research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 723-725

Crystal structure and biological evaluation of 4-methyl­morpholin-4-ium 1,3-di­methyl-2,6-dioxo-5-(2,4,6-tri­nitro­phen­yl)-1,2,3,6-tetra­hydro­pyrimidin-4-olate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 May 2015; accepted 24 May 2015; online 30 May 2015)

The title mol­ecular salt, C5H12NO+·C12H8N5O9 [common name: 4-methyl­morpholin-4-ium 1,3-dimethyl-5-(2,4,6-tri­nitro­phen­yl)barbiturate], possesses noticeable anti­convulsant and hypnotic activity. In the anion, the 1,3-di­methyl­barbituric acid ring and the symmetrically substituted tri­nitro­phenyl ring, linked via a C—C bond, are not coplanar but subtend an angle of 44.88 (7)°. The six-membered ring of the 4-methyl­morpholin-4-ium cation has a chair conformation. In the crystal, the cation and anion are linked via an N—H⋯O hydrogen bond. The cation–anion units are linked by a number of C—H⋯O hydrogen bonds, forming a three-dimensional network.

1. Chemical context

In biological systems, pyrimidine derivatives play a significant role. Substituted barbituric acid (barbiturates) are pyrimidine derivatives which have been used as hypnotic drugs and in the treatment of epilepsy. Morpholines also have pharmacological properties and are used in organic synthesis as bases, catalysts and chiral auxiliaries (Dave & Sasaki, 2004[Dave, R. & Sasaki, N. A. (2004). Org. Lett. 6, 15-18.]; Mayer & List, 2006[Mayer, S. & List, B. (2006). Angew. Chem. Int. Ed. 45, 4193-4195.]; Mossé et al., 2006[Mossé, S., Laars, M., Kriis, K., Kanger, T. & Alexakis, A. (2006). Org. Lett. 8, 2559-2562.]; Nelson & Wang, 2006[Nelson, S. G. & Wang, K. (2006). J. Am. Chem. Soc. 128, 4232-4233.]; Qin & Pu, 2006[Qin, Y. & Pu, L. (2006). Angew. Chem. Int. Ed. 45, 273-277.]). The mol­ecular salts previously synthesized in our laboratory from chloro­nitro­aromatics, barbituric acid and amines containing tertiary nitro­gen atoms possess noticeable anti­convulsant/hypnotic activity (Kalaivani & Buvaneswari, 2010[Kalaivani, D. & Buvaneswari, M. (2010). Recent. Adv. Clin. Med. pp. 255-260 Cambridge, UK: WSEAS Publications.]; Buvaneswari & Kalaivani, 2013[Buvaneswari, M. & Kalaivani, D. (2013). J. Chem. Crystallogr. 43, 561-567.]). In this context, we report herein on the crystal structure of a new mol­ecular salt isolated from ethano­lic solutions of 1-chloro-2,4,6-tri­nitro­benzene (TNCB), 1,3-dimethyl barbituric acid and 4-methyl­morpholine.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title mol­ecular salt is depicted in Fig. 1[link]. The protonated nitro­gen atom of the N-methyl­morpholinium cation forms a hydrogen bond with the carbonyl group O atom of the 1,3-dimethyl-5-(2,4,6-tri­nitro­phen­yl) barbiturate anion (Table 1[link] and Fig. 2[link]). This N—H⋯O hydrogen bond may well be the driving force for the formation of the title mol­ecular salt. All the bond lengths and bond angles are normal and comparable with those observed in related barbiturates (Gunaseelan & Doraisamyraja, 2014[Gunaseelan, S. & Doraisamyraja, K. (2014). Acta Cryst. E70, o1102-o1103.]; Vaduganathan & Doraisamyraja, 2014[Vaduganathan, M. & Doraisamyraja, K. (2014). Acta Cryst. E70, 256-258.]). The six-membered morpholin-4-ium ring has a chair conformation. In the anion, the 1,3-dimethyl barbituric acid ring and the symmetrically substituted tri­nitro­phenyl ring, linked via the C4—C7 bond, are not co-planar but subtend an angle of 44.88 (7)°. The planes of the nitro groups substituted in the aromatic ring ortho with respect to the ring junction of the anion deviate to a greater extent than that of the para nitro group [dihedral angles of 42.66 (10) and 45.44 (9°) for the ortho nitro groups and 12.5 (8)° for the para nitro group]. Thus the para nitro group is more involved in delocalizing the charge of the anion than the ortho nitro groups, which imparts a red colour for the title mol­ecular salt.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯O9i 0.90 (1) 1.81 (2) 2.6790 (17) 162 (2)
C12—H12B⋯O1ii 0.96 2.53 3.270 (3) 134
C13—H13B⋯O8iii 0.97 2.42 3.046 (2) 122
C15—H15A⋯O7iv 0.97 2.57 3.529 (2) 169
C17—H17A⋯O7 0.96 2.43 3.297 (2) 151
C17—H17B⋯O4 0.96 2.40 3.344 (2) 168
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title mol­ecular salt, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title mol­ecular salt. Hydrogen bonds are shown as dotted lines (see Table 1[link] for details).

3. Supra­molecular features

In the crystal, in addition to the N—H⋯O hydrogen bond linking the cation and anion, there are a number of C—H⋯O hydrogen bonds present, leading to the formation of a three-dimensional network, enclosing two sizable R22(11) and R22(10) ring motifs (Table 1[link] and Fig. 2[link]).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 5-phenyl-1,3-dimethyl barbiturates gave seven hits with various tertiary amines as cations. Two of these compounds involve 2,4-di­nitro­phenyl (CORWUD; Gunaseelan & Doraisamyraja, 2014[Gunaseelan, S. & Doraisamyraja, K. (2014). Acta Cryst. E70, o1102-o1103.]; YAVSOF; Sridevi & Kalaivani, 2012[Sridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044.]), two involve 5-chloro-2,4-di­nitro­phenyl (DOQCUJ; Vaduganathan & Doraisamyraja, 2014[Vaduganathan, M. & Doraisamyraja, K. (2014). Acta Cryst. E70, 256-258.]), and the final three involve 2,4,6-tri­nitro­phenyl, as in the title barbiturate anion. These three compounds include the N,N-di­methyl­anilinium salt (JOKGIB: Babykala et al., 2014[Babykala, R., Rajamani, K., Muthulakshmi, S. & Kalaivani, D. (2014). J. Chem. Crystallogr. 44, 243-254.]), the quinolinium salt (JOKGUN: Babykala et al., 2014[Babykala, R., Rajamani, K., Muthulakshmi, S. & Kalaivani, D. (2014). J. Chem. Crystallogr. 44, 243-254.]) and the tri­ethyl­ammonium salt (LEGWIF; Rajamani & Kalaivani, 2012[Rajamani, K. & Kalaivani, D. (2012). Acta Cryst. E68, o2395.]). In these compounds, the benzene ring is inclined to the plane of the 1,3-dimethyl barbiturate ring by 44.34, 42.88 and 46.88°, respectively, compared to 44.88 (7)° in the title salt.

5. Pharmacological activity

Epilepsy is a medical condition that produces seizures affecting a variety of mental and physical functions. Barbituric acid derivatives are potential anti-epileptic agents. The title mol­ecular salt is a derivative of 1,3-di­methyl­barbituric acid and possesses anti­convulsant activity even at low dosage (25 mg kg−1), inferred from the Maximal Electro Shock method on albino rats (Misra et al., 1973[Misra, A. K., Dandiya, P. C. & Kulkarni, S. K. (1973). Indian J. Pharmacol. 5, 449-450.]; Kulkarni, 1999[Kulkarni, S. K. (1999). Handbook of experimental pharmacology, p. 131. Mumbai: Vallabh Prakashan.]). The thera­peutic dose (100 mg kg−1) induces hypnosis in albino mice (Dewas, 1953[Dewas, P. B. (1953). Br. J. Pharmacol. 6, 46-48.]) and the mol­ecular salt is non-cytotoxic on human embryonic kidney cell-HEK 293 (Mosmann, 1983[Mosmann, T. (1983). J. Immunol. Methods, 65, 55-63.]).

6. Synthesis and crystallization

1-Chloro-2,4,6-tri­nitro­benzene (TNCB: 2.5 g, 0.01 mol) dissolved in 30 ml of absolute ethanol was mixed with 1,3-di­methyl­barbituric acid (1.6 g, 0.01 mol) in 30 ml of absolute ethanol. After mixing these two solutions, 3 ml of N-methyl­morpholine (0.03 mol) was added and the mixture was shaken vigorously for 6 to 7 h. The solution was filtered and the filtrate was kept at room temperature. After a period of four weeks, dark shiny maroon–red-coloured crystals formed from the solution. The crystals were filtered and washed with 30 ml of dry ether and recrystallized from absolute ethanol (yield: 70%; m.p.: 483 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atom was located from a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C5H12NO+·C12H8N5O9
Mr 468.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 12.0335 (2), 12.5495 (2), 14.2095 (3)
β (°) 110.619 (1)
V3) 2008.38 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.35 × 0.35 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.944, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 17785, 3531, 3100
Rint 0.022
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.02
No. of reflections 3531
No. of parameters 303
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.19
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

In biological systems, pyrimidine derivatives play a significant role. Substituted barbituric acid (barbiturates) are pyrimidine derivatives which have been used as hypnotic drugs and in the treatment of epilepsy. Morpholines also have pharmacological properties and are used in organic synthesis as bases, catalysts and chiral auxiliaries (Dave & Sasaki, 2004; Mayer & List, 2006; Mossé et al., 2006; Nelson & Wang, 2006; Qin & Pu, 2006). The molecular salts previously synthesized in our laboratory from chloro­nitro­aromatics, barbituric acid and amines containing tertiary nitro­gen atoms possess noticeable anti­convulsant/hypnotic activity (Kalaivani & Buvaneswari, 2010; Buvaneswari & Kalaivani, 2013). In this context, we report herein on the crystal structure of a new molecular salt isolated from ethano­lic solutions of 1-chloro-2,4,6-tri­nitro­benzene (TNCB), 1,3-di­methyl barbituric acid and 4-methyl­morpholine.

Structural commentary top

The molecular structure of the title molecular salt is depicted in Fig 1. The protonated nitro­gen atom of the N-methyl­morpholinium cation forms a hydrogen bond with the carbonyl group O atom of the 1,3-di­methyl-5-(2,4,6-tri­nitro­phenyl) barbiturate anion (Table 1 and Fig. 2). This N—H···O hydrogen bond may well be the driving force for the formation of the title molecular salt. All the bond lengths and bond angles are normal and comparable with those observed in related barbiturates (Gunaseelan & Doraisamyraja, 2014; Vaduganathan & Doraisamyraja, 2014). The six-membered morpholin-4-ium ring has a chair conformation. In the anion, the 1,3-di­methyl barbituric acid ring and the symmetrically substituted tri­nitro­phenyl ring, linked via the C4—C7 bond, are not co-planar but subtend an angle of 44.88 (7)°. The planes of the nitro groups substituted in the aromatic ring ortho with respect to the ring junction of the anion deviate to a greater extent than that of the para nitro group [dihedral angles of 42.66 (10) and 45.44 (9°) for the ortho nitro groups and 12.5 (8)° for the para nitro group]. Thus the para nitro group is more involved in delocalizing the charge of the anion than the ortho nitro groups, which imparts a red colour for the title molecular salt.

Supra­molecular features top

In the crystal, in addition to the N—H···O hydrogen bond linking the cation and anion, there are a number of C—H···O hydrogen bonds present, leading to the formation of a three-dimensional framework, enclosing two sizable R22(11) and R22(10) ring motifs (Table 1 and Fig. 2).

Database survey top

A search of the Cambridge Structural Database (Version 5.36, February 2015; Groom & Allen, 2014) for 5-phenyl-1,3-di­methyl barbiturates gave seven hits with various tertiary amines as cations. Two of these compounds involve 2,4-di­nitro­phenyl (CORWUD; Gunaseelan & Doraisamyraja, 2014; YAVSOF; Sridevi & Kalaivani, 2012), two involve 5-chloro-2,4-di­nitro­phenyl (DOQCUJ; Vaduganathan & Doraisamyraja, 2014), and the final three involve 2,4,6-tri­nitro­phenyl, as in the title barbiturate anion. These three compounds include the N,N-di­methyl­anilinium salt (JOKGIB: Babykala et al., 2014), the quinolinium salt (JOKGUN: Babykala et al., 2014) and the tri­ethyl­ammonium salt (LEGWIF; Rajamani & Kalaivani, 2012). In these three compounds, the benzene ring is inclined to the plane of the 1,3-di­methyl barbiturate ring by ca 44.34, 42.88 and 46.88°, respectively, compared to 44.88 (7)° in the title salt.

Pharmacological activity top

Epilepsy is a medical condition that produces seizures affecting a variety of mental and physical functions. Barbituric acid derivatives are potential anti-epileptic agents. The title molecular salt is a derivative of 1,3-di­methyl­barbituric acid and possesses anti­convulsant activity even at low dosage (25 mg/kg), inferred from the Maximal Electro Shock method on albino rats (Misra et al., 1973; Kulkarni, 1999). The therapeutic dose (100 mg/kg) induces hypnosis in albino mice (Dewas, 1953) and the molecule is non-cytotoxic on human embryonic kidney cell-HEK 293 (Mosmann, 1983).

Synthesis and crystallization top

1-Chloro-2,4,6-tri­nitro­benzene (TNCB: 2.5 g, 0.01 mol) dissolved in 30 ml of absolute ethanol was mixed with 1,3-di­methyl­barbituric acid (1.6 g, 0.01 mol) in 30 ml of absolute ethanol. After mixing these two solutions, 3 ml of N-methyl­morpholine (0.03 mol) was added and the mixture was shaken vigorously for 6 to 7 h. The solution was filtered and the filtrate was kept at room temperature. After a period of four weeks, dark shiny maroon–red-coloured crystals formed from the solution. The crystals were filtered and washed with 30 ml of dry ether and recrystallized from absolute ethanol (yield: 70%; m.p.: 483 K). Suitable crystals for X-ray diffraction analysis were obtained by slow evaporation of a solution in ethanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located from a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Babykala et al. (2014); Buvaneswari & Kalaivani (2013); Dave & Sasaki (2004); Dewas (1953); Groom & Allen (2014); Gunaseelan & Doraisamyraja (2014); Kalaivani & Buvaneswari (2010); Kulkarni (1999); Mayer & List (2006); Misra et al. (1973); Mosmann (1983); Mossé et al. (2006); Nelson & Wang (2006); Qin & Pu (2006); Rajamani & Kalaivani (2012); Sridevi & Kalaivani (2012); Vaduganathan & Doraisamyraja (2014).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecular salt, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title molecular salt. Hydrogen bonds are shown as dotted lines (see Table 1 for details).
4-Methylmorpholin-4-ium 1,3-dimethyl-2,6-dioxo-5-(2,4,6-trinitrophenyl)-1,2,3,6-tetrahydropyrimidin-4-olate top
Crystal data top
C5H12NO+·C12H8N5O9F(000) = 976
Mr = 468.39Dx = 1.549 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5001 reflections
a = 12.0335 (2) Åθ = 2.4–31.0°
b = 12.5495 (2) ŵ = 0.13 mm1
c = 14.2095 (3) ÅT = 293 K
β = 110.619 (1)°Block, red
V = 2008.38 (6) Å30.35 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3531 independent reflections
Radiation source: fine-focus sealed tube3100 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scanθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.944, Tmax = 0.979k = 1414
17785 measured reflectionsl = 1416
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.8436P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3531 reflectionsΔρmax = 0.29 e Å3
303 parametersΔρmin = 0.19 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0055 (8)
Crystal data top
C5H12NO+·C12H8N5O9V = 2008.38 (6) Å3
Mr = 468.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0335 (2) ŵ = 0.13 mm1
b = 12.5495 (2) ÅT = 293 K
c = 14.2095 (3) Å0.35 × 0.35 × 0.30 mm
β = 110.619 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3531 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3100 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.979Rint = 0.022
17785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.29 e Å3
3531 reflectionsΔρmin = 0.19 e Å3
303 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43707 (13)0.03855 (13)0.25436 (11)0.0302 (3)
C20.38283 (12)0.12808 (12)0.27338 (11)0.0289 (3)
H20.38640.19270.24250.035*
C30.32290 (12)0.11897 (11)0.33969 (10)0.0260 (3)
C40.31666 (12)0.02532 (11)0.39227 (10)0.0243 (3)
C50.37585 (12)0.06119 (11)0.36784 (10)0.0255 (3)
C60.43254 (13)0.05755 (12)0.29902 (11)0.0293 (3)
H60.46670.11830.28330.035*
C70.25695 (12)0.01764 (11)0.46538 (10)0.0258 (3)
C80.27868 (13)0.09763 (12)0.53973 (10)0.0276 (3)
C90.15786 (14)0.00393 (13)0.61560 (12)0.0351 (4)
C100.18464 (12)0.07197 (11)0.46323 (11)0.0266 (3)
C110.06174 (16)0.16822 (14)0.54379 (14)0.0426 (4)
H11A0.05350.21460.48800.064*
H11B0.01510.14280.53960.064*
H11C0.09740.20660.60560.064*
C120.23622 (19)0.16819 (15)0.68544 (14)0.0512 (5)
H12A0.28440.22430.67440.077*
H12B0.27320.14020.75210.077*
H12C0.15920.19580.67810.077*
C130.12719 (15)0.08388 (12)0.08075 (13)0.0376 (4)
H13A0.08880.09360.03170.045*
H13B0.11450.14780.12150.045*
C140.25795 (15)0.06698 (14)0.02738 (14)0.0455 (4)
H14A0.29720.06160.07630.055*
H14B0.29130.12740.01590.055*
C150.23768 (16)0.11649 (14)0.03294 (14)0.0455 (4)
H15A0.25660.18130.00680.055*
H15B0.27850.11890.08080.055*
C160.10612 (15)0.11112 (12)0.08864 (12)0.0371 (4)
H16A0.08160.17080.13470.045*
H16B0.06480.11610.04120.045*
C170.05704 (14)0.00254 (14)0.19529 (13)0.0408 (4)
H17A0.08860.05860.23670.061*
H17B0.07410.06560.23620.061*
H17C0.09280.00830.14480.061*
N10.50516 (12)0.04650 (12)0.18734 (11)0.0415 (4)
N20.26003 (11)0.21678 (9)0.34983 (9)0.0300 (3)
N30.39089 (11)0.16271 (10)0.42314 (9)0.0287 (3)
N40.22370 (12)0.08312 (10)0.61182 (9)0.0346 (3)
N50.13701 (11)0.07774 (10)0.54094 (10)0.0320 (3)
N60.07361 (11)0.00932 (10)0.14601 (10)0.0285 (3)
O10.53911 (14)0.03584 (12)0.16052 (11)0.0625 (4)
O20.52504 (14)0.13486 (12)0.16192 (13)0.0680 (4)
O30.31154 (11)0.30113 (9)0.35283 (9)0.0441 (3)
O40.15911 (10)0.20924 (9)0.35025 (8)0.0373 (3)
O50.37978 (11)0.24515 (9)0.37513 (9)0.0412 (3)
O60.41853 (10)0.15902 (9)0.51449 (8)0.0362 (3)
O70.16068 (9)0.14407 (8)0.40033 (8)0.0336 (3)
O80.34225 (10)0.17649 (8)0.54788 (8)0.0358 (3)
O90.11726 (13)0.01616 (11)0.68304 (10)0.0554 (4)
O100.27783 (11)0.02750 (11)0.03090 (9)0.0518 (3)
H6A0.1019 (14)0.0097 (13)0.1966 (12)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (7)0.0396 (9)0.0254 (7)0.0018 (6)0.0114 (6)0.0027 (6)
C20.0295 (7)0.0289 (8)0.0265 (8)0.0053 (6)0.0078 (6)0.0037 (6)
C30.0282 (7)0.0240 (7)0.0246 (7)0.0022 (6)0.0078 (6)0.0017 (6)
C40.0258 (7)0.0248 (7)0.0204 (7)0.0042 (5)0.0058 (5)0.0020 (5)
C50.0282 (7)0.0241 (7)0.0231 (7)0.0021 (6)0.0076 (6)0.0008 (6)
C60.0298 (7)0.0313 (8)0.0271 (8)0.0026 (6)0.0102 (6)0.0003 (6)
C70.0319 (7)0.0243 (7)0.0231 (7)0.0011 (6)0.0121 (6)0.0010 (6)
C80.0328 (8)0.0271 (8)0.0227 (7)0.0037 (6)0.0094 (6)0.0020 (6)
C90.0393 (8)0.0402 (9)0.0310 (8)0.0067 (7)0.0187 (7)0.0053 (7)
C100.0283 (7)0.0267 (8)0.0259 (7)0.0042 (6)0.0110 (6)0.0040 (6)
C110.0441 (9)0.0396 (9)0.0531 (11)0.0032 (7)0.0282 (8)0.0068 (8)
C120.0744 (13)0.0478 (11)0.0387 (10)0.0034 (9)0.0288 (9)0.0116 (8)
C130.0439 (9)0.0263 (8)0.0447 (9)0.0015 (7)0.0184 (8)0.0067 (7)
C140.0424 (10)0.0432 (10)0.0501 (10)0.0077 (8)0.0153 (8)0.0108 (8)
C150.0506 (10)0.0381 (10)0.0482 (10)0.0104 (8)0.0180 (8)0.0111 (8)
C160.0481 (9)0.0256 (8)0.0386 (9)0.0002 (7)0.0166 (7)0.0072 (7)
C170.0376 (9)0.0427 (10)0.0384 (9)0.0004 (7)0.0088 (7)0.0066 (7)
N10.0377 (7)0.0522 (9)0.0408 (8)0.0049 (7)0.0214 (6)0.0110 (7)
N20.0398 (7)0.0241 (7)0.0267 (7)0.0009 (5)0.0127 (5)0.0017 (5)
N30.0305 (6)0.0262 (7)0.0303 (7)0.0015 (5)0.0116 (5)0.0023 (5)
N40.0475 (8)0.0340 (7)0.0266 (7)0.0033 (6)0.0186 (6)0.0028 (5)
N50.0367 (7)0.0325 (7)0.0327 (7)0.0003 (5)0.0197 (6)0.0032 (5)
N60.0370 (7)0.0260 (7)0.0256 (6)0.0001 (5)0.0147 (5)0.0027 (5)
O10.0751 (10)0.0663 (9)0.0688 (10)0.0253 (8)0.0537 (8)0.0156 (7)
O20.0828 (11)0.0593 (9)0.0880 (11)0.0058 (8)0.0624 (10)0.0168 (8)
O30.0609 (8)0.0232 (6)0.0526 (7)0.0081 (5)0.0252 (6)0.0014 (5)
O40.0385 (6)0.0355 (6)0.0407 (7)0.0057 (5)0.0175 (5)0.0028 (5)
O50.0580 (7)0.0246 (6)0.0446 (7)0.0008 (5)0.0224 (6)0.0032 (5)
O60.0435 (6)0.0368 (6)0.0264 (6)0.0030 (5)0.0100 (5)0.0074 (5)
O70.0404 (6)0.0290 (6)0.0342 (6)0.0065 (4)0.0166 (5)0.0050 (5)
O80.0457 (6)0.0293 (6)0.0325 (6)0.0058 (5)0.0137 (5)0.0057 (5)
O90.0725 (9)0.0674 (9)0.0433 (7)0.0055 (7)0.0417 (7)0.0029 (6)
O100.0483 (7)0.0606 (9)0.0375 (7)0.0019 (6)0.0040 (6)0.0023 (6)
Geometric parameters (Å, º) top
C1—C61.373 (2)C12—H12B0.9600
C1—C21.373 (2)C12—H12C0.9600
C1—N11.462 (2)C13—N61.491 (2)
C2—C31.378 (2)C13—C141.502 (2)
C2—H20.9300C13—H13A0.9700
C3—C41.409 (2)C13—H13B0.9700
C3—N21.4753 (18)C14—O101.417 (2)
C4—C51.407 (2)C14—H14A0.9700
C4—C71.4597 (19)C14—H14B0.9700
C5—C61.376 (2)C15—O101.412 (2)
C5—N31.4742 (18)C15—C161.502 (2)
C6—H60.9300C15—H15A0.9700
C7—C81.413 (2)C15—H15B0.9700
C7—C101.416 (2)C16—N61.4917 (19)
C8—O81.2311 (18)C16—H16A0.9700
C8—N41.4134 (19)C16—H16B0.9700
C9—O91.2291 (19)C17—N61.486 (2)
C9—N41.362 (2)C17—H17A0.9600
C9—N51.363 (2)C17—H17B0.9600
C10—O71.2325 (18)C17—H17C0.9600
C10—N51.4137 (18)N1—O21.2158 (19)
C11—N51.462 (2)N1—O11.220 (2)
C11—H11A0.9600N2—O31.2198 (16)
C11—H11B0.9600N2—O41.2201 (16)
C11—H11C0.9600N3—O51.2203 (16)
C12—N41.465 (2)N3—O61.2221 (16)
C12—H12A0.9600N6—H6A0.897 (14)
C6—C1—C2121.94 (13)H13A—C13—H13B108.1
C6—C1—N1118.92 (14)O10—C14—C13110.15 (14)
C2—C1—N1119.11 (14)O10—C14—H14A109.6
C1—C2—C3117.77 (13)C13—C14—H14A109.6
C1—C2—H2121.1O10—C14—H14B109.6
C3—C2—H2121.1C13—C14—H14B109.6
C2—C3—C4124.77 (13)H14A—C14—H14B108.1
C2—C3—N2114.05 (12)O10—C15—C16111.21 (14)
C4—C3—N2121.16 (12)O10—C15—H15A109.4
C5—C4—C3112.75 (12)C16—C15—H15A109.4
C5—C4—C7122.91 (12)O10—C15—H15B109.4
C3—C4—C7124.33 (12)C16—C15—H15B109.4
C6—C5—C4124.77 (13)H15A—C15—H15B108.0
C6—C5—N3114.14 (12)N6—C16—C15110.58 (13)
C4—C5—N3120.87 (12)N6—C16—H16A109.5
C1—C6—C5117.90 (14)C15—C16—H16A109.5
C1—C6—H6121.0N6—C16—H16B109.5
C5—C6—H6121.0C15—C16—H16B109.5
C8—C7—C10122.06 (13)H16A—C16—H16B108.1
C8—C7—C4118.51 (12)N6—C17—H17A109.5
C10—C7—C4119.34 (12)N6—C17—H17B109.5
O8—C8—C7125.91 (13)H17A—C17—H17B109.5
O8—C8—N4117.99 (13)N6—C17—H17C109.5
C7—C8—N4116.08 (13)H17A—C17—H17C109.5
O9—C9—N4121.84 (15)H17B—C17—H17C109.5
O9—C9—N5120.48 (15)O2—N1—O1123.84 (14)
N4—C9—N5117.69 (13)O2—N1—C1118.02 (15)
O7—C10—N5118.24 (13)O1—N1—C1118.14 (14)
O7—C10—C7125.72 (13)O3—N2—O4124.16 (13)
N5—C10—C7116.04 (13)O3—N2—C3116.98 (12)
N5—C11—H11A109.5O4—N2—C3118.78 (12)
N5—C11—H11B109.5O5—N3—O6124.13 (12)
H11A—C11—H11B109.5O5—N3—C5117.77 (12)
N5—C11—H11C109.5O6—N3—C5118.02 (12)
H11A—C11—H11C109.5C9—N4—C8124.01 (13)
H11B—C11—H11C109.5C9—N4—C12118.14 (14)
N4—C12—H12A109.5C8—N4—C12117.84 (14)
N4—C12—H12B109.5C9—N5—C10123.98 (13)
H12A—C12—H12B109.5C9—N5—C11116.88 (13)
N4—C12—H12C109.5C10—N5—C11119.14 (13)
H12A—C12—H12C109.5C17—N6—C13111.63 (12)
H12B—C12—H12C109.5C17—N6—C16111.94 (12)
N6—C13—C14110.49 (13)C13—N6—C16111.05 (12)
N6—C13—H13A109.6C17—N6—H6A105.1 (11)
C14—C13—H13A109.6C13—N6—H6A107.4 (11)
N6—C13—H13B109.6C16—N6—H6A109.4 (11)
C14—C13—H13B109.6C15—O10—C14109.69 (13)
C6—C1—C2—C30.1 (2)C6—C1—N1—O111.8 (2)
N1—C1—C2—C3177.70 (13)C2—C1—N1—O1170.27 (15)
C1—C2—C3—C42.4 (2)C2—C3—N2—O340.93 (17)
C1—C2—C3—N2175.69 (13)C4—C3—N2—O3140.92 (14)
C2—C3—C4—C51.9 (2)C2—C3—N2—O4135.91 (13)
N2—C3—C4—C5176.08 (12)C4—C3—N2—O442.23 (19)
C2—C3—C4—C7177.42 (13)C6—C5—N3—O544.54 (17)
N2—C3—C4—C74.6 (2)C4—C5—N3—O5140.67 (13)
C3—C4—C5—C61.1 (2)C6—C5—N3—O6132.46 (13)
C7—C4—C5—C6179.58 (13)C4—C5—N3—O642.33 (18)
C3—C4—C5—N3173.08 (12)O9—C9—N4—C8175.76 (15)
C7—C4—C5—N36.2 (2)N5—C9—N4—C84.8 (2)
C2—C1—C6—C52.8 (2)O9—C9—N4—C125.7 (2)
N1—C1—C6—C5174.99 (13)N5—C9—N4—C12173.71 (15)
C4—C5—C6—C13.4 (2)O8—C8—N4—C9175.43 (14)
N3—C5—C6—C1171.15 (13)C7—C8—N4—C93.2 (2)
C5—C4—C7—C8132.29 (14)O8—C8—N4—C126.0 (2)
C3—C4—C7—C846.92 (19)C7—C8—N4—C12175.31 (14)
C5—C4—C7—C1044.30 (19)O9—C9—N5—C10177.15 (15)
C3—C4—C7—C10136.49 (14)N4—C9—N5—C103.4 (2)
C10—C7—C8—O8178.39 (14)O9—C9—N5—C112.1 (2)
C4—C7—C8—O81.9 (2)N4—C9—N5—C11177.34 (14)
C10—C7—C8—N40.2 (2)O7—C10—N5—C9179.21 (14)
C4—C7—C8—N4176.65 (12)C7—C10—N5—C90.6 (2)
C8—C7—C10—O7179.15 (14)O7—C10—N5—C110.0 (2)
C4—C7—C10—O74.4 (2)C7—C10—N5—C11179.82 (13)
C8—C7—C10—N51.0 (2)C14—C13—N6—C17176.77 (14)
C4—C7—C10—N5175.41 (12)C14—C13—N6—C1651.09 (18)
N6—C13—C14—O1057.98 (18)C15—C16—N6—C17175.33 (14)
O10—C15—C16—N655.94 (19)C15—C16—N6—C1349.82 (17)
C6—C1—N1—O2167.86 (16)C16—C15—O10—C1463.10 (18)
C2—C1—N1—O210.0 (2)C13—C14—O10—C1563.87 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O9i0.90 (1)1.81 (2)2.6790 (17)162 (2)
C12—H12B···O1ii0.962.533.270 (3)134
C13—H13B···O8iii0.972.423.046 (2)122
C15—H15A···O7iv0.972.573.529 (2)169
C17—H17A···O70.962.433.297 (2)151
C17—H17B···O40.962.403.344 (2)168
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O9i0.897 (14)1.813 (15)2.6790 (17)161.5 (16)
C12—H12B···O1ii0.962.533.270 (3)134
C13—H13B···O8iii0.972.423.046 (2)122
C15—H15A···O7iv0.972.573.529 (2)169
C17—H17A···O70.962.433.297 (2)151
C17—H17B···O40.962.403.344 (2)168
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC5H12NO+·C12H8N5O9
Mr468.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.0335 (2), 12.5495 (2), 14.2095 (3)
β (°) 110.619 (1)
V3)2008.38 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.35 × 0.35 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.944, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
17785, 3531, 3100
Rint0.022
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.02
No. of reflections3531
No. of parameters303
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.19

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to the DST–SERB for financial support and the SAIF, IIT Madras, for the single-crystal XRD data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBabykala, R., Rajamani, K., Muthulakshmi, S. & Kalaivani, D. (2014). J. Chem. Crystallogr. 44, 243–254.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuvaneswari, M. & Kalaivani, D. (2013). J. Chem. Crystallogr. 43, 561–567.  CSD CrossRef CAS Google Scholar
First citationDave, R. & Sasaki, N. A. (2004). Org. Lett. 6, 15–18.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDewas, P. B. (1953). Br. J. Pharmacol. 6, 46–48.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationGunaseelan, S. & Doraisamyraja, K. (2014). Acta Cryst. E70, o1102–o1103.  CSD CrossRef IUCr Journals Google Scholar
First citationKalaivani, D. & Buvaneswari, M. (2010). Recent. Adv. Clin. Med. pp. 255–260 Cambridge, UK: WSEAS Publications.  Google Scholar
First citationKulkarni, S. K. (1999). Handbook of experimental pharmacology, p. 131. Mumbai: Vallabh Prakashan.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMayer, S. & List, B. (2006). Angew. Chem. Int. Ed. 45, 4193–4195.  CrossRef CAS Google Scholar
First citationMisra, A. K., Dandiya, P. C. & Kulkarni, S. K. (1973). Indian J. Pharmacol. 5, 449–450.  Google Scholar
First citationMosmann, T. (1983). J. Immunol. Methods, 65, 55–63.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMossé, S., Laars, M., Kriis, K., Kanger, T. & Alexakis, A. (2006). Org. Lett. 8, 2559–2562.  PubMed Google Scholar
First citationNelson, S. G. & Wang, K. (2006). J. Am. Chem. Soc. 128, 4232–4233.  CrossRef PubMed CAS Google Scholar
First citationQin, Y. & Pu, L. (2006). Angew. Chem. Int. Ed. 45, 273–277.  CrossRef CAS Google Scholar
First citationRajamani, K. & Kalaivani, D. (2012). Acta Cryst. E68, o2395.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044.  CSD CrossRef IUCr Journals Google Scholar
First citationVaduganathan, M. & Doraisamyraja, K. (2014). Acta Cryst. E70, 256–258.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 723-725
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds