organic compounds
of benzyltriphenylphosphonium chloride monohydrate
aDepartment of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Malaysia, and bDepartment of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
*Correspondence e-mail: howfiona@iium.edu.my
The title compound, Ph3(PhCH2)P+·Cl−·H2O, was obtained unintentionally as the product of an attempted synthesis of a silver dithiocarbamate complex using benzyltriphenylphosphonium as the counter-ion. The consists of a phosphonium cation and a chloride anion, and a water molecule of crystallization. In the crystal, the chloride ion is linked to the water molecule by an O—H⋯Cl hydrogen bond. The three units are further linked via C—H⋯Cl and C—H⋯O hydrogen bonds and C—H⋯ π interactions, forming a three-dimensional structure.
Keywords: crystal structure; benzyltriphenylphosphonium; chloride; hydrogen bonding; C—H⋯ π interactions.
CCDC reference: 1400555
1. Related literature
For some structures containing the Ph3(PhCH2)P+ cation, see: Li & He (2011); Fischer & Wiebelhaus (1997); Skapski & Stephens (1974).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1400555
10.1107/S2056989015009159/su5134sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015009159/su5134Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015009159/su5134Isup3.cml
The title compound was obtained unintentionally as the product of an attempted synthesis of silver complex of dithiocarbamate using benzyltriphenylphosphonium as the counter ion. Colourless crystals were obtained upon slow evaporation of the methanolic solution at room temperature.
Crystal data, data collection and structure
details are summarized in Table 2. The H atoms of the water molecule were located in a Fourier difference map. The water molecule was then refined as a rigid group with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).The
of the title compound, shown in Fig. 1, consists of one independent cation, one independent anion and a hydrated water molecule. The central phosphine atom coordinates with the ligands in a slightly distorted tetrahedral environment. The C—P—C bond angles vary from 108.56 (12) to 110.51 (11) °, deviating slightly from the ideal tetrahedral angle of 109.5 °. The P–C bond distances, that vary from 1.792 (2) to 1.800 (3) Å, are comparable to values found for related compounds containing the Ph3(PhCH2)P+ cation (Li & He, 2011; Fischer & Wiebelhaus, 1997; Skapski & Stephens, 1974).In the crystal, the chloride ion is linked to the water molecule by an O—H···Cl hydrogen bond (Table 1 and Fig. 1). The three units are further linked via C—H···Cl and C—H···O hydrogen bonds and C—H··· π interactions (Table 1) forming a three-dimensional structure.
The title compound was obtained unintentionally as the product of an attempted synthesis of silver complex of dithiocarbamate using benzyltriphenylphosphonium as the counter ion. The colourless crystal was obtained upon slow evaporation of the methanolic solution at room temperature.
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: OLEX2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The asymmetric unit of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Dotted line denotes the O—H···Cl hydrogen bond (see Table 1 for details). |
C25H22P+·Cl−·H2O | F(000) = 856 |
Mr = 406.86 | Dx = 1.308 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.7368 (8) Å | Cell parameters from 2649 reflections |
b = 19.7474 (17) Å | θ = 3.6–30.1° |
c = 11.4170 (9) Å | µ = 0.28 mm−1 |
β = 109.728 (9)° | T = 100 K |
V = 2066.4 (3) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.25 × 0.20 mm |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 5434 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 3901 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.067 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 30.3°, θmin = 3.0° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent 2013) | k = −26→18 |
Tmin = 0.813, Tmax = 1.000 | l = −16→15 |
12625 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.194 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0844P)2 + 1.2017P] where P = (Fo2 + 2Fc2)/3 |
5434 reflections | (Δ/σ)max < 0.001 |
256 parameters | Δρmax = 0.90 e Å−3 |
0 restraints | Δρmin = −0.72 e Å−3 |
C25H22P+·Cl−·H2O | V = 2066.4 (3) Å3 |
Mr = 406.86 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.7368 (8) Å | µ = 0.28 mm−1 |
b = 19.7474 (17) Å | T = 100 K |
c = 11.4170 (9) Å | 0.30 × 0.25 × 0.20 mm |
β = 109.728 (9)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 5434 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent 2013) | 3901 reflections with I > 2σ(I) |
Tmin = 0.813, Tmax = 1.000 | Rint = 0.067 |
12625 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.194 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.90 e Å−3 |
5434 reflections | Δρmin = −0.72 e Å−3 |
256 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2Ueq(C). H atoms in water molecule (O–H 0.85 Å) were refined using a riding model with Uiso(H) = 1.5Ueq(O). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.25025 (7) | 0.57674 (4) | 0.31223 (6) | 0.02397 (19) | |
P1 | 0.34083 (7) | 0.36232 (3) | 0.34126 (5) | 0.01553 (18) | |
C18 | 0.2330 (3) | 0.37275 (14) | −0.0334 (2) | 0.0213 (5) | |
H18 | 0.2775 | 0.3645 | −0.0923 | 0.026* | |
C7 | 0.4679 (3) | 0.43096 (13) | 0.3966 (2) | 0.0178 (5) | |
H7A | 0.4141 | 0.4727 | 0.3933 | 0.021* | |
H7B | 0.5262 | 0.4227 | 0.4829 | 0.021* | |
C8 | 0.4377 (3) | 0.28343 (13) | 0.3638 (2) | 0.0173 (5) | |
C24 | 0.0575 (3) | 0.29764 (17) | 0.5078 (2) | 0.0270 (6) | |
H24 | 0.0103 | 0.2574 | 0.5131 | 0.032* | |
C3 | 0.7862 (3) | 0.41102 (16) | 0.2782 (3) | 0.0260 (6) | |
H3 | 0.8712 | 0.3856 | 0.2960 | 0.031* | |
C13 | 0.5493 (3) | 0.27260 (14) | 0.4777 (2) | 0.0219 (6) | |
H13 | 0.5710 | 0.3055 | 0.5396 | 0.026* | |
C20 | 0.2189 (3) | 0.36118 (14) | 0.4295 (2) | 0.0187 (5) | |
C5 | 0.6222 (3) | 0.49415 (15) | 0.1536 (2) | 0.0239 (6) | |
H5 | 0.5977 | 0.5252 | 0.0885 | 0.029* | |
C6 | 0.5303 (3) | 0.48535 (14) | 0.2233 (2) | 0.0205 (5) | |
H6 | 0.4441 | 0.5100 | 0.2042 | 0.025* | |
C4 | 0.7491 (3) | 0.45721 (15) | 0.1805 (2) | 0.0246 (6) | |
H4 | 0.8098 | 0.4631 | 0.1334 | 0.030* | |
C15 | 0.0985 (3) | 0.39724 (15) | 0.1413 (2) | 0.0226 (6) | |
H15 | 0.0535 | 0.4058 | 0.1998 | 0.027* | |
C14 | 0.2409 (3) | 0.37351 (13) | 0.1790 (2) | 0.0163 (5) | |
C19 | 0.3092 (3) | 0.36202 (13) | 0.0909 (2) | 0.0195 (5) | |
H19 | 0.4054 | 0.3472 | 0.1161 | 0.023* | |
C1 | 0.5683 (3) | 0.43952 (13) | 0.3214 (2) | 0.0174 (5) | |
C10 | 0.4851 (3) | 0.17419 (15) | 0.2931 (3) | 0.0257 (6) | |
H10 | 0.4640 | 0.1412 | 0.2313 | 0.031* | |
C11 | 0.5955 (3) | 0.16351 (16) | 0.4041 (3) | 0.0290 (6) | |
H11 | 0.6491 | 0.1236 | 0.4171 | 0.035* | |
C16 | 0.0233 (3) | 0.40826 (16) | 0.0154 (2) | 0.0263 (6) | |
H16 | −0.0722 | 0.4241 | −0.0103 | 0.032* | |
C17 | 0.0900 (3) | 0.39582 (15) | −0.0711 (2) | 0.0240 (6) | |
H17 | 0.0391 | 0.4029 | −0.1552 | 0.029* | |
C9 | 0.4051 (3) | 0.23357 (14) | 0.2723 (2) | 0.0215 (5) | |
H9 | 0.3297 | 0.2402 | 0.1973 | 0.026* | |
C22 | 0.1048 (3) | 0.41462 (18) | 0.5617 (3) | 0.0313 (7) | |
H22 | 0.0892 | 0.4528 | 0.6031 | 0.038* | |
C25 | 0.1486 (3) | 0.30063 (15) | 0.4365 (2) | 0.0223 (6) | |
H25 | 0.1624 | 0.2625 | 0.3939 | 0.027* | |
C12 | 0.6270 (3) | 0.21230 (16) | 0.4971 (3) | 0.0282 (6) | |
H12 | 0.7006 | 0.2045 | 0.5727 | 0.034* | |
C21 | 0.1962 (3) | 0.41847 (16) | 0.4911 (2) | 0.0255 (6) | |
H21 | 0.2418 | 0.4591 | 0.4851 | 0.031* | |
C2 | 0.6968 (3) | 0.40286 (15) | 0.3491 (2) | 0.0224 (6) | |
H2 | 0.7229 | 0.3727 | 0.4155 | 0.027* | |
C23 | 0.0372 (3) | 0.35462 (17) | 0.5707 (2) | 0.0294 (7) | |
H23 | −0.0224 | 0.3523 | 0.6193 | 0.035* | |
O1 | 0.8349 (4) | 0.22715 (17) | 0.2572 (3) | 0.0728 (10) | |
H1A | 0.8551 | 0.2282 | 0.3357 | 0.109* | |
H1B | 0.8042 | 0.1879 | 0.2301 | 0.109* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0225 (3) | 0.0253 (4) | 0.0235 (3) | 0.0063 (3) | 0.0070 (2) | 0.0027 (2) |
P1 | 0.0149 (3) | 0.0154 (3) | 0.0171 (3) | 0.0005 (2) | 0.0063 (2) | −0.0006 (2) |
C18 | 0.0283 (14) | 0.0186 (13) | 0.0210 (11) | −0.0047 (11) | 0.0135 (10) | −0.0034 (10) |
C7 | 0.0177 (12) | 0.0158 (13) | 0.0201 (11) | −0.0006 (10) | 0.0066 (9) | −0.0017 (9) |
C8 | 0.0164 (11) | 0.0161 (13) | 0.0228 (11) | 0.0015 (10) | 0.0112 (9) | 0.0031 (9) |
C24 | 0.0219 (13) | 0.0311 (16) | 0.0307 (14) | 0.0016 (13) | 0.0124 (11) | 0.0099 (12) |
C3 | 0.0193 (13) | 0.0267 (16) | 0.0328 (14) | 0.0012 (12) | 0.0098 (11) | 0.0016 (11) |
C13 | 0.0210 (13) | 0.0214 (14) | 0.0240 (12) | 0.0010 (11) | 0.0083 (10) | 0.0020 (10) |
C20 | 0.0163 (12) | 0.0243 (14) | 0.0147 (11) | 0.0036 (11) | 0.0043 (9) | 0.0014 (9) |
C5 | 0.0281 (14) | 0.0210 (14) | 0.0211 (12) | −0.0041 (12) | 0.0063 (10) | 0.0025 (10) |
C6 | 0.0183 (12) | 0.0174 (13) | 0.0245 (12) | −0.0019 (11) | 0.0054 (9) | −0.0005 (10) |
C4 | 0.0250 (14) | 0.0258 (16) | 0.0278 (13) | −0.0045 (12) | 0.0152 (11) | −0.0001 (11) |
C15 | 0.0200 (13) | 0.0278 (15) | 0.0206 (11) | 0.0038 (12) | 0.0079 (10) | −0.0007 (10) |
C14 | 0.0177 (12) | 0.0157 (12) | 0.0157 (10) | −0.0024 (10) | 0.0059 (9) | −0.0013 (9) |
C19 | 0.0194 (12) | 0.0171 (13) | 0.0242 (12) | −0.0001 (10) | 0.0102 (10) | −0.0008 (10) |
C1 | 0.0147 (11) | 0.0151 (12) | 0.0217 (11) | −0.0028 (10) | 0.0053 (9) | −0.0020 (9) |
C10 | 0.0310 (15) | 0.0169 (14) | 0.0336 (14) | −0.0013 (12) | 0.0165 (12) | −0.0020 (11) |
C11 | 0.0287 (15) | 0.0198 (15) | 0.0414 (15) | 0.0066 (13) | 0.0157 (12) | 0.0032 (12) |
C16 | 0.0208 (13) | 0.0320 (17) | 0.0242 (13) | 0.0045 (12) | 0.0053 (10) | 0.0010 (11) |
C17 | 0.0291 (14) | 0.0220 (14) | 0.0187 (11) | −0.0037 (12) | 0.0053 (10) | 0.0013 (10) |
C9 | 0.0232 (13) | 0.0172 (13) | 0.0253 (12) | 0.0002 (11) | 0.0097 (10) | 0.0007 (10) |
C22 | 0.0288 (15) | 0.042 (2) | 0.0265 (13) | 0.0001 (14) | 0.0136 (12) | −0.0091 (12) |
C25 | 0.0245 (13) | 0.0207 (14) | 0.0247 (12) | 0.0017 (11) | 0.0124 (10) | 0.0041 (10) |
C12 | 0.0243 (14) | 0.0256 (16) | 0.0332 (14) | 0.0043 (12) | 0.0076 (11) | 0.0080 (12) |
C21 | 0.0232 (13) | 0.0265 (16) | 0.0289 (13) | −0.0035 (12) | 0.0115 (11) | −0.0078 (11) |
C2 | 0.0191 (12) | 0.0230 (14) | 0.0243 (12) | −0.0028 (11) | 0.0063 (10) | 0.0028 (10) |
C23 | 0.0230 (13) | 0.047 (2) | 0.0214 (12) | 0.0061 (14) | 0.0116 (11) | 0.0058 (12) |
O1 | 0.080 (2) | 0.053 (2) | 0.0685 (19) | −0.0064 (18) | 0.0032 (18) | −0.0002 (15) |
P1—C7 | 1.800 (3) | C4—H4 | 0.9300 |
P1—C8 | 1.794 (3) | C15—H15 | 0.9300 |
P1—C20 | 1.798 (3) | C15—C14 | 1.387 (4) |
P1—C14 | 1.792 (2) | C15—C16 | 1.393 (4) |
C18—H18 | 0.9300 | C14—C19 | 1.398 (3) |
C18—C19 | 1.378 (3) | C19—H19 | 0.9300 |
C18—C17 | 1.388 (4) | C1—C2 | 1.386 (4) |
C7—H7A | 0.9700 | C10—H10 | 0.9300 |
C7—H7B | 0.9700 | C10—C11 | 1.374 (4) |
C7—C1 | 1.512 (4) | C10—C9 | 1.383 (4) |
C8—C13 | 1.401 (4) | C11—H11 | 0.9300 |
C8—C9 | 1.392 (4) | C11—C12 | 1.389 (4) |
C24—H24 | 0.9300 | C16—H16 | 0.9300 |
C24—C25 | 1.392 (4) | C16—C17 | 1.374 (4) |
C24—C23 | 1.385 (4) | C17—H17 | 0.9300 |
C3—H3 | 0.9300 | C9—H9 | 0.9300 |
C3—C4 | 1.391 (4) | C22—H22 | 0.9300 |
C3—C2 | 1.384 (4) | C22—C21 | 1.390 (4) |
C13—H13 | 0.9300 | C22—C23 | 1.376 (5) |
C13—C12 | 1.388 (4) | C25—H25 | 0.9300 |
C20—C25 | 1.394 (4) | C12—H12 | 0.9300 |
C20—C21 | 1.388 (4) | C21—H21 | 0.9300 |
C5—H5 | 0.9300 | C2—H2 | 0.9300 |
C5—C6 | 1.395 (4) | C23—H23 | 0.9300 |
C5—C4 | 1.377 (4) | O1—H1A | 0.8504 |
C6—H6 | 0.9300 | O1—H1B | 0.8496 |
C6—C1 | 1.390 (4) | ||
C8—P1—C7 | 109.74 (12) | C15—C14—C19 | 120.0 (2) |
C8—P1—C20 | 108.86 (12) | C19—C14—P1 | 119.98 (19) |
C20—P1—C7 | 108.56 (12) | C18—C19—C14 | 119.6 (2) |
C14—P1—C7 | 109.82 (12) | C18—C19—H19 | 120.2 |
C14—P1—C8 | 109.33 (12) | C14—C19—H19 | 120.2 |
C14—P1—C20 | 110.51 (11) | C6—C1—C7 | 118.9 (2) |
C19—C18—H18 | 119.8 | C2—C1—C7 | 121.2 (2) |
C19—C18—C17 | 120.3 (2) | C2—C1—C6 | 119.9 (2) |
C17—C18—H18 | 119.8 | C11—C10—H10 | 119.7 |
P1—C7—H7A | 109.1 | C11—C10—C9 | 120.5 (3) |
P1—C7—H7B | 109.1 | C9—C10—H10 | 119.7 |
H7A—C7—H7B | 107.8 | C10—C11—H11 | 120.0 |
C1—C7—P1 | 112.58 (17) | C10—C11—C12 | 120.1 (3) |
C1—C7—H7A | 109.1 | C12—C11—H11 | 120.0 |
C1—C7—H7B | 109.1 | C15—C16—H16 | 119.9 |
C13—C8—P1 | 118.1 (2) | C17—C16—C15 | 120.2 (3) |
C9—C8—P1 | 122.10 (19) | C17—C16—H16 | 119.9 |
C9—C8—C13 | 119.8 (2) | C18—C17—H17 | 119.9 |
C25—C24—H24 | 120.0 | C16—C17—C18 | 120.2 (2) |
C23—C24—H24 | 120.0 | C16—C17—H17 | 119.9 |
C23—C24—C25 | 119.9 (3) | C8—C9—H9 | 120.0 |
C4—C3—H3 | 120.0 | C10—C9—C8 | 119.9 (2) |
C2—C3—H3 | 120.0 | C10—C9—H9 | 120.0 |
C2—C3—C4 | 120.1 (3) | C21—C22—H22 | 119.8 |
C8—C13—H13 | 120.4 | C23—C22—H22 | 119.8 |
C12—C13—C8 | 119.3 (3) | C23—C22—C21 | 120.4 (3) |
C12—C13—H13 | 120.4 | C24—C25—C20 | 119.5 (3) |
C25—C20—P1 | 118.2 (2) | C24—C25—H25 | 120.3 |
C21—C20—P1 | 121.4 (2) | C20—C25—H25 | 120.3 |
C21—C20—C25 | 120.3 (2) | C13—C12—C11 | 120.3 (3) |
C6—C5—H5 | 119.8 | C13—C12—H12 | 119.8 |
C4—C5—H5 | 119.8 | C11—C12—H12 | 119.8 |
C4—C5—C6 | 120.5 (2) | C20—C21—C22 | 119.4 (3) |
C5—C6—H6 | 120.2 | C20—C21—H21 | 120.3 |
C1—C6—C5 | 119.6 (2) | C22—C21—H21 | 120.3 |
C1—C6—H6 | 120.2 | C3—C2—C1 | 120.3 (2) |
C3—C4—H4 | 120.1 | C3—C2—H2 | 119.9 |
C5—C4—C3 | 119.8 (3) | C1—C2—H2 | 119.9 |
C5—C4—H4 | 120.1 | C24—C23—H23 | 119.8 |
C14—C15—H15 | 120.2 | C22—C23—C24 | 120.4 (3) |
C14—C15—C16 | 119.7 (2) | C22—C23—H23 | 119.8 |
C16—C15—H15 | 120.2 | H1A—O1—H1B | 109.5 |
C15—C14—P1 | 119.93 (19) | ||
P1—C7—C1—C6 | 94.1 (3) | C6—C5—C4—C3 | −0.3 (4) |
P1—C7—C1—C2 | −86.2 (3) | C6—C1—C2—C3 | −0.9 (4) |
P1—C8—C13—C12 | −179.3 (2) | C4—C3—C2—C1 | 1.4 (4) |
P1—C8—C9—C10 | 178.5 (2) | C4—C5—C6—C1 | 0.8 (4) |
P1—C20—C25—C24 | 177.77 (19) | C15—C14—C19—C18 | −1.6 (4) |
P1—C20—C21—C22 | −177.8 (2) | C15—C16—C17—C18 | −0.5 (5) |
P1—C14—C19—C18 | −178.0 (2) | C14—P1—C7—C1 | −54.7 (2) |
C7—P1—C8—C13 | 44.1 (2) | C14—P1—C8—C13 | 164.6 (2) |
C7—P1—C8—C9 | −135.8 (2) | C14—P1—C8—C9 | −15.3 (3) |
C7—P1—C20—C25 | −156.91 (19) | C14—P1—C20—C25 | 82.6 (2) |
C7—P1—C20—C21 | 22.1 (2) | C14—P1—C20—C21 | −98.4 (2) |
C7—P1—C14—C15 | −102.9 (2) | C14—C15—C16—C17 | −0.1 (5) |
C7—P1—C14—C19 | 73.5 (2) | C19—C18—C17—C16 | 0.1 (4) |
C7—C1—C2—C3 | 179.4 (2) | C10—C11—C12—C13 | −1.2 (5) |
C8—P1—C7—C1 | 65.5 (2) | C11—C10—C9—C8 | 0.9 (4) |
C8—P1—C20—C25 | −37.5 (2) | C16—C15—C14—P1 | 177.6 (2) |
C8—P1—C20—C21 | 141.5 (2) | C16—C15—C14—C19 | 1.2 (4) |
C8—P1—C14—C15 | 136.6 (2) | C17—C18—C19—C14 | 1.0 (4) |
C8—P1—C14—C19 | −47.0 (2) | C9—C8—C13—C12 | 0.7 (4) |
C8—C13—C12—C11 | 0.6 (4) | C9—C10—C11—C12 | 0.4 (4) |
C13—C8—C9—C10 | −1.4 (4) | C25—C24—C23—C22 | 1.1 (4) |
C20—P1—C7—C1 | −175.62 (17) | C25—C20—C21—C22 | 1.2 (4) |
C20—P1—C8—C13 | −74.5 (2) | C21—C20—C25—C24 | −1.3 (4) |
C20—P1—C8—C9 | 105.5 (2) | C21—C22—C23—C24 | −1.1 (4) |
C20—P1—C14—C15 | 16.8 (3) | C2—C3—C4—C5 | −0.8 (4) |
C20—P1—C14—C19 | −166.8 (2) | C23—C24—C25—C20 | 0.1 (4) |
C5—C6—C1—C7 | 179.6 (2) | C23—C22—C21—C20 | 0.0 (4) |
C5—C6—C1—C2 | −0.1 (4) |
Cg2 and Cg4 are the centroids of rings C8-C13 and C20-C25, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···Cl1i | 0.85 | 2.27 | 3.114 (3) | 170 |
C7—H7A···Cl1 | 0.97 | 2.57 | 3.511 (3) | 162 |
C7—H7B···Cl1ii | 0.97 | 2.60 | 3.528 (2) | 160 |
C12—H12···O1iii | 0.93 | 2.47 | 3.207 (5) | 136 |
C17—H17···Cl1iv | 0.93 | 2.81 | 3.562 (3) | 139 |
C3—H3···Cg4v | 0.93 | 2.83 | 3.584 (3) | 139 |
C18—H18···Cg2vi | 0.93 | 2.98 | 3.720 (3) | 137 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x, −y+1, −z; (v) x+1, y, z; (vi) x, −y+1/2, z−1/2. |
Cg2 and Cg4 are the centroids of rings C8-C13 and C20-C25, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···Cl1i | 0.85 | 2.27 | 3.114 (3) | 170 |
C7—H7A···Cl1 | 0.97 | 2.57 | 3.511 (3) | 162 |
C7—H7B···Cl1ii | 0.97 | 2.60 | 3.528 (2) | 160 |
C12—H12···O1iii | 0.93 | 2.47 | 3.207 (5) | 136 |
C17—H17···Cl1iv | 0.93 | 2.81 | 3.562 (3) | 139 |
C3—H3···Cg4v | 0.93 | 2.83 | 3.584 (3) | 139 |
C18—H18···Cg2vi | 0.93 | 2.98 | 3.720 (3) | 137 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x, −y+1, −z; (v) x+1, y, z; (vi) x, −y+1/2, z−1/2. |
Acknowledgements
The authors gratefully acknowledge The Ministry of Higher Education (MOHE), Malaysia, for funding this research under the Fundamental Research Grant Scheme Grant No. FRGS12–064-0213 and the Universiti Malaya Research Grant.
References
Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd. Yarnton, England. Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fischer, A. & Wiebelhaus, D. (1997). Z. Kristallogr. New Cryst. Struct. 212, 335–336. CAS Google Scholar
Li, L. & He, X. (2011). Acta Cryst. E67, o1635. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skapski, A. C. & Stephens, F. A. (1974). J. Cryst. Mol. Struct. 4, 77–85. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.