organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-amino-3-ethyl-4,5-di­hydro-1,3-thia­zol-3-ium 3-chloro­benzo­ate

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia
*Correspondence e-mail: bohari@ukm.edu.my

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 27 April 2015; accepted 28 April 2015; online 7 May 2015)

The title salt, C5H11N2S+·C7H4ClO2, comprises a 2-amino-3-ethyl-4,5-di­hydro-1,3-thia­zol-3-ium cation in which the five-membered ring adopts an envelope conformation with the methyl­ene C adjacent to the S atom being the flap, and a planar 3-chloro­benzoate anion (r.m.s. deviation for the 10 non-H atoms = 0.021 Å). The most prominent feature of the crystal packing are N—H⋯O hydrogen bonds whereby the two amine H atoms bridge two carboxyl­ate O atoms resulting in the formation of a centrosymmetric 12-membered {⋯HNH⋯OCO}2 synthon involving two cations and two anions. These aggregates are linked by C—H⋯O inter­actions to form a supra­molecular chain along the a-axis direction.

1. Related literature

For the crystal structure of a related compound, see: Yamin & Zulkifli (2011[Yamin, B. M. & Zulkifli, N. Z. (2011). Acta Cryst. E67, o1920.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C5H11N2S+·C7H4ClO2

  • Mr = 286.77

  • Triclinic, [P \overline 1]

  • a = 7.3376 (7) Å

  • b = 8.7987 (9) Å

  • c = 11.7068 (11) Å

  • α = 70.728 (3)°

  • β = 80.269 (3)°

  • γ = 71.531 (3)°

  • V = 674.95 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 296 K

  • 0.37 × 0.32 × 0.06 mm

2.2. Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.856, Tmax = 0.975

  • 16295 measured reflections

  • 3430 independent reflections

  • 1957 reflections with I > 2σ(I)

  • Rint = 0.064

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.142

  • S = 1.02

  • 3430 reflections

  • 171 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.87 (2) 1.89 (2) 2.730 (3) 164 (2)
N2—H2C⋯O2 0.86 (2) 1.83 (2) 2.680 (3) 169 (2)
C10—H10B⋯O1ii 0.97 2.46 3.297 (4) 145
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It was reported previously that 3-nitro-4-chlorobenzoyl isothiocyanate reacted with piperidine to give 2,2,6,6-tetramethyl-4-oxopiperidin-1-ium 4-chloro-3-nitrobenzoate (Yamin & Zulkifli, 2011). Similarly, in this study, the reaction of 3-chlorobenzoyl isothiocyanate with 2-ethylaminoethanol also gave an unexpected product, i.e. the title salt, 3-ethylthiazoliden-3-ium-2-amine 3-chlorobenzoate (Fig. 1). The chlorobenzoate Cl1/(C1—C7)/O1/O2 anion is planar with maximum deviation of 0.018 (3) Å for the C3 atom from the least squares plane. The thiazoliden ring S1/N1/C8/C9/C10 is tilted with maximum deviation of 0.159 (3) Å for C10 atom from the least squares plane. The N1—C8 bond length of 1.320 (3) Å indicates the ring nitrogen atom N1 is protonated. In the crystal structure, the molecules are linked by intermolecular hydrogen bonds N2—H2B···O1, C2—H10B···O1, N2—H2C···O2 and C11—H11B···O2 (symmetry codes as in Table 1) to form a one-dimensional chain along the a axis (Fig. 2). A weak π.,.π interaction with the distance between (C1—C6) centroids of 3.534 () Å (2 - x, -1 - y ,3 - z) was observed.

Related literature top

For the crystal structure of a related compound, see: Yamin & Zulkifli (2011).

Experimental top

An acetone solution (20 ml) of 2-(ethylamino)ethanol (0.01 mol, 0.8914 g m) was added into a two-necked round-bottomed flask containing an equimolar amount of 3-chlorobenzoylisothiocyanate (0.01 mol). The mixture was refluxed for about 3 h, filtered and left to evaporate at room temperature. The filtrate gave colourless crystals after 2 days of evaporation (yield 86.02%, m.pt: 368.2–369.5 K).

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.97 Å and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(CH and CH2) and 1.5Ueq(CH3). The H atoms on the nitrogen were refined isotropically and with N—H = 0.86±0.01 Å.

Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title salt viewed down b axis. The dashed lines indicate hydrogen bonds.
2-Amino-3-ethyl-4,5-dihydro-1,3-thiazol-3-ium 3-chlorobenzoate top
Crystal data top
C5H11N2S+·C7H4ClO2Z = 2
Mr = 286.77F(000) = 300
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3376 (7) ÅCell parameters from 6990 reflections
b = 8.7987 (9) Åθ = 2.9–28.6°
c = 11.7068 (11) ŵ = 0.43 mm1
α = 70.728 (3)°T = 296 K
β = 80.269 (3)°Slab, colourless
γ = 71.531 (3)°0.37 × 0.32 × 0.06 mm
V = 674.95 (11) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3430 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 83.66 pixels mm-1θmax = 28.6°, θmin = 2.9°
ω scanh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.856, Tmax = 0.975l = 1515
16295 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0715P)2]
where P = (Fo2 + 2Fc2)/3
3430 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
C5H11N2S+·C7H4ClO2γ = 71.531 (3)°
Mr = 286.77V = 674.95 (11) Å3
Triclinic, P1Z = 2
a = 7.3376 (7) ÅMo Kα radiation
b = 8.7987 (9) ŵ = 0.43 mm1
c = 11.7068 (11) ÅT = 296 K
α = 70.728 (3)°0.37 × 0.32 × 0.06 mm
β = 80.269 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3430 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1957 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.975Rint = 0.064
16295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0632 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.31 e Å3
3430 reflectionsΔρmin = 0.26 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.18120 (11)0.25267 (10)1.66658 (6)0.0724 (3)
S10.48369 (9)0.37155 (8)0.90259 (5)0.0493 (2)
O11.0531 (3)0.2998 (2)1.16212 (16)0.0570 (5)
O20.9540 (3)0.0771 (3)1.22844 (19)0.0855 (7)
N10.4326 (3)0.1591 (3)1.10804 (19)0.0523 (6)
N20.7549 (3)0.1491 (3)1.0431 (2)0.0514 (6)
H2B0.835 (3)0.189 (3)0.9867 (19)0.064 (9)*
H2C0.810 (3)0.068 (2)1.1024 (17)0.059 (8)*
C11.1263 (3)0.3301 (3)1.3595 (2)0.0383 (5)
C21.2154 (3)0.4996 (3)1.3822 (2)0.0459 (6)
H2A1.22370.55121.32300.055*
C31.2921 (4)0.5927 (3)1.4918 (2)0.0545 (7)
H3A1.35090.70721.50650.065*
C41.2829 (4)0.5184 (3)1.5798 (2)0.0523 (7)
H4A1.33530.58121.65370.063*
C51.1949 (3)0.3501 (3)1.5564 (2)0.0441 (6)
C61.1164 (3)0.2547 (3)1.4475 (2)0.0416 (6)
H6A1.05710.14051.43350.050*
C71.0367 (3)0.2280 (3)1.2403 (2)0.0468 (6)
C80.5708 (3)0.2094 (3)1.0315 (2)0.0406 (6)
C90.2384 (4)0.2374 (4)1.0666 (3)0.0713 (9)
H9A0.14720.25951.13360.086*
H9B0.20100.16351.03510.086*
C100.2390 (3)0.3967 (4)0.9701 (3)0.0609 (8)
H10A0.19960.48981.00430.073*
H10B0.15110.41840.90960.073*
C110.4633 (5)0.0131 (4)1.2191 (3)0.0694 (9)
H11A0.39120.06121.21730.083*
H11B0.59880.04861.22000.083*
C120.4029 (5)0.0639 (4)1.3300 (3)0.0829 (10)
H12A0.42510.03381.39950.124*
H12B0.26830.12321.33030.124*
H12C0.47580.13571.33300.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0822 (6)0.0905 (6)0.0555 (5)0.0246 (5)0.0093 (4)0.0333 (4)
S10.0453 (4)0.0562 (4)0.0395 (4)0.0020 (3)0.0132 (3)0.0117 (3)
O10.0605 (11)0.0701 (13)0.0473 (10)0.0239 (9)0.0116 (9)0.0172 (10)
O20.1099 (18)0.0587 (14)0.0682 (14)0.0216 (12)0.0489 (13)0.0156 (10)
N10.0438 (12)0.0556 (14)0.0474 (12)0.0072 (10)0.0040 (10)0.0085 (10)
N20.0411 (13)0.0547 (15)0.0449 (13)0.0008 (11)0.0117 (11)0.0065 (11)
C10.0318 (12)0.0416 (14)0.0396 (13)0.0133 (10)0.0043 (10)0.0060 (10)
C20.0431 (14)0.0437 (15)0.0527 (15)0.0128 (11)0.0046 (12)0.0154 (12)
C30.0549 (16)0.0369 (15)0.0627 (18)0.0070 (12)0.0120 (14)0.0050 (13)
C40.0476 (15)0.0547 (18)0.0445 (14)0.0119 (13)0.0136 (12)0.0011 (13)
C50.0371 (13)0.0566 (16)0.0417 (14)0.0189 (12)0.0008 (11)0.0138 (12)
C60.0366 (13)0.0378 (13)0.0473 (14)0.0087 (10)0.0045 (11)0.0096 (11)
C70.0361 (13)0.0573 (18)0.0436 (14)0.0125 (12)0.0091 (11)0.0080 (13)
C80.0463 (15)0.0370 (13)0.0376 (13)0.0010 (11)0.0101 (11)0.0167 (11)
C90.0454 (17)0.095 (2)0.0659 (19)0.0181 (16)0.0046 (14)0.0148 (18)
C100.0399 (15)0.0683 (19)0.0718 (19)0.0033 (13)0.0153 (14)0.0231 (16)
C110.074 (2)0.0483 (17)0.068 (2)0.0075 (15)0.0001 (16)0.0059 (15)
C120.100 (3)0.075 (2)0.063 (2)0.0175 (19)0.0161 (19)0.0080 (18)
Geometric parameters (Å, º) top
Cl1—C51.743 (3)C3—H3A0.9300
S1—C81.746 (2)C4—C51.368 (4)
S1—C101.811 (3)C4—H4A0.9300
O1—C71.245 (3)C5—C61.377 (3)
O2—C71.243 (3)C6—H6A0.9300
N1—C81.320 (3)C9—C101.483 (4)
N1—C91.460 (3)C9—H9A0.9700
N1—C111.485 (3)C9—H9B0.9700
N2—C81.298 (3)C10—H10A0.9700
N2—H2B0.866 (10)C10—H10B0.9700
N2—H2C0.862 (10)C11—C121.465 (4)
C1—C61.379 (3)C11—H11A0.9700
C1—C21.379 (3)C11—H11B0.9700
C1—C71.514 (3)C12—H12A0.9600
C2—C31.376 (3)C12—H12B0.9600
C2—H2A0.9300C12—H12C0.9600
C3—C41.373 (4)
C8—S1—C1090.90 (12)N2—C8—N1126.9 (2)
C8—N1—C9115.4 (2)N2—C8—S1120.1 (2)
C8—N1—C11125.1 (2)N1—C8—S1112.98 (17)
C9—N1—C11118.6 (2)N1—C9—C10107.9 (2)
C8—N2—H2B120.1 (19)N1—C9—H9A110.1
C8—N2—H2C126.2 (18)C10—C9—H9A110.1
H2B—N2—H2C114 (3)N1—C9—H9B110.1
C6—C1—C2119.3 (2)C10—C9—H9B110.1
C6—C1—C7120.2 (2)H9A—C9—H9B108.4
C2—C1—C7120.5 (2)C9—C10—S1106.45 (18)
C3—C2—C1120.3 (2)C9—C10—H10A110.4
C3—C2—H2A119.8S1—C10—H10A110.4
C1—C2—H2A119.8C9—C10—H10B110.4
C4—C3—C2120.7 (2)S1—C10—H10B110.4
C4—C3—H3A119.7H10A—C10—H10B108.6
C2—C3—H3A119.7C12—C11—N1112.1 (3)
C5—C4—C3118.6 (2)C12—C11—H11A109.2
C5—C4—H4A120.7N1—C11—H11A109.2
C3—C4—H4A120.7C12—C11—H11B109.2
C4—C5—C6121.6 (2)N1—C11—H11B109.2
C4—C5—Cl1119.55 (19)H11A—C11—H11B107.9
C6—C5—Cl1118.8 (2)C11—C12—H12A109.5
C5—C6—C1119.5 (2)C11—C12—H12B109.5
C5—C6—H6A120.3H12A—C12—H12B109.5
C1—C6—H6A120.3C11—C12—H12C109.5
O2—C7—O1125.3 (2)H12A—C12—H12C109.5
O2—C7—C1116.6 (2)H12B—C12—H12C109.5
O1—C7—C1118.1 (2)
C6—C1—C2—C30.5 (4)C2—C1—C7—O13.0 (3)
C7—C1—C2—C3178.3 (2)C9—N1—C8—N2174.0 (3)
C1—C2—C3—C40.6 (4)C11—N1—C8—N25.0 (4)
C2—C3—C4—C50.3 (4)C9—N1—C8—S14.8 (3)
C3—C4—C5—C60.0 (4)C11—N1—C8—S1173.7 (2)
C3—C4—C5—Cl1179.99 (19)C10—S1—C8—N2171.3 (2)
C4—C5—C6—C10.1 (4)C10—S1—C8—N19.8 (2)
Cl1—C5—C6—C1179.95 (18)C8—N1—C9—C1020.9 (4)
C2—C1—C6—C50.2 (3)C11—N1—C9—C10169.4 (3)
C7—C1—C6—C5178.6 (2)N1—C9—C10—S126.1 (3)
C6—C1—C7—O21.0 (3)C8—S1—C10—C920.7 (2)
C2—C1—C7—O2177.8 (2)C8—N1—C11—C12112.8 (3)
C6—C1—C7—O1178.2 (2)C9—N1—C11—C1278.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.87 (2)1.89 (2)2.730 (3)164 (2)
N2—H2C···O20.86 (2)1.83 (2)2.680 (3)169 (2)
C10—H10B···O1ii0.972.463.297 (4)145
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.87 (2)1.89 (2)2.730 (3)164 (2)
N2—H2C···O20.860 (19)1.83 (2)2.680 (3)169 (2)
C10—H10B···O1ii0.972.463.297 (4)145
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+2.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia and the Universiti Kebangsaan Malaysia for the research grant No. FGRS/2/2014/ST01/UKM/01/1.

References

First citationBruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Zulkifli, N. Z. (2011). Acta Cryst. E67, o1920.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds