organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1E,1′E)-N,N′-(ethane-1,2-di­yl)bis­­[(pyridin-2-yl)methanimine]

aDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, Palestinian Territories, bDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, Palestinian Territories, cInstitution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, and eLaboratory of Environmental Engineering and Biotechnology, Science College, An-Najah National University, ENSA, Universite Ibn Zohr, PO Box 1136, 80000 Agadir, Morocco
*Correspondence e-mail: muneer@najah.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 May 2015; accepted 24 May 2015; online 30 May 2015)

The whole mol­ecule of the title compound, C14H14N4, is generated by twofold rotation symmetry. The twofold axis bis­ects the central –CH2-CH2– bond and the planes of the pyridine rings are inclined to one another by 65.60 (7)°. In the crystal, there are no significant inter­molecular inter­actions present.

1. Related literature

For the use of Schiff bases, derived from pyridine­carbaldehydes, in synthetic chemistry, see: Marjani et al. (2009[Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633-1637.]). For 1,2-di­amino­pyridine-derived Schiff bases as bidentate or polydentate chelating ligands and their possible medical applications, see: Warad et al. (2014[Warad, I., Khan, A., Azam, M., Al-Resayes, S. I. & Haddad, S. (2014). J. Mol. Struct. 1062, 167-173.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H14N4

  • Mr = 238.29

  • Monoclinic, C 2/c

  • a = 19.347 (5) Å

  • b = 5.9339 (12) Å

  • c = 13.165 (2) Å

  • β = 122.266 (8)°

  • V = 1278.0 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 296 K

  • 0.30 × 0.27 × 0.25 mm

2.2. Data collection

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.837, Tmax = 0.862

  • 1539 measured reflections

  • 933 independent reflections

  • 881 reflections with I > 2σ(I)

  • Rint = 0.015

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.05

  • 933 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.10 e Å−3

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

Schiff bases derived from pyridine­carbaldehydes have received considerable inter­est in synthetic chemistry (Marjani et al., 2009). 1,2-di­amine-pyridine derived Schiff base bidentate or polydentate chelating ligand towards metal centers draw major attraction towards synthesis and medical application (Warad et al., 2014). It is still challenging to design and rationally synthesize ligands with unique structures and functions.

Synthesis and crystallization top

To a solution of pyridine-2-carbaldehyde (1 mmol) dissolved in 10 ml of absolute ethanol was added drop wise ethane-1,2-di­amine (1 mmol) in 5 ml of absolute ethanol under constant stirring for 10 min. The mixture was refluxed for 4 h and then concentrated under reduced pressure. The title compound was precipitated by the addition of 50 ml of n-hexane. It was filtered off, washed three times with 80 ml of distilled water then with di­ethyl ether to give the title compound (yield: 86%). Single crystals suitable for X-ray analysis were obtained within two days by slow evaporation of a solution in di­chloro­methane.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were fixed geometrically (C—H = 0.93 – 0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Related literature top

For the use of Schiff bases, derived from pyridinecarbaldehydes, in synthetic chemistry, see: Marjani et al. (2009). For 1,2-diaminopyridine-derived Schiff bases as bidentate or polydentate chelating ligands and their possible medical applications, see: Warad et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by twofold rotation symmetry (symmetry code: -x + 1, y, -z - 1/2).
(1E,1'E)-N,N'-(Ethane-1,2-diyl)bis[(pyridin-2-yl)methanimine] top
Crystal data top
C14H14N4F(000) = 504
Mr = 238.29Dx = 1.238 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 881 reflections
a = 19.347 (5) Åθ = 5.4–63.8°
b = 5.9339 (12) ŵ = 0.61 mm1
c = 13.165 (2) ÅT = 296 K
β = 122.266 (8)°Block, colourless
V = 1278.0 (5) Å30.30 × 0.27 × 0.25 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
933 independent reflections
Radiation source: Rotating Anode881 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 18.4 pixels mm-1θmax = 63.8°, θmin = 5.4°
ϕ and ω scansh = 821
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 65
Tmin = 0.837, Tmax = 0.862l = 1512
1539 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0763P)2 + 0.2763P]
where P = (Fo2 + 2Fc2)/3
933 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.10 e Å3
Crystal data top
C14H14N4V = 1278.0 (5) Å3
Mr = 238.29Z = 4
Monoclinic, C2/cCu Kα radiation
a = 19.347 (5) ŵ = 0.61 mm1
b = 5.9339 (12) ÅT = 296 K
c = 13.165 (2) Å0.30 × 0.27 × 0.25 mm
β = 122.266 (8)°
Data collection top
Bruker X8 Proteum
diffractometer
933 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
881 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.862Rint = 0.015
1539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.05Δρmax = 0.10 e Å3
933 reflectionsΔρmin = 0.10 e Å3
82 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.69126 (7)0.50665 (18)0.02615 (10)0.0576 (4)
N60.55349 (7)0.05345 (19)0.11311 (9)0.0542 (4)
C10.67191 (10)0.7085 (3)0.16610 (14)0.0703 (6)
C20.70819 (9)0.6792 (2)0.10143 (14)0.0634 (5)
C40.63482 (8)0.3583 (2)0.01373 (11)0.0478 (4)
C50.61592 (8)0.1747 (2)0.07264 (11)0.0495 (4)
C70.54261 (9)0.1287 (2)0.19397 (13)0.0585 (5)
C80.59615 (9)0.3750 (2)0.07686 (12)0.0591 (5)
C90.61501 (11)0.5541 (3)0.15343 (14)0.0728 (6)
H10.685700.830800.217600.0840*
H20.558300.267200.067500.0710*
H40.746600.784900.110400.0760*
H50.651700.147600.098100.0590*
H70.582500.113600.216800.0700*
H80.552300.271600.152600.0700*
H90.589500.570500.196200.0870*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0509 (8)0.0571 (7)0.0602 (7)0.0007 (5)0.0265 (6)0.0064 (5)
N60.0501 (8)0.0609 (7)0.0466 (6)0.0031 (5)0.0225 (5)0.0005 (5)
C10.0714 (11)0.0636 (9)0.0601 (9)0.0011 (7)0.0246 (8)0.0102 (7)
C20.0554 (10)0.0564 (9)0.0628 (9)0.0038 (6)0.0212 (7)0.0035 (6)
C40.0410 (8)0.0514 (7)0.0430 (7)0.0068 (5)0.0171 (6)0.0090 (5)
C50.0463 (8)0.0551 (8)0.0473 (7)0.0085 (6)0.0251 (6)0.0079 (5)
C70.0600 (9)0.0532 (8)0.0540 (8)0.0048 (6)0.0249 (7)0.0001 (6)
C80.0561 (9)0.0674 (9)0.0542 (8)0.0052 (7)0.0298 (7)0.0034 (6)
C90.0743 (12)0.0866 (11)0.0628 (9)0.0047 (8)0.0401 (9)0.0136 (8)
Geometric parameters (Å, º) top
N3—C21.3384 (18)C8—C91.373 (2)
N3—C41.343 (2)C1—H10.9300
N6—C51.254 (2)C2—H40.9300
N6—C71.4514 (18)C5—H50.9300
C1—C21.373 (3)C7—H70.9700
C1—C91.372 (3)C7—H80.9700
C4—C51.4730 (18)C8—H20.9300
C4—C81.387 (2)C9—H90.9300
C7—C7i1.516 (2)
C2—N3—C4116.96 (15)N3—C2—H4118.00
C5—N6—C7117.93 (15)C1—C2—H4118.00
C2—C1—C9118.85 (16)N6—C5—H5119.00
N3—C2—C1123.50 (16)C4—C5—H5119.00
N3—C4—C5115.43 (14)N6—C7—H7109.00
N3—C4—C8122.94 (12)N6—C7—H8109.00
C5—C4—C8121.62 (13)H7—C7—H8108.00
N6—C5—C4122.55 (15)C7i—C7—H7109.00
N6—C7—C7i111.74 (13)C7i—C7—H8109.00
C4—C8—C9118.56 (16)C4—C8—H2121.00
C1—C9—C8119.17 (19)C9—C8—H2121.00
C2—C1—H1121.00C1—C9—H9120.00
C9—C1—H1121.00C8—C9—H9120.00
C2—N3—C4—C5178.17 (12)N3—C4—C5—N6164.26 (12)
C2—N3—C4—C81.6 (2)C5—C4—C8—C9178.16 (14)
C4—N3—C2—C10.9 (2)C8—C4—C5—N615.5 (2)
C7—N6—C5—C4177.50 (11)N3—C4—C8—C91.6 (2)
C5—N6—C7—C7i131.18 (14)N6—C7—C7i—N6i73.41 (17)
C9—C1—C2—N30.2 (3)C4—C8—C9—C10.8 (2)
C2—C1—C9—C80.1 (3)
Symmetry code: (i) x+1, y, z1/2.

Experimental details

Crystal data
Chemical formulaC14H14N4
Mr238.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)19.347 (5), 5.9339 (12), 13.165 (2)
β (°) 122.266 (8)
V3)1278.0 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.61
Crystal size (mm)0.30 × 0.27 × 0.25
Data collection
DiffractometerBruker X8 Proteum
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.837, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
1539, 933, 881
Rint0.015
(sin θ/λ)max1)0.582
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.05
No. of reflections933
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.10

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are thankful to IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility. IW is grateful to An-Najah National University and Zamala (fellowship program for the development of university education) for financial support.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarad, I., Khan, A., Azam, M., Al-Resayes, S. I. & Haddad, S. (2014). J. Mol. Struct. 1062, 167–173.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds