organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(prop-2-yn-1-yl) 5-nitro­isophthalate

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-25, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 May 2015; accepted 21 May 2015; online 30 May 2015)

The whole mol­ecule of the title compound, C14H9NO6, is generated by twofold rotation symmetry; the twofold axis bis­ects the nitro group and the benzene ring. The nitro group is inclined to the benzene ring by 14.42 (9)°. The prop-2-yn-1-yl groups are inclined to the benzene ring by 13 (2)° and to each other by 24 (3)°; one directed above the plane of the benzene ring and the other below. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(18) ring motif. The dimers are linked by further C—H⋯O hydrogen bonds, forming sheets lying parallel to (100).

1. Related literature

For the biological activities of carboxyl­ates, see: Choudhary et al. (2002[Choudhary, M. A., Mazhar, M., Ali, S., Song, X. & Eng, G. (2002). Met.-Based Drugs, 8, 275-281.]). For the uses and properties of nitro­aromatics, see: Lee et al. (2013[Lee, C. H., Kim, S. H., Kwon, D. H., Jang, K. H., Chung, Y. H. & Moon, J. D. (2013). Ann. Occup. Environ. Med. 25, 31.]); Somerville et al. (1995[Somerville, C. C., Nishino, F. S. & Spain, C. J. (1995). J. Bacteriol. 177, 3837-3842.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H9NO6

  • Mr = 287.22

  • Orthorhombic, P c c n

  • a = 6.679 (5) Å

  • b = 11.679 (5) Å

  • c = 16.503 (5) Å

  • V = 1287.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.977

  • 6369 measured reflections

  • 1613 independent reflections

  • 1316 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.136

  • S = 0.73

  • 1523 reflections

  • 98 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.97 2.46 3.334 (2) 150
C6—H6B⋯O1ii 0.97 2.57 3.313 (2) 134
C8—H8⋯O3ii 0.93 2.50 3.251 (2) 138
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+{\script{5\over 2}}, y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comments top

Carboxyl­ates have promising activity against various anti­tumor cells (Choudharyl et al., 2002). Nitro­aromatic compounds are used in the production of dyes, plastics, high explosives, pharmaceuticals, and pesticides (Somerville et al., 1995). Nitro­benzene is mostly used in the synthesis of aniline and in the production of benzidine, quinolone and azo­benzene (Lee et al., 2013).

In the title compound, Fig. 1, the two-fold rotation bis­ects the benzene ring and the nitro group; atoms C1, C4, H4 and N1 lie on the two-fold rotation axis. The nitro group is inclined to the benzene ring by 14.42 (9) °. The prop-2-yn-1-yl groups are inclined to the benzene ring by 13 (2) ° and to each other by 24 (3) °; one directed above the plane of the benzene ring and the other below.

In the crystal, molecules are linked via pairs of C—H···O hydrogen bonds forming inversion dimers with an R22(18) ring motif (Table 1). The dimers are linked by further C—H···O hydrogen bonds forming sheets lying parallel to (100); see Table 1 and Fig. 2.

Synthesis and crystallization top

The title compound was synthesized by Steglich esterification of 5-nitro isophthalic acid (1 equiv) which together with propargyl alcohol (2.2 equiv) was added at 273 K to DMAP (2.5 equiv) and DCC (2.2 equiv) in di­chloro­methane (100 ml). The mixture was stirred under nitro­gen at room temperature for 24 h. The white precipitate that formed was filtered off and washed with DCM (150 ml) and brine (150 ml), then dried over Na2SO4, filtered and evaporated to afforded the title compound. It was purified by column chromatography using CHCl3:hexane (9:1) as a eluent. Crystals were obtained by slow evaporation of the solvent.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93-0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For the biological activities of carboxylates, see: Choudhary et al. (2002). For the uses and properties of nitroaromatics, see: Lee et al. (2013); Somerville et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The unlabelled atoms are related to the labelled atoms by twofold rotation symmetry [symmetry code: (i) -x + 3/2, -y + 1/2, z].
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The dashed lines indicate hydrogen bonds (see Table 1 for details).
Bis(prop-2-yn-1-yl) 5-nitrobenzene-1,3-dicarboxylate top
Crystal data top
C14H9NO6F(000) = 592
Mr = 287.22Dx = 1.482 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acθ = 2.5–28.4°
a = 6.679 (5) ŵ = 0.12 mm1
b = 11.679 (5) ÅT = 293 K
c = 16.503 (5) ÅBlock, colourless
V = 1287.3 (12) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1613 independent reflections
Radiation source: fine-focus sealed tube1316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and ϕ scanθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.965, Tmax = 0.977k = 157
6369 measured reflectionsl = 1222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.1246P)2 + 0.5331P]
where P = (Fo2 + 2Fc2)/3
S = 0.73(Δ/σ)max < 0.001
1523 reflectionsΔρmax = 0.26 e Å3
98 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (5)
Crystal data top
C14H9NO6V = 1287.3 (12) Å3
Mr = 287.22Z = 4
Orthorhombic, PccnMo Kα radiation
a = 6.679 (5) ŵ = 0.12 mm1
b = 11.679 (5) ÅT = 293 K
c = 16.503 (5) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1613 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1316 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.977Rint = 0.021
6369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.73Δρmax = 0.26 e Å3
1523 reflectionsΔρmin = 0.21 e Å3
98 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.75000.25000.05352 (9)0.0336 (4)
C20.90289 (17)0.30592 (10)0.01386 (7)0.0351 (3)
H21.00330.34330.04260.042*
C30.90264 (16)0.30486 (10)0.07063 (7)0.0329 (3)
C40.75000.25000.11315 (9)0.0328 (4)
H40.75000.25000.16950.039*
C51.07371 (18)0.36348 (11)0.11169 (7)0.0377 (3)
C61.2259 (2)0.41344 (12)0.23491 (7)0.0431 (3)
H6A1.25270.48880.21270.052*
H6B1.34500.36690.22840.052*
C71.17465 (19)0.42270 (11)0.32014 (8)0.0412 (3)
C81.1422 (2)0.43439 (16)0.38961 (9)0.0565 (4)
H81.11660.44360.44460.068*
N10.75000.25000.14284 (8)0.0377 (4)
O10.86053 (16)0.31731 (9)0.17767 (6)0.0525 (3)
O31.21118 (18)0.40639 (12)0.07644 (6)0.0700 (4)
O21.05835 (13)0.36103 (8)0.19240 (5)0.0404 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (8)0.0445 (8)0.0205 (8)0.0030 (6)0.0000.000
C20.0344 (6)0.0445 (6)0.0263 (6)0.0024 (4)0.0023 (4)0.0013 (4)
C30.0328 (6)0.0407 (6)0.0254 (6)0.0011 (4)0.0013 (4)0.0007 (4)
C40.0355 (8)0.0411 (8)0.0218 (7)0.0010 (6)0.0000.000
C50.0378 (6)0.0483 (7)0.0270 (6)0.0062 (5)0.0000 (5)0.0015 (5)
C60.0392 (7)0.0559 (7)0.0342 (7)0.0110 (5)0.0065 (5)0.0047 (5)
C70.0401 (6)0.0463 (6)0.0370 (7)0.0021 (5)0.0090 (5)0.0045 (5)
C80.0549 (8)0.0771 (10)0.0376 (7)0.0064 (7)0.0045 (6)0.0094 (7)
N10.0369 (7)0.0529 (8)0.0234 (7)0.0042 (6)0.0000.000
O10.0568 (6)0.0728 (7)0.0278 (5)0.0089 (5)0.0065 (4)0.0078 (4)
O30.0606 (7)0.1147 (11)0.0345 (5)0.0461 (7)0.0069 (5)0.0068 (6)
O20.0393 (5)0.0563 (6)0.0256 (5)0.0124 (4)0.0048 (3)0.0012 (3)
Geometric parameters (Å, º) top
C1—C2i1.3775 (15)C5—O21.3363 (15)
C1—C21.3775 (15)C6—C71.4517 (18)
C1—N11.474 (2)C6—O21.4555 (15)
C2—C31.3944 (16)C6—H6A0.9700
C2—H20.9300C6—H6B0.9700
C3—C41.3937 (15)C7—C81.175 (2)
C3—C51.4944 (17)C8—H80.9300
C4—C3i1.3937 (15)N1—O11.2220 (12)
C4—H40.9300N1—O1i1.2220 (12)
C5—O31.1970 (17)
C2i—C1—C2123.27 (14)O2—C5—C3112.55 (10)
C2i—C1—N1118.36 (7)C7—C6—O2108.50 (11)
C2—C1—N1118.36 (7)C7—C6—H6A110.0
C1—C2—C3118.03 (11)O2—C6—H6A110.0
C1—C2—H2121.0C7—C6—H6B110.0
C3—C2—H2121.0O2—C6—H6B110.0
C4—C3—C2120.56 (11)H6A—C6—H6B108.4
C4—C3—C5122.79 (11)C8—C7—C6176.19 (14)
C2—C3—C5116.64 (10)C7—C8—H8180.0
C3—C4—C3i119.53 (14)O1—N1—O1i123.89 (15)
C3—C4—H4120.2O1—N1—C1118.06 (7)
C3i—C4—H4120.2O1i—N1—C1118.06 (7)
O3—C5—O2123.52 (11)C5—O2—C6114.36 (9)
O3—C5—C3123.92 (12)
C2i—C1—C2—C30.45 (8)C2—C3—C5—O2178.24 (10)
N1—C1—C2—C3179.55 (8)O2—C6—C7—C8166 (2)
C1—C2—C3—C40.91 (15)C2i—C1—N1—O1165.80 (8)
C1—C2—C3—C5178.32 (9)C2—C1—N1—O114.20 (8)
C2—C3—C4—C3i0.46 (8)C2i—C1—N1—O1i14.20 (8)
C5—C3—C4—C3i178.71 (12)C2—C1—N1—O1i165.80 (8)
C4—C3—C5—O3176.32 (13)O3—C5—O2—C61.09 (19)
C2—C3—C5—O32.9 (2)C3—C5—O2—C6177.80 (10)
C4—C3—C5—O22.56 (15)C7—C6—O2—C5170.29 (11)
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1ii0.972.463.334 (2)150
C6—H6B···O1iii0.972.573.313 (2)134
C8—H8···O3iii0.932.503.251 (2)138
Symmetry codes: (ii) x+2, y+1, z; (iii) x+5/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.972.463.334 (2)150
C6—H6B···O1ii0.972.573.313 (2)134
C8—H8···O3ii0.932.503.251 (2)138
Symmetry codes: (i) x+2, y+1, z; (ii) x+5/2, y, z1/2.
 

Acknowledgements

The authors thank the SAIF, IIT Madras, for providing the X-ray data-collection facility.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudhary, M. A., Mazhar, M., Ali, S., Song, X. & Eng, G. (2002). Met.-Based Drugs, 8, 275–281.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, C. H., Kim, S. H., Kwon, D. H., Jang, K. H., Chung, Y. H. & Moon, J. D. (2013). Ann. Occup. Environ. Med. 25, 31.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSomerville, C. C., Nishino, F. S. & Spain, C. J. (1995). J. Bacteriol. 177, 3837–3842.  CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds