organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o423-o424

Crystal structure of (E)-2-benzyl­­idene-4-[(3-phenyl-4,5-di­hydro­isoxazol-5-yl)meth­yl]-2H-benzo[b][1,4]thia­zin-3(4H)-one

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bMoroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli, Madinat El Irfane, 10100 Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: em_essassi@yahoo.fr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 19 May 2015; accepted 20 May 2015; online 23 May 2015)

In the title compound, C25H20N2O2S, the di­hydro­isoxazole ring exhibits an envelope conformation with the methine atom being the flap, while the 1,4-thia­zine ring displays a screw-boat conformation. The six-membered ring fused to the 1,4-thia­zine ring makes dihedral angles of 63.04 (2) and 54.7 (2)° with the mean planes through the five-membered heterocycle and the attached phenyl ring, respectively. The phenyl group connected to the 1,4-thia­zine ring is disordered over two sites [major component = 0.57 (2)]. The most prominent inter­actions in the crystal structure are C—H⋯O hydrogen bonds that link mol­ecules, forming inversion dimers, and C—H⋯N hydrogen bonds that link the dimers into columns parallel to the b axis.

1. Related literature

For the biological activity and pharmaceutical properties of benzo­thia­zines and their derivatives, see: Fringuelli et al. (1998[Fringuelli, R., Schiaffella, F., Bistoni, F., Pitzurra, L. & Vecchiarelli, A. (1998). Bioorg. Med. Chem. 6, 103-108.]); Rathore & Kumar (2006[Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678-5682.]); Baraza­rte et al. (2008[Barazarte, A., Camacho, J., Domínguez, J., Lobo, G., Gamboa, N., Rodrigues, J., Capparelli, M. V., Alvarez-Larena, A., Andujar, S., Enriz, D. & Charris, J. (2008). Bioorg. Med. Chem. 16, 3661-3674.]); Bakavoli et al. (2007[Bakavoli, M., Nikpour, M., Rahimizadeh, M., Saberi, M. R. & Sadeghian, H. (2007). Bioorg. Med. Chem. 15, 2120-2126.]). For related structures, see: Saeed et al. (2010[Saeed, A., Mahmood, Z., Yang, S., Ahmad, S. & Salim, M. (2010). Acta Cryst. E66, o2289-o2290.]); Afrakssou et al. (2011[Afrakssou, Z., Haoudi, A., Capet, F., Rolando, C. & El Ammari, L. (2011). Acta Cryst. E67, o1363-o1364.]); Sebbar et al. (2014a[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.],b[Sebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o686.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C25H20N2O2S

  • Mr = 412.49

  • Monoclinic, P 21 /n

  • a = 17.4463 (16) Å

  • b = 5.3024 (4) Å

  • c = 22.778 (2) Å

  • β = 106.370 (5)°

  • V = 2021.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.36 × 0.31 × 0.26 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.504, Tmax = 0.748

  • 27864 measured reflections

  • 4149 independent reflections

  • 1980 reflections with I > 2σ(I)

  • Rint = 0.095

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.145

  • S = 1.00

  • 4149 reflections

  • 321 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O1i 0.93 2.43 3.339 (4) 166
C18—H18B⋯N2ii 0.97 2.56 3.526 (3) 178
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, a number of pharmacological tests revealed that 2H-1,4- benzothiazine derivatives present various biological activities including antifungal (Fringuelli et al., 1998), antimicrobial (Rathore et al., 2006), antimalarial (Barazarte et al., 2008) and 15-lipoxygenase inhibition properties (Bakavoli et al., 2007). In this work, we aim to prepare new derivatives of 3,4-dihydro-2H- benzo[b]1,4-thiazine for biological evaluation, as in the previous studies (Saeed et al., 2010; Afrakssou et al., 2011; Sebbar et al., 2014a, 2014b. In the reaction, the oxime reacts with (E)-4-allyl-2-benzylidene-2H-benzo[b][1,4]thiazin-3(4H)-one in a biphasic medium (water-chloroform) at 0°C over 4 h to give a unique cycloadduct: (E)-2-benzylidene-4-((3-phenyl-4, 5-dihydroisoxazol-5-yl)methyl)-2H- benzo[b][1,4]thiazin-3(4H)-one (Scheme 1).

The molecule of the title compound is build up from two fused six-membered rings linked, via two –CH2– groups, on the one hand to a phenyl ring and on the other hand to the 3-phenyl-4,5-dihydroisoxazole system as shown in Fig. 1. The (C1 to C6) benzene cycle form dihedral angles of 63.04 (2)\ and 54.7 (2)° with the mean planes through the five-membered heterocycle and the attached phenyl ring, respectively. In the crystal, the molecules are linked by hydrogen bond (Table 1) in the way to build a dimers as shown in Fig. 2.

Related literature top

For the biological activity and pharmaceutical properties of benzothiazine and their derivatives, see: Fringuelli et al. (1998); Rathore & Kumar (2006); Barazarte et al. (2008); Bakavoli et al. (2007). For related structures, see: Saeed et al. (2010); Afrakssou et al. (2011); Sebbar et al. (2014a,b).

Experimental top

To a solution of (E)-4-allyl-2-benzylidene-3,4-dihydro-2H- benzo[b]1,4-thiazine (1 g, 3.4 mmol) and benzaldoxime (0.81 ml, 6.8 mmol) in chloroform (30 ml) was added dropwise a 24% sodium hypochlorite solution (10 ml) at 273 K. Stirring was continued for 4 h. The organic layer was dried over Na2SO4 and the solvent was evaporated under reduced pressure. The residue was then purified by column chromatography on silica gel using a mixture of hexane/ethyl acetate (v/v = 80/20) as eluent. Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 74%).

Refinement top

The H atoms were located in a difference map and treated as riding with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2 Ueq. The phenyl group connected to the 1,4-thiazine ring is disordered over two sites [major component = 0.57 (2)].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles. One phenyl ring is disordered over two positions.
(E)-2-Benzylidene-4-[(3-phenyl-4,5-dihydroisoxazol-5-yl)methyl]-2H-benzo[b][1,4]thiazin-3(4H)-one top
Crystal data top
C25H20N2O2SF(000) = 864
Mr = 412.49Dx = 1.355 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 17.4463 (16) ÅCell parameters from 4149 reflections
b = 5.3024 (4) Åθ = 1.7–26.4°
c = 22.778 (2) ŵ = 0.19 mm1
β = 106.370 (5)°T = 296 K
V = 2021.7 (3) Å3Block, colourless
Z = 40.36 × 0.31 × 0.26 mm
Data collection top
Bruker X8 APEX
diffractometer
4149 independent reflections
Radiation source: fine-focus sealed tube1980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ϕ and ω scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2121
Tmin = 0.504, Tmax = 0.748k = 66
27864 measured reflectionsl = 2825
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.9738P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.008
4149 reflectionsΔρmax = 0.48 e Å3
321 parametersΔρmin = 0.26 e Å3
Crystal data top
C25H20N2O2SV = 2021.7 (3) Å3
Mr = 412.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.4463 (16) ŵ = 0.19 mm1
b = 5.3024 (4) ÅT = 296 K
c = 22.778 (2) Å0.36 × 0.31 × 0.26 mm
β = 106.370 (5)°
Data collection top
Bruker X8 APEX
diffractometer
4149 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1980 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 0.748Rint = 0.095
27864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.00Δρmax = 0.48 e Å3
4149 reflectionsΔρmin = 0.26 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.17593 (18)0.5680 (6)0.36708 (14)0.0498 (8)
C20.1174 (2)0.6377 (7)0.31368 (19)0.0693 (11)
H20.08340.77190.31460.083*
C30.1096 (2)0.5102 (9)0.25999 (18)0.0784 (12)
H30.07170.56140.22440.094*
C40.1577 (2)0.3074 (8)0.25874 (16)0.0707 (11)
H40.15120.21770.22260.085*
C50.21579 (19)0.2357 (6)0.31078 (14)0.0543 (9)
H50.24790.09680.30960.065*
C60.22670 (17)0.3703 (5)0.36516 (14)0.0418 (7)
C70.28231 (19)0.3227 (6)0.47719 (16)0.0529 (8)
C80.21687 (19)0.4767 (6)0.48721 (15)0.0542 (9)
C90.1957 (2)0.4326 (7)0.53875 (16)0.0659 (10)
H90.22390.30610.56410.079*
C10A0.1328 (11)0.561 (4)0.5602 (8)0.051 (3)0.57 (2)
C11A0.1042 (10)0.781 (3)0.5504 (5)0.084 (3)0.57 (2)
H11A0.12290.89150.52580.101*0.57 (2)
C12A0.0437 (9)0.861 (3)0.5768 (6)0.099 (4)0.57 (2)
H12A0.02241.02180.56800.118*0.57 (2)
C13A0.0161 (10)0.713 (5)0.6139 (12)0.082 (6)0.57 (2)
H13A0.03290.74470.62100.098*0.57 (2)
C14A0.0602 (15)0.521 (5)0.6399 (13)0.094 (6)0.57 (2)
H14A0.04990.43600.67260.113*0.57 (2)
C15A0.1232 (12)0.447 (3)0.6169 (9)0.090 (5)0.57 (2)
H15A0.15930.32550.63740.108*0.57 (2)
C10B0.1358 (18)0.506 (5)0.5683 (14)0.060 (8)*0.43 (2)
C11B0.0671 (10)0.674 (4)0.5314 (8)0.075 (5)0.43 (2)
H11B0.06630.72410.49200.090*0.43 (2)
C12B0.0078 (11)0.752 (4)0.5551 (8)0.077 (5)0.43 (2)
H12B0.03470.85050.53280.092*0.43 (2)
C13B0.0151 (18)0.671 (8)0.6186 (18)0.108 (14)0.43 (2)
H13B0.01420.74200.64280.129*0.43 (2)
C14B0.068 (3)0.483 (9)0.6378 (19)0.17 (2)0.43 (2)
H14B0.07020.40820.67510.206*0.43 (2)
C15B0.1193 (14)0.393 (7)0.6073 (16)0.142 (14)0.43 (2)
H15B0.14210.23450.61790.171*0.43 (2)
C160.36034 (17)0.1736 (5)0.41243 (13)0.0474 (8)
H16A0.35590.14960.36940.057*
H16B0.36370.00850.43130.057*
C170.43583 (17)0.3205 (5)0.44203 (14)0.0460 (8)
H170.44410.33240.48630.055*
C180.50908 (17)0.2106 (5)0.42840 (14)0.0468 (8)
H18A0.55480.21020.46450.056*
H18B0.49940.04050.41240.056*
C190.52051 (17)0.3901 (5)0.38119 (13)0.0419 (7)
C200.57826 (18)0.3586 (5)0.34590 (14)0.0464 (8)
C210.6339 (2)0.1683 (7)0.35988 (16)0.0677 (10)
H210.63410.05670.39140.081*
C220.6896 (2)0.1410 (8)0.3275 (2)0.0860 (13)
H220.72780.01400.33800.103*
C230.6888 (3)0.2994 (8)0.2803 (2)0.0869 (13)
H230.72640.28070.25870.104*
C240.6332 (3)0.4842 (8)0.26472 (19)0.0900 (13)
H240.63230.59050.23210.108*
C250.5777 (2)0.5156 (7)0.29715 (18)0.0725 (11)
H250.53980.64310.28620.087*
N10.28861 (14)0.3038 (4)0.41850 (11)0.0447 (6)
N20.47581 (16)0.5856 (4)0.37434 (12)0.0526 (7)
O10.33070 (14)0.2170 (5)0.51952 (10)0.0720 (7)
O20.42730 (13)0.5703 (3)0.41480 (10)0.0562 (6)
S10.18110 (6)0.72501 (16)0.43621 (5)0.0680 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0428 (19)0.0534 (19)0.053 (2)0.0024 (16)0.0122 (17)0.0073 (16)
C20.053 (2)0.078 (2)0.074 (3)0.011 (2)0.013 (2)0.031 (2)
C30.058 (3)0.117 (3)0.049 (3)0.000 (2)0.002 (2)0.031 (2)
C40.060 (2)0.098 (3)0.047 (2)0.008 (2)0.0034 (19)0.003 (2)
C50.048 (2)0.062 (2)0.047 (2)0.0018 (16)0.0042 (17)0.0010 (18)
C60.0375 (18)0.0419 (16)0.044 (2)0.0032 (14)0.0086 (15)0.0042 (15)
C70.043 (2)0.059 (2)0.055 (2)0.0010 (17)0.0116 (18)0.0007 (18)
C80.050 (2)0.063 (2)0.046 (2)0.0028 (17)0.0077 (17)0.0047 (17)
C90.056 (2)0.084 (3)0.054 (2)0.007 (2)0.0101 (19)0.002 (2)
C10A0.056 (7)0.063 (10)0.035 (7)0.004 (6)0.016 (5)0.006 (6)
C11A0.085 (9)0.094 (8)0.081 (7)0.015 (7)0.036 (6)0.027 (6)
C12A0.087 (9)0.114 (8)0.095 (8)0.000 (7)0.025 (7)0.043 (7)
C13A0.060 (9)0.122 (14)0.081 (13)0.024 (9)0.049 (9)0.004 (9)
C14A0.091 (11)0.102 (9)0.120 (17)0.033 (8)0.080 (11)0.033 (9)
C15A0.142 (14)0.096 (7)0.059 (9)0.057 (7)0.072 (9)0.032 (6)
C11B0.055 (9)0.105 (11)0.067 (8)0.009 (8)0.021 (7)0.001 (8)
C12B0.061 (9)0.105 (11)0.070 (10)0.024 (8)0.027 (7)0.010 (8)
C13B0.12 (2)0.123 (19)0.08 (2)0.070 (18)0.028 (15)0.035 (17)
C14B0.19 (3)0.26 (4)0.08 (2)0.07 (2)0.07 (2)0.03 (2)
C15B0.058 (12)0.28 (4)0.096 (17)0.007 (15)0.035 (10)0.01 (2)
C160.047 (2)0.0446 (17)0.046 (2)0.0058 (15)0.0060 (16)0.0037 (15)
C170.0451 (19)0.0443 (17)0.0435 (19)0.0034 (15)0.0042 (15)0.0010 (15)
C180.0439 (19)0.0441 (17)0.048 (2)0.0064 (15)0.0052 (15)0.0003 (15)
C190.0416 (18)0.0341 (15)0.0426 (19)0.0021 (14)0.0003 (15)0.0037 (14)
C200.0431 (19)0.0451 (17)0.047 (2)0.0032 (15)0.0053 (16)0.0015 (16)
C210.072 (3)0.070 (2)0.066 (3)0.019 (2)0.028 (2)0.0122 (19)
C220.082 (3)0.091 (3)0.095 (3)0.030 (2)0.042 (3)0.013 (3)
C230.084 (3)0.097 (3)0.095 (3)0.007 (3)0.050 (3)0.004 (3)
C240.097 (3)0.096 (3)0.089 (3)0.005 (3)0.046 (3)0.027 (3)
C250.069 (3)0.067 (2)0.084 (3)0.010 (2)0.024 (2)0.019 (2)
N10.0421 (15)0.0516 (15)0.0388 (16)0.0008 (12)0.0085 (13)0.0021 (12)
N20.0543 (17)0.0399 (14)0.0595 (19)0.0019 (13)0.0095 (15)0.0023 (13)
O10.0622 (16)0.1030 (19)0.0471 (15)0.0177 (14)0.0093 (13)0.0139 (14)
O20.0586 (14)0.0385 (12)0.0724 (16)0.0094 (11)0.0200 (13)0.0006 (11)
S10.0727 (7)0.0573 (5)0.0770 (7)0.0094 (5)0.0258 (5)0.0015 (5)
Geometric parameters (Å, º) top
C1—C61.381 (4)C11B—C12B1.360 (15)
C1—C21.400 (4)C11B—H11B0.9300
C1—S11.761 (3)C12B—C13B1.48 (5)
C2—C31.370 (5)C12B—H12B0.9300
C2—H20.9300C13B—C14B1.35 (7)
C3—C41.369 (5)C13B—H13B0.9300
C3—H30.9300C14B—C15B1.36 (5)
C4—C51.378 (4)C14B—H14B0.9300
C4—H40.9300C15B—H15B0.9300
C5—C61.395 (4)C16—N11.469 (3)
C5—H50.9300C16—C171.515 (4)
C6—N11.424 (3)C16—H16A0.9700
C7—O11.224 (4)C16—H16B0.9700
C7—N11.376 (4)C17—O21.453 (3)
C7—C81.473 (4)C17—C181.514 (4)
C8—C91.347 (4)C17—H170.9800
C8—S11.750 (3)C18—C191.491 (4)
C9—C10B1.45 (3)C18—H18A0.9700
C9—C10A1.49 (2)C18—H18B0.9700
C9—H90.9300C19—N21.280 (3)
C10A—C11A1.26 (2)C19—C201.465 (4)
C10A—C15A1.48 (2)C20—C211.373 (4)
C11A—C12A1.418 (14)C20—C251.386 (4)
C11A—H11A0.9300C21—C221.384 (5)
C12A—C13A1.34 (3)C21—H210.9300
C12A—H12A0.9300C22—C231.361 (5)
C13A—C14A1.31 (5)C22—H220.9300
C13A—H13A0.9300C23—C241.354 (5)
C14A—C15A1.40 (3)C23—H230.9300
C14A—H14A0.9300C24—C251.383 (5)
C15A—H15A0.9300C24—H240.9300
C10B—C15B1.17 (4)C25—H250.9300
C10B—C11B1.54 (3)N2—O21.418 (3)
C6—C1—C2119.4 (3)C14B—C13B—C12B113 (3)
C6—C1—S1121.0 (2)C14B—C13B—H13B123.4
C2—C1—S1119.5 (3)C12B—C13B—H13B123.4
C3—C2—C1120.6 (4)C13B—C14B—C15B126 (4)
C3—C2—H2119.7C13B—C14B—H14B117.1
C1—C2—H2119.7C15B—C14B—H14B117.1
C4—C3—C2119.9 (3)C10B—C15B—C14B123 (4)
C4—C3—H3120.0C10B—C15B—H15B118.6
C2—C3—H3120.0C14B—C15B—H15B118.6
C3—C4—C5120.3 (4)N1—C16—C17111.9 (2)
C3—C4—H4119.8N1—C16—H16A109.2
C5—C4—H4119.8C17—C16—H16A109.2
C4—C5—C6120.4 (3)N1—C16—H16B109.2
C4—C5—H5119.8C17—C16—H16B109.2
C6—C5—H5119.8H16A—C16—H16B107.9
C1—C6—C5119.2 (3)O2—C17—C18104.7 (2)
C1—C6—N1120.0 (3)O2—C17—C16107.9 (2)
C5—C6—N1120.8 (3)C18—C17—C16112.9 (2)
O1—C7—N1120.4 (3)O2—C17—H17110.4
O1—C7—C8121.6 (3)C18—C17—H17110.4
N1—C7—C8118.0 (3)C16—C17—H17110.4
C9—C8—C7117.0 (3)C19—C18—C17101.2 (2)
C9—C8—S1125.1 (3)C19—C18—H18A111.5
C7—C8—S1117.5 (3)C17—C18—H18A111.5
C8—C9—C10B140.4 (11)C19—C18—H18B111.5
C8—C9—C10A128.0 (7)C17—C18—H18B111.5
C8—C9—H9116.0H18A—C18—H18B109.3
C10A—C9—H9116.0N2—C19—C20121.0 (3)
C11A—C10A—C15A113.4 (15)N2—C19—C18113.8 (3)
C11A—C10A—C9131.0 (14)C20—C19—C18125.1 (3)
C15A—C10A—C9112.0 (14)C21—C20—C25118.2 (3)
C10A—C11A—C12A120.2 (12)C21—C20—C19120.4 (3)
C10A—C11A—H11A119.9C25—C20—C19121.4 (3)
C12A—C11A—H11A119.9C20—C21—C22120.7 (3)
C13A—C12A—C11A122.4 (13)C20—C21—H21119.7
C13A—C12A—H12A118.8C22—C21—H21119.7
C11A—C12A—H12A118.8C23—C22—C21120.2 (4)
C14A—C13A—C12A118.2 (14)C23—C22—H22119.9
C14A—C13A—H13A120.9C21—C22—H22119.9
C12A—C13A—H13A120.9C24—C23—C22120.1 (4)
C13A—C14A—C15A118 (2)C24—C23—H23120.0
C13A—C14A—H14A121.0C22—C23—H23120.0
C15A—C14A—H14A121.0C23—C24—C25120.3 (4)
C14A—C15A—C10A120.5 (17)C23—C24—H24119.9
C14A—C15A—H15A119.8C25—C24—H24119.9
C10A—C15A—H15A119.8C24—C25—C20120.5 (4)
C15B—C10B—C9125 (3)C24—C25—H25119.7
C15B—C10B—C11B113 (3)C20—C25—H25119.7
C9—C10B—C11B117 (2)C7—N1—C6124.2 (3)
C12B—C11B—C10B121.4 (16)C7—N1—C16115.4 (2)
C12B—C11B—H11B119.3C6—N1—C16119.8 (2)
C10B—C11B—H11B119.3C19—N2—O2109.2 (2)
C11B—C12B—C13B115.7 (17)N2—O2—C17108.8 (2)
C11B—C12B—H12B122.1C8—S1—C199.02 (15)
C13B—C12B—H12B122.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.932.433.339 (4)166
C18—H18B···N2ii0.972.563.526 (3)178
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.932.433.339 (4)166.1
C18—H18B···N2ii0.972.563.526 (3)178
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Mohammed V, Rabat, Morocco, for financial support.

References

First citationAfrakssou, Z., Haoudi, A., Capet, F., Rolando, C. & El Ammari, L. (2011). Acta Cryst. E67, o1363–o1364.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBakavoli, M., Nikpour, M., Rahimizadeh, M., Saberi, M. R. & Sadeghian, H. (2007). Bioorg. Med. Chem. 15, 2120–2126.  CrossRef PubMed CAS Google Scholar
First citationBarazarte, A., Camacho, J., Domínguez, J., Lobo, G., Gamboa, N., Rodrigues, J., Capparelli, M. V., Alvarez-Larena, A., Andujar, S., Enriz, D. & Charris, J. (2008). Bioorg. Med. Chem. 16, 3661–3674.  CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFringuelli, R., Schiaffella, F., Bistoni, F., Pitzurra, L. & Vecchiarelli, A. (1998). Bioorg. Med. Chem. 6, 103–108.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaeed, A., Mahmood, Z., Yang, S., Ahmad, S. & Salim, M. (2010). Acta Cryst. E66, o2289–o2290.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o686.  CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o423-o424
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds