11.512 (4)C10—C91.383 (4)
C8—C131.401 (4)C11—H110.9300
C8—C91.392 (4)C11—C121.389 (4)
C24—H240.9300C16—H160.9300
C24—C251.392 (4)C16—C171.374 (4)
C24—C231.385 (4)C17—H170.9300
C3—H30.9300C9—H90.9300
C3—C41.391 (4)C22—H220.9300
C3—C21.384 (4)C22—C211.390 (4)
C13—H130.9300C22—C231.376 (5)
C13—C121.388 (4)C25—H250.9300
C20—C251.394 (4)C12—H120.9300
C20—C211.388 (4)C21—H210.9300
C5—H50.9300C2—H20.9300
C5—C61.395 (4)C23—H230.9300
C5—C41.377 (4)O1—H1A0.8504
C6—H60.9300O1—H1B0.8496
C6—C11.390 (4)
C8—P1—C7109.74 (12)C15—C14—C19120.0 (2)
C8—P1—C20108.86 (12)C19—C14—P1119.98 (19)
C20—P1—C7108.56 (12)C18—C19—C14119.6 (2)
C14—P1—C7109.82 (12)C18—C19—H19120.2
C14—P1—C8109.33 (12)C14—C19—H19120.2
C14—P1—C20110.51 (11)C6—C1—C7118.9 (2)
C19—C18—H18119.8C2—C1—C7121.2 (2)
C19—C18—C17120.3 (2)C2—C1—C6119.9 (2)
C17—C18—H18119.8C11—C10—H10119.7
P1—C7—H7A109.1C11—C10—C9120.5 (3)
P1—C7—H7B109.1C9—C10—H10119.7
H7A—C7—H7B107.8C10—C11—H11120.0
C1—C7—P1112.58 (17)C10—C11—C12120.1 (3)
C1—C7—H7A109.1C12—C11—H11120.0
C1—C7—H7B109.1C15—C16—H16119.9
C13—C8—P1118.1 (2)C17—C16—C15120.2 (3)
C9—C8—P1122.10 (19)C17—C16—H16119.9
C9—C8—C13119.8 (2)C18—C17—H17119.9
C25—C24—H24120.0C16—C17—C18120.2 (2)
C23—C24—H24120.0C16—C17—H17119.9
C23—C24—C25119.9 (3)C8—C9—H9120.0
C4—C3—H3120.0C10—C9—C8119.9 (2)
C2—C3—H3120.0C10—C9—H9120.0
C2—C3—C4120.1 (3)C21—C22—H22119.8
C8—C13—H13120.4C23—C22—H22119.8
C12—C13—C8119.3 (3)C23—C22—C21120.4 (3)
C12—C13—H13120.4C24—C25—C20119.5 (3)
C25—C20—P1118.2 (2)C24—C25—H25120.3
C21—C20—P1121.4 (2)C20—C25—H25120.3
C21—C20—C25120.3 (2)C13—C12—C11120.3 (3)
C6—C5—H5119.8C13—C12—H12119.8
C4—C5—H5119.8C11—C12—H12119.8
C4—C5—C6120.5 (2)C20—C21—C22119.4 (3)
C5—C6—H6120.2C20—C21—H21120.3
C1—C6—C5119.6 (2)C22—C21—H21120.3
C1—C6—H6120.2C3—C2—C1120.3 (2)
C3—C4—H4120.1C3—C2—H2119.9
C5—C4—C3119.8 (3)C1—C2—H2119.9
C5—C4—H4120.1C24—C23—H23119.8
C14—C15—H15120.2C22—C23—C24120.4 (3)
C14—C15—C16119.7 (2)C22—C23—H23119.8
C16—C15—H15120.2H1A—O1—H1B109.5
C15—C14—P1119.93 (19)
P1—C7—C1—C694.1 (3)C6—C5—C4—C30.3 (4)
P1—C7—C1—C286.2 (3)C6—C1—C2—C30.9 (4)
P1—C8—C13—C12179.3 (2)C4—C3—C2—C11.4 (4)
P1—C8—C9—C10178.5 (2)C4—C5—C6—C10.8 (4)
P1—C20—C25—C24177.77 (19)C15—C14—C19—C181.6 (4)
P1—C20—C21—C22177.8 (2)C15—C16—C17—C180.5 (5)
P1—C14—C19—C18178.0 (2)C14—P1—C7—C154.7 (2)
C7—P1—C8—C1344.1 (2)C14—P1—C8—C13164.6 (2)
C7—P1—C8—C9135.8 (2)C14—P1—C8—C915.3 (3)
C7—P1—C20—C25156.91 (19)C14—P1—C20—C2582.6 (2)
C7—P1—C20—C2122.1 (2)C14—P1—C20—C2198.4 (2)
C7—P1—C14—C15102.9 (2)C14—C15—C16—C170.1 (5)
C7—P1—C14—C1973.5 (2)C19—C18—C17—C160.1 (4)
C7—C1—C2—C3179.4 (2)C10—C11—C12—C131.2 (5)
C8—P1—C7—C165.5 (2)C11—C10—C9—C80.9 (4)
C8—P1—C20—C2537.5 (2)C16—C15—C14—P1177.6 (2)
C8—P1—C20—C21141.5 (2)C16—C15—C14—C191.2 (4)
C8—P1—C14—C15136.6 (2)C17—C18—C19—C141.0 (4)
C8—P1—C14—C1947.0 (2)C9—C8—C13—C120.7 (4)
C8—C13—C12—C110.6 (4)C9—C10—C11—C120.4 (4)
C13—C8—C9—C101.4 (4)C25—C24—C23—C221.1 (4)
C20—P1—C7—C1175.62 (17)C25—C20—C21—C221.2 (4)
C20—P1—C8—C1374.5 (2)C21—C20—C25—C241.3 (4)
C20—P1—C8—C9105.5 (2)C21—C22—C23—C241.1 (4)
C20—P1—C14—C1516.8 (3)C2—C3—C4—C50.8 (4)
C20—P1—C14—C19166.8 (2)C23—C24—C25—C200.1 (4)
C5—C6—C1—C7179.6 (2)C23—C22—C21—C200.0 (4)
C5—C6—C1—C20.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of rings C8-C13 and C20-C25, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl1i0.852.273.114 (3)170
C7—H7A···Cl10.972.573.511 (3)162
C7—H7B···Cl1ii0.972.603.528 (2)160
C12—H12···O1iii0.932.473.207 (5)136
C17—H17···Cl1iv0.932.813.562 (3)139
C3—H3···Cg4v0.932.833.584 (3)139
C18—H18···Cg2vi0.932.983.720 (3)137
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1, y, z; (vi) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of rings C8-C13 and C20-C25, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl1i0.852.273.114 (3)170
C7—H7A···Cl10.972.573.511 (3)162
C7—H7B···Cl1ii0.972.603.528 (2)160
C12—H12···O1iii0.932.473.207 (5)136
C17—H17···Cl1iv0.932.813.562 (3)139
C3—H3···Cg4v0.932.833.584 (3)139
C18—H18···Cg2vi0.932.983.720 (3)137
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1, y, z; (vi) x, y+1/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge The Ministry of Higher Education (MOHE), Malaysia, for funding this research under the Fundamental Research Grant Scheme Grant No. FRGS12–064-0213 and the Universiti Malaya Research Grant.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd. Yarnton, England.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, A. & Wiebelhaus, D. (1997). Z. Kristallogr. New Cryst. Struct. 212, 335–336.  CAS Google Scholar
First citationLi, L. & He, X. (2011). Acta Cryst. E67, o1635.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkapski, A. C. & Stephens, F. A. (1974). J. Cryst. Mol. Struct. 4, 77–85.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o410-o411
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds