research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 720-722

Crystal structure of methyl (2Z)-3-(4-chloro­phen­yl)-2-[(3-methyl-1H-indol-1-yl)meth­yl]prop-2-enoate

aDepartment of Physics, Kings College of Engineering, Punalkulam 613 303, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 067, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 May 2015; accepted 23 May 2015; online 30 May 2015)

In the title indole derivative, C20H18ClNO2, the chloro­phenyl ring is almost perpendicular to the indole moiety, making a dihedral angle of 87.6 (1)°. The mol­ecular packing is stabilized by C—H⋯π inter­actions, which form a C(9) chain motif along [10-1]. In addition, there are weak ππ inter­actions [centroid–centroid distance 3.851 (1) Å] between the chains, involving inversion-related chloro­phenyl rings.

1. Chemical context

Indole derivatives inhibit hepatitis C virus replication through induction of pro-inflammatory cytokines (Lee et al., 2015[Lee, S., Jin, G., Kim, D., Son, S., Lee, K. & Lee, C. (2015). Acta Virol. 59, 64-77.]) and these derivatives act as a new anti-hepatitis C virus agents (Andreev et al., 2015[Andreev, I. A., Manvar, D., Barreca, M. L., Belov, D. S., Basu, A., Sweeney, N. L., Ratmanova, N. K., Lukyanenko, E. R., Manfroni, G., Cecchetti, V., Frick, D. N., Altieri, A., Kaushik-Basu, N. & Kurkin, A. V. (2015). Eur. J. Med. Chem. 96, 250-258.]). These derivatives also act as potential mushroom tyrosinase inhibitors (Ferro et al., 2015[Ferro, S., Certo, G., De Luca, L., Germano, M. P., Rapisarda, A. & Gitto, R. (2015). J. Enzyme. Inhib. Med. Chem. 31, 1-6.]). Indole derivatives also exhibit anti-proliferative (Parrino et al., 2015[Parrino, B., Carbone, A., Di Vita, G., Ciancimino, C., Attanzio, A., Spano, V., Montalbano, A., Barraja, P., Tesoriere, L., Livera, M. A., Diana, P. & Cirrincione, G. (2015). Mar. Drugs, 13, 1901-1924.]), anti-inflammatory (Chen et al., 2015[Chen, Y. R., Tseng, C. H., Chen, Y. L., Hwang, T. L. & Tzeng, C. C. (2015). Int. J. Mol. Sci. 16, 6532-6544.]) and anti-tumor (Ma et al., 2015[Ma, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). Eur. J. Med. Chem. 96, 173-186.]) activities. In view of the many inter­esting applications of indole derivatives, we synthesized the title compound and report herein on its crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, (I)[link], is illus­trated in Fig. 1[link]. The geometry of the indole ring system (N1/C1–C8) in (I)[link] is comparable with those reported for similar structures, namely 1-vinyl-1H-indole-3-carbaldehyde (II) (Selvanayagam et al., 2008[Selvanayagam, S., Sridhar, B., Ravikumar, K., Kathiravan, S. & Raghunathan, R. (2008). Acta Cryst. E64, o1163.]) and methyl (2Z)-2-[(2-formyl-3-methyl-1H-indol-1-yl)meth­yl]-3-(4-meth­oxy­phen­yl)-prop-2-en­oate (III) (Selvanayagam et al., 2014[Selvanayagam, S., Sridhar, B., Kathiravan, S. & Raghunathan, R. (2014). Acta Cryst. E70, o431-o432.]). The superposition of the indole ring system of (I)[link] with the related reported structures, using Qmol (Gans & Shalloway, 2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), gives an r.m.s. deviation of 0.025 Å between (I)[link] and (II), and 0.030 Å between (I)[link] and (III); see Fig. 2[link]. The indole ring system is planar with an r.m.s. deviation of 0.017 Å [maximum deviation of 0.028 (2) Å for atom C3], and the methyl atom C9 deviates by 0.050 (2) Å from its mean plane. The chlorine atom, Cl1, deviates by 0.008 (1) Å from the benzene ring (C15–C20) to which it is attached. This ring is almost perpendicular to the indole ring system, making a dihedral angle of 87.59 (6)°. The sum of the angles at atom N1 of the indole ring (360°) is in accordance with sp2 hybridization. The widening of the C16—C15—C14 bond angle to 125.2 (1)° is due to the short H⋯H contact (H10B⋯H16 = 2.10 Å). The mean plane of the methyl methacrylate unit [O1/O2/C10–C14; maximum deviation of 0.015 (2) Å for atom O1] is almost planar with the chlrophenyl ring, making a dihedral angle of 18.98 (17)°, but is normal to the indole ring system with a dihedral angle of 89.96 (5)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Superposition of (I)[link] (cyan) with the similar reported structures (II) (yellow; Selvanayagam et al., 2008[Selvanayagam, S., Sridhar, B., Ravikumar, K., Kathiravan, S. & Raghunathan, R. (2008). Acta Cryst. E64, o1163.]) and (III) (green; Selvanayagam et al., 2014[Selvanayagam, S., Sridhar, B., Kathiravan, S. & Raghunathan, R. (2014). Acta Cryst. E70, o431-o432.]).

3. Supra­molecular features

In the crystal, C—H⋯π inter­actions link the mol­ecules, forming C(9) chains propagating along [10[\overline{1}]]; see Fig. 3[link] and Table 1[link]. Between the chains there are weak ππ inter­actions involving inversion-related chloro­phenyl rings (C15–C20), stabilizing the mol­ecular packing [centroid-to-centroid distance = 3.851 (1) Å]; see Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of ring C1–C6.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACgi 0.96 2.69 3.581 (2) 154
Symmetry code: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The mol­ecular packing of the title compound, viewed along the b axis. C—H⋯π inter­actions (Table 1[link]) are shown as dashed lines. For clarity, H atoms not involved in these inter­actions have been omitted.
[Figure 4]
Figure 4
Mol­ecular packing of the title compound, showing the ππ inter­actions as dashed lines. For clarity, H atoms not involved in these inter­actions have been omitted.

4. Synthesis and crystallization

Substituted (Z)-methyl-2-(bromo­meth­yl)-3-phenyl­acrylate (1 mmol), tetra-butyl-ammonium bromide (0.5 mmol), and 50% NaOH (20 ml) were added to a solution of 3-methyl indole (1 mmol) in benzene (55 ml). The mixture was stirred vigorously at room temperature for 5–6 h. The organic layer was separated, washed with water and dried over MgSO4. The solvent was evaporated under reduced pressure (yield: 70%). Suitable crystals were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in idealized positions and allowed to ride on their parent atoms: C—H = 0.93–0.97 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C20H18ClNO2
Mr 339.80
Crystal system, space group Monoclinic, P21/n
Temperature (K) 292
a, b, c (Å) 9.5867 (5), 15.9077 (8), 10.8902 (6)
β (°) 94.787 (1)
V3) 1654.99 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.20 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 19078, 3944, 3313
Rint 0.026
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.02
No. of reflections 3944
No. of parameters 219
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.23
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS1997 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Indole derivatives inhibit hepatitis C virus replication through induction of pro-inflammatory cytokines (Lee et al., 2015) and these derivatives act as a new anti-hepatitis C virus agents (Andreev et al., 2015). These derivatives also act as potential mushroom tyrosinase inhibitors (Ferro et al., 2015). Indole derivatives also exhibit anti-proliferative (Parrino et al., 2015), anti-inflammatory (Chen et al., 2015) and anti-tumor (Ma et al., 2015) activities. In view of the many inter­esting applications of indole derivatives, we synthesized the title compound and report herein on its crystal structure.

Structural commentary top

The molecular structure of the title compound, (I), is illustrated in Fig. 1. The geometry of the indole ring system (N1/C1–C8) in (I) is comparable with those reported for similar structures, namely 1-vinyl-1H-indole-3-carbaldehyde (II) (Selvanayagam et al., 2008) and methyl (2Z)-2-[(2-formyl-3-methyl-1H-indol-1-yl)methyl]-3-(4-meth­oxy­phenyl)-prop-2-enoate (III) (Selvanayagam et al., 2014). The superposition of the indole ring system of (I) with the related reported structures, using Qmol (Gans & Shalloway, 2001), gives an r.m.s. deviation of 0.025 Å between (I) and (II), and 0.030 Å between (I) and (III); see Fig. 2. The indole ring system is planar with an r.m.s. deviation of 0.017 Å [maximum deviation of 0.028 (2) Å for atom C3], and the methyl atom C9 deviates by 0.050 (2) Å from its mean plane. The chlorine atom, Cl1, deviates by 0.008 (1) Å from the benzene ring (C15–C20) to which it is attached. This ring is almost perpendicular to the indole ring system, making a dihedral angle of 87.59 (6)°. The sum of the angles at atom N1 of the indole ring (360°) is in accordance with sp2 hybridization. The widening of the C16—C15—C14 bond angle to 125.2 (1)° is due to the short H···H contact (H10B···H16 = 2.10 Å). The mean plane of the methyl methacrylate unit [O1/O2/C10–C14; maximum deviation of 0.015 (2) Å for atom O1] is almost planar with the chlro­phenyl ring, making a dihedral angle of 18.98 (17)°, but is normal to the indole ring system with a dihedral angle of 89.96 (5)°.

Supra­molecular features top

In the crystal, C—H···π inter­actions link the molecules, forming C(9) chains propagating along [101]; see Fig. 3 and Table 1. Between the chains there are weak ππ inter­actions involving inversion-related chloro­phenyl rings (C15–C20), stabilizing the molecular packing [centroid-to-centroid distance = 3.851 (1) Å]; see Fig. 4.

Synthesis and crystallization top

Substituted (Z)-methyl-2-(bromo­methyl)-3-phenyl­acrylate (1 mmol), tetra-butyl-ammonium bromide (0.5 mmol), and 50% NaOH (20 ml) were added to a solution of 3-methyl indole (1 mmol) in benzene (55 ml). The mixture was stirred vigorously at room temperature for 5–6 h. The organic layer was separated, washed with water and dried over MgSO4. The solvent was evaporated under reduced pressure (yield: 70%). Suitable crystals were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in idealized positions and allowed to ride on their parent atoms: C—H = 0.93–0.97 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Andreev et al. (2015); Chen et al. (2015); Ferro et al. (2015); Gans & Shalloway (2001); Lee et al. (2015); Ma et al. (2015); Parrino et al. (2015); Selvanayagam et al. (2008, 2014).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS1997 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Superposition of (I) (cyan) with the similar reported structures (II) (yellow; Selvanayagam et al., 2008) and (III) (green; Selvanayagam et al., 2014).
[Figure 3] Fig. 3. The molecular packing of the title compound, viewed along the b axis. C—H···π interactions (Table 1) are shown as dashed lines. For clarity, H atoms not involved in these interactions have been omitted.
[Figure 4] Fig. 4. Molecular packing of the title compound, showing the ππ interactions as dashed lines. For clarity, H atoms not involved in these interactions have been omitted.
Methyl (2Z)-3-(4-chlorophenyl)-2-[(3-methyl-1H-indol-1-yl)methyl]prop-2-enoate top
Crystal data top
C20H18ClNO2F(000) = 712
Mr = 339.80Dx = 1.364 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.5867 (5) ÅCell parameters from 12437 reflections
b = 15.9077 (8) Åθ = 2.3–27.7°
c = 10.8902 (6) ŵ = 0.24 mm1
β = 94.787 (1)°T = 292 K
V = 1654.99 (15) Å3Block, colourless
Z = 40.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.026
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.3°
ω scansh = 1212
19078 measured reflectionsk = 2020
3944 independent reflectionsl = 1414
3313 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.3404P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
3944 reflectionsΔρmax = 0.30 e Å3
219 parametersΔρmin = 0.23 e Å3
Crystal data top
C20H18ClNO2V = 1654.99 (15) Å3
Mr = 339.80Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5867 (5) ŵ = 0.24 mm1
b = 15.9077 (8) ÅT = 292 K
c = 10.8902 (6) Å0.20 × 0.18 × 0.16 mm
β = 94.787 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3313 reflections with I > 2σ(I)
19078 measured reflectionsRint = 0.026
3944 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
3944 reflectionsΔρmin = 0.23 e Å3
219 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85221 (5)1.06092 (3)0.06559 (4)0.05976 (16)
O10.23237 (16)0.66473 (11)0.05769 (11)0.0775 (4)
O20.21544 (12)0.62293 (7)0.13579 (10)0.0524 (3)
N10.32743 (12)0.78373 (7)0.30864 (10)0.0366 (3)
C10.32983 (13)0.78740 (8)0.43477 (12)0.0333 (3)
C20.40942 (15)0.74169 (9)0.52459 (13)0.0405 (3)
H20.47560.70270.50350.049*
C30.38621 (16)0.75652 (10)0.64588 (13)0.0472 (4)
H30.43650.72620.70770.057*
C40.28848 (17)0.81630 (11)0.67783 (13)0.0487 (4)
H40.27590.82540.76050.058*
C50.21077 (15)0.86187 (9)0.58952 (13)0.0421 (3)
H50.14680.90180.61200.051*
C60.22927 (13)0.84726 (8)0.46513 (12)0.0341 (3)
C70.16518 (14)0.87978 (9)0.35139 (13)0.0384 (3)
C80.22748 (14)0.83989 (9)0.25968 (13)0.0390 (3)
H80.20590.84910.17590.047*
C90.05055 (18)0.94375 (11)0.33648 (17)0.0551 (4)
H9A0.02970.95590.25060.083*
H9B0.08000.99430.37920.083*
H9C0.03160.92210.37010.083*
C100.41548 (15)0.72823 (9)0.24128 (12)0.0391 (3)
H10A0.40630.67110.27080.047*
H10B0.51260.74490.25780.047*
C110.37749 (15)0.73022 (9)0.10415 (12)0.0395 (3)
C120.26941 (16)0.67031 (10)0.05008 (14)0.0457 (3)
C130.1091 (2)0.56359 (11)0.0915 (2)0.0622 (5)
H13A0.02940.59340.05430.093*
H13B0.08150.53060.15920.093*
H13C0.14570.52720.03160.093*
C140.43561 (15)0.78067 (10)0.02431 (13)0.0427 (3)
H140.40520.77060.05770.051*
C150.53784 (15)0.84850 (9)0.04181 (13)0.0418 (3)
C160.57356 (18)0.89031 (11)0.15350 (14)0.0499 (4)
H160.53150.87420.22380.060*
C170.66983 (18)0.95481 (11)0.16082 (15)0.0516 (4)
H170.69300.98180.23550.062*
C180.73146 (16)0.97890 (9)0.05648 (14)0.0447 (3)
C190.69899 (19)0.93986 (11)0.05510 (15)0.0521 (4)
H190.74140.95670.12480.063*
C200.60262 (18)0.87549 (11)0.06176 (14)0.0495 (4)
H200.58000.84920.13710.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0659 (3)0.0532 (3)0.0606 (3)0.00944 (19)0.0072 (2)0.00371 (18)
O10.0809 (9)0.1119 (12)0.0386 (7)0.0357 (9)0.0008 (6)0.0147 (7)
O20.0572 (7)0.0500 (6)0.0490 (6)0.0075 (5)0.0016 (5)0.0016 (5)
N10.0384 (6)0.0420 (6)0.0293 (5)0.0067 (5)0.0016 (4)0.0017 (4)
C10.0341 (6)0.0353 (6)0.0304 (6)0.0008 (5)0.0024 (5)0.0030 (5)
C20.0428 (7)0.0411 (7)0.0371 (7)0.0080 (6)0.0005 (6)0.0006 (6)
C30.0524 (9)0.0538 (9)0.0341 (7)0.0067 (7)0.0031 (6)0.0035 (6)
C40.0528 (9)0.0641 (10)0.0292 (7)0.0029 (7)0.0041 (6)0.0049 (6)
C50.0407 (7)0.0468 (8)0.0394 (7)0.0032 (6)0.0070 (6)0.0069 (6)
C60.0328 (6)0.0344 (6)0.0351 (7)0.0016 (5)0.0025 (5)0.0014 (5)
C70.0360 (7)0.0397 (7)0.0390 (7)0.0028 (5)0.0013 (5)0.0002 (6)
C80.0391 (7)0.0446 (7)0.0324 (7)0.0043 (6)0.0010 (5)0.0031 (5)
C90.0504 (9)0.0552 (10)0.0591 (10)0.0181 (7)0.0013 (7)0.0038 (8)
C100.0403 (7)0.0446 (7)0.0321 (7)0.0069 (6)0.0016 (5)0.0041 (5)
C110.0400 (7)0.0478 (8)0.0306 (7)0.0066 (6)0.0019 (5)0.0069 (6)
C120.0450 (8)0.0538 (9)0.0384 (8)0.0033 (7)0.0034 (6)0.0098 (6)
C130.0606 (11)0.0505 (9)0.0739 (12)0.0092 (8)0.0043 (9)0.0039 (8)
C140.0433 (8)0.0540 (8)0.0305 (7)0.0056 (6)0.0007 (6)0.0064 (6)
C150.0441 (8)0.0463 (8)0.0349 (7)0.0072 (6)0.0024 (6)0.0006 (6)
C160.0583 (9)0.0570 (9)0.0357 (8)0.0043 (7)0.0108 (7)0.0050 (7)
C170.0602 (10)0.0545 (9)0.0406 (8)0.0044 (7)0.0075 (7)0.0088 (7)
C180.0456 (8)0.0406 (8)0.0476 (8)0.0049 (6)0.0024 (6)0.0041 (6)
C190.0626 (10)0.0563 (10)0.0384 (8)0.0001 (7)0.0095 (7)0.0067 (7)
C200.0606 (9)0.0555 (9)0.0319 (7)0.0002 (7)0.0015 (6)0.0003 (6)
Geometric parameters (Å, º) top
Cl1—C181.7417 (16)C9—H9B0.9600
O1—C121.2007 (19)C9—H9C0.9600
O2—C121.3370 (19)C10—C111.5077 (18)
O2—C131.442 (2)C10—H10A0.9700
N1—C11.3731 (16)C10—H10B0.9700
N1—C81.3839 (17)C11—C141.338 (2)
N1—C101.4607 (17)C11—C121.492 (2)
C1—C21.3940 (19)C13—H13A0.9600
C1—C61.4138 (18)C13—H13B0.9600
C2—C31.378 (2)C13—H13C0.9600
C2—H20.9300C14—C151.460 (2)
C3—C41.399 (2)C14—H140.9300
C3—H30.9300C15—C201.400 (2)
C4—C51.373 (2)C15—C161.403 (2)
C4—H40.9300C16—C171.378 (2)
C5—C61.4001 (19)C16—H160.9300
C5—H50.9300C17—C181.378 (2)
C6—C71.4327 (19)C17—H170.9300
C7—C81.363 (2)C18—C191.377 (2)
C7—C91.497 (2)C19—C201.377 (2)
C8—H80.9300C19—H190.9300
C9—H9A0.9600C20—H200.9300
C12—O2—C13116.06 (13)N1—C10—H10B109.1
C1—N1—C8108.14 (11)C11—C10—H10B109.1
C1—N1—C10124.46 (11)H10A—C10—H10B107.8
C8—N1—C10127.39 (11)C14—C11—C12116.07 (13)
N1—C1—C2129.96 (12)C14—C11—C10125.23 (13)
N1—C1—C6107.92 (11)C12—C11—C10118.67 (13)
C2—C1—C6122.09 (12)O1—C12—O2122.72 (15)
C3—C2—C1117.42 (13)O1—C12—C11124.88 (16)
C3—C2—H2121.3O2—C12—C11112.39 (12)
C1—C2—H2121.3O2—C13—H13A109.5
C2—C3—C4121.32 (14)O2—C13—H13B109.5
C2—C3—H3119.3H13A—C13—H13B109.5
C4—C3—H3119.3O2—C13—H13C109.5
C5—C4—C3121.33 (13)H13A—C13—H13C109.5
C5—C4—H4119.3H13B—C13—H13C109.5
C3—C4—H4119.3C11—C14—C15132.06 (13)
C4—C5—C6119.00 (13)C11—C14—H14114.0
C4—C5—H5120.5C15—C14—H14114.0
C6—C5—H5120.5C20—C15—C16117.42 (15)
C5—C6—C1118.81 (12)C20—C15—C14117.37 (13)
C5—C6—C7134.17 (13)C16—C15—C14125.19 (14)
C1—C6—C7107.01 (11)C17—C16—C15121.12 (15)
C8—C7—C6106.44 (12)C17—C16—H16119.4
C8—C7—C9126.87 (14)C15—C16—H16119.4
C6—C7—C9126.68 (13)C18—C17—C16119.37 (15)
C7—C8—N1110.49 (12)C18—C17—H17120.3
C7—C8—H8124.8C16—C17—H17120.3
N1—C8—H8124.8C19—C18—C17121.42 (15)
C7—C9—H9A109.5C19—C18—Cl1119.23 (12)
C7—C9—H9B109.5C17—C18—Cl1119.34 (12)
H9A—C9—H9B109.5C18—C19—C20118.89 (15)
C7—C9—H9C109.5C18—C19—H19120.6
H9A—C9—H9C109.5C20—C19—H19120.6
H9B—C9—H9C109.5C19—C20—C15121.77 (15)
N1—C10—C11112.50 (11)C19—C20—H20119.1
N1—C10—H10A109.1C15—C20—H20119.1
C11—C10—H10A109.1
C8—N1—C1—C2178.13 (14)C8—N1—C10—C116.0 (2)
C10—N1—C1—C21.0 (2)N1—C10—C11—C1492.47 (17)
C8—N1—C1—C60.08 (15)N1—C10—C11—C1289.24 (16)
C10—N1—C1—C6179.21 (12)C13—O2—C12—O10.2 (2)
N1—C1—C2—C3177.65 (14)C13—O2—C12—C11179.53 (13)
C6—C1—C2—C30.3 (2)C14—C11—C12—O10.0 (2)
C1—C2—C3—C41.2 (2)C10—C11—C12—O1178.46 (16)
C2—C3—C4—C50.7 (3)C14—C11—C12—O2179.30 (13)
C3—C4—C5—C60.7 (2)C10—C11—C12—O22.25 (19)
C4—C5—C6—C11.5 (2)C12—C11—C14—C15176.82 (14)
C4—C5—C6—C7177.51 (15)C10—C11—C14—C154.9 (3)
N1—C1—C6—C5179.37 (12)C11—C14—C15—C20164.77 (16)
C2—C1—C6—C51.0 (2)C11—C14—C15—C1617.0 (3)
N1—C1—C6—C70.14 (15)C20—C15—C16—C170.7 (2)
C2—C1—C6—C7178.25 (13)C14—C15—C16—C17178.87 (15)
C5—C6—C7—C8179.20 (15)C15—C16—C17—C180.3 (3)
C1—C6—C7—C80.14 (15)C16—C17—C18—C190.0 (3)
C5—C6—C7—C90.3 (3)C16—C17—C18—Cl1179.55 (13)
C1—C6—C7—C9178.81 (15)C17—C18—C19—C200.1 (3)
C6—C7—C8—N10.09 (16)Cl1—C18—C19—C20179.51 (13)
C9—C7—C8—N1178.86 (14)C18—C19—C20—C150.4 (3)
C1—N1—C8—C70.00 (16)C16—C15—C20—C190.7 (2)
C10—N1—C8—C7179.09 (13)C14—C15—C20—C19179.06 (15)
C1—N1—C10—C11172.92 (13)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of ring C1–C6.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cgi0.962.693.581 (2)154
Symmetry code: (i) x1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of ring C1–C6.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cgi0.962.693.581 (2)154
Symmetry code: (i) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H18ClNO2
Mr339.80
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)9.5867 (5), 15.9077 (8), 10.8902 (6)
β (°) 94.787 (1)
V3)1654.99 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19078, 3944, 3313
Rint0.026
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.02
No. of reflections3944
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS1997 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

SS thanks the Principal and Management of Kings College of Engineering, Punalkulam, for their support and encouragement.

References

First citationAndreev, I. A., Manvar, D., Barreca, M. L., Belov, D. S., Basu, A., Sweeney, N. L., Ratmanova, N. K., Lukyanenko, E. R., Manfroni, G., Cecchetti, V., Frick, D. N., Altieri, A., Kaushik-Basu, N. & Kurkin, A. V. (2015). Eur. J. Med. Chem. 96, 250–258.  CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. R., Tseng, C. H., Chen, Y. L., Hwang, T. L. & Tzeng, C. C. (2015). Int. J. Mol. Sci. 16, 6532–6544.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerro, S., Certo, G., De Luca, L., Germano, M. P., Rapisarda, A. & Gitto, R. (2015). J. Enzyme. Inhib. Med. Chem. 31, 1–6.  CrossRef Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  CrossRef CAS Google Scholar
First citationLee, S., Jin, G., Kim, D., Son, S., Lee, K. & Lee, C. (2015). Acta Virol. 59, 64–77.  CrossRef CAS PubMed Google Scholar
First citationMa, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). Eur. J. Med. Chem. 96, 173–186.  CrossRef CAS PubMed Google Scholar
First citationParrino, B., Carbone, A., Di Vita, G., Ciancimino, C., Attanzio, A., Spano, V., Montalbano, A., Barraja, P., Tesoriere, L., Livera, M. A., Diana, P. & Cirrincione, G. (2015). Mar. Drugs, 13, 1901–1924.  CrossRef CAS PubMed Google Scholar
First citationSelvanayagam, S., Sridhar, B., Kathiravan, S. & Raghunathan, R. (2014). Acta Cryst. E70, o431–o432.  CSD CrossRef IUCr Journals Google Scholar
First citationSelvanayagam, S., Sridhar, B., Ravikumar, K., Kathiravan, S. & Raghunathan, R. (2008). Acta Cryst. E64, o1163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 720-722
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds