research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 647-649

Crystal structure of penta­potassium di­hydrogen nona­vanadato(V)platinate(IV) nona­hydrate

aDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by A. Van der Lee, Université de Montpellier II, France (Received 8 May 2015; accepted 13 May 2015; online 20 May 2015)

The title compound, K5[H2PtV9O28]·9H2O, containing the nona­vanado­platinate(IV) polyanion, was obtained by hydro­thermal reaction at pH = 4.2. The polyanion has approximate mm2 (C2v) symmetry. The two platinum-bound μ2-O atoms are protonated in the polyanion. The heteropolyanions form inversion-generated dimers, {[H2PtV9O28]2}10−, held together by μ2-O–H⋯μ2-O and μ2-O–H⋯μ3-O hydrogen bonds. All K+ cations are located on general positions of the space group P-1.

1. Structural commentary

Two heteropolyanions that belong to the deca­vanadate structure system (Lee, 2006[Lee, U. (2006). Acta Cryst. E62, i176-i178.]) have recently been reported: the tellurium derivative [HnTeV9O28](5−n) (n = 1 and 2), described by Konaka et al. (2011[Konaka, S., Ozawa, Y., Shonaka, T., Watanabe, S. & Yagasaki, A. (2011). Inorg. Chem. 50, 6183-6188.]), and the platinum heteropoly­oxido­vanadate, [H2PtV9O28]5−, reported by our group in the form of its sodium salt, Na5[H2PtV9O28]·21H2O (Lee et al., 2008[Lee, U., Joo, H.-C., Park, K.-M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. Ed. 47, 793-796.]) and a guanidinium salt, (CH6N3)5[H2PtV9O28] (Joo et al., 2011[Joo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801-m1802.]). The Te heteroatom of the [HnTeV9O28](5−n) polyanion was located on two sites (corresponding to the Pt1 and V4 sites in the title compound) by disorder. However, the Pt atom does not show any disorder in three [H2PtV9O28]5− polyanions. We herein report the structure of the title compound because it could contribute to our knowledge of the structural character­istics of the [H2PtV9O28]5− polyanion.

Fig. 1[link] shows the structure of the heteropolyanion in the title compound. The O atoms of the clusters were designated as OT (terminal, V=O), OB (bridging, μ2-O), OC (μ3-O), and OD (μ4-O). All atoms in the polyanions are located in general positions. The protonated OB atoms in the polyanions were identified by the locations in the difference Fourier maps of the H atoms bound to atoms O7B and O8B and local structural features, as seen previously in sodium and guanidinium salts, respectively. The geometry of the anion agrees well with that in sodium and guanidinium salts. The nine [VO6] octa­hedra in the polyanion are distorted [range of V—O distances = 1.596 (3)–2.403 (3) Å], while the [PtO6] octa­hedron is relatively regular [Pt—O = 1.985 (3)–2.036 (3) Å]. The two platinum bound μ2-O atoms are protonated in the polyanion. These protons are particularly important in the solid state as they lead to the formation of a dimeric assembly, {[H2PtV9O28]2}10−, through each of the two μ2-O7B–H7⋯μ2-O19B and μ2-O8B–H8⋯μ3-O4C inter­anion hydrogen bonds (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7B—H7⋯O19Bi 0.90 (8) 1.86 (8) 2.738 (4) 164 (8)
O8B—H8⋯O4Ci 0.77 (6) 1.90 (6) 2.645 (5) 161 (6)
O1W—H1B⋯O9B 0.83 (3) 2.50 (6) 3.127 (6) 133 (7)
O1W—H1A⋯O8W 0.84 (3) 2.10 (3) 2.930 (9) 170 (8)
O2W—H2A⋯O15B 0.87 (3) 1.88 (3) 2.728 (6) 166 (8)
O2W—H2B⋯O11Bii 0.86 (3) 2.23 (5) 2.975 (6) 145 (8)
O3W—H3A⋯O3Ciii 0.84 (3) 1.83 (3) 2.673 (5) 177 (10)
O3W—H3B⋯O7W 0.83 (3) 2.09 (5) 2.875 (7) 158 (8)
O4W—H4A⋯O13Bi 0.83 (3) 1.88 (3) 2.680 (5) 162 (7)
O4W—H4B⋯O14Biv 0.83 (3) 2.10 (4) 2.850 (5) 151 (7)
O5W—H5A⋯O2Wv 0.87 (3) 1.84 (3) 2.710 (8) 175 (8)
O5W—H5B⋯O24Tvi 0.84 (3) 2.26 (5) 2.972 (6) 142 (7)
O6W—H6A⋯O5Civ 0.97 1.81 2.755 (5) 163
O6W—H6B⋯O10Bv 0.97 2.04 2.755 (5) 129
O7W—H7A⋯O7Biii 0.85 (3) 2.07 (4) 2.891 (5) 163 (8)
O7W—H7B⋯O6Cv 0.84 (3) 2.27 (6) 2.885 (5) 130 (6)
O8W—H8A⋯O5Wv 0.86 (3) 1.98 (5) 2.795 (7) 159 (10)
O8W—H8B⋯O19Bvii 0.86 (3) 2.22 (4) 3.031 (6) 156 (8)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) x, y-1, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+1, -z; (vii) x, y, z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the heteropolyanion in the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2]
Figure 2
Polyhedral view of the inter-anion hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry code: (i) −x, −y + 1, −z.]

The K+ ions are variously coordinated by O atoms as [K1(OB)(OT)2(OW)5]+ in the range 2.725 (5)–3.351 (6) Å, [K2(OB)2(OT)3(OW)3]+ in the range 2.722 (4)–3.156 (5) Å, [K3(OB)(OT)4(OW)4]+ in the range 2.844 (4)–3.151 (3) Å, [K4(OB)(OT)2(OW)4]+ in the range 2.733 (5)–3.284 (7) Å, and [K5(OB)2(OT)2(OW)3]+ in the range 2.734 (6)–2.996 (4) Å. The bond-valence sums (BVS; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) for the K1, K2, K3, K4, and K5 cations are 0.99, 1.12,1.04, 0.81, and 1.10 v.u, respectively (total v.u. = 5.06).

The polyanion dimers are three-dimensionally linked via K⋯OT and K⋯OB inter­actions. All water mol­ecules form hydrogen bonds with polyanions except for the O9W water mol­ecule (Table 1[link]).

2. Synthesis and crystallization

Single crystals of the title compound were obtained in the same way as the sodium salt reported by Lee et al. (2008[Lee, U., Joo, H.-C., Park, K.-M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. Ed. 47, 793-796.]) using K2Pt(OH)6 and KVO3.

3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atoms H7 and H8, bound to μ2-O7B and μ2-O8B, respectively, of the polyanion were found in a difference Fourier map and were freely refined. The H atoms of the O6W mol­ecule were positioned geometrically and refined using a riding model (SHELXL2014 command HFIX 23), with O—H = 0.97 Å and Uiso(H) = 1.5 Ueq(O). All other water H atoms were refined with distance restraints of O—H = 0.85 (3) Å and HA⋯HB = 1.35 (3) Å using DFIX, and were included in the refinement with Uiso(H) = 1.5Ueq(O). The unusually short μ2-O17B⋯terminal-O21Ti distance of 2.949 (5) Å (symmetry code as in Fig. 2[link].) is caused by the neighboring hydrogen bonds between the polyanions of the dimer as shown in Fig. 2[link]. The highest peak in the difference map is 0.95 Å from K4 and the largest hole is 0.92 Å from Pt1.

Table 2
Experimental details

Crystal data
Chemical formula K5[H2PtV9O28]·9H2O
Mr 1461.21
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 10.1663 (7), 12.8350 (7), 13.615 (2)
α, β, γ (°) 103.734 (5), 106.193 (6), 92.480 (4)
V3) 1645.8 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 7.42
Crystal size (mm) 0.21 × 0.19 × 0.17
 
Data collection
Diffractometer Stoe Stadi4
Absorption correction Empirical (using intensity measurements) (X-SHAPE; Stoe & Cie,1996[Stoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie Gmbh, Darmstadt, Germany.])
Tmin, Tmax 0.301, 0.378
No. of measured, independent and observed [I > 2σ(I)] reflections 6797, 6797, 6242
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.066, 1.10
No. of reflections 6797
No. of parameters 526
No. of restraints 25
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.30, −1.46
Computer programs: STADI4 and X-RED (Stoe & Cie, 1996[Stoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie Gmbh, Darmstadt, Germany.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Structural commentary top

Two heteropolyanions that belong to the decavanadate structure system (Lee, 2006) have recently been reported: the tellurium derivative [HnTeV9O28](5-n) (n = 1 and 2), described by Konaka et al. (2011), and the platinum heteropolyoxovanadate, [H2PtV9O28]5-, reported by our group in the form of its sodium salt, Na5[H2PtV9O28]·21H2O (Lee et al., 2008) and a guanidinium salt, (CH6N3)5 [H2PtV9O28] (Joo et al., 2011). The Te heteroatom of the [HnTeV9O28](5-n) polyanion was located on two sites (corresponding to the Pt1 and V4 sites in the title compound) by disorder. However, the Pt atom does not show any disorder in three [H2PtV9O28]5- polyanions. We herein report the structure of the title compound because it could contribute to our knowledge of the structural characteristics of the [H2PtV9O28]5- polyanion.

Fig. 1 shows the structure of the title compound. The O atoms of the clusters were designated as OT (terminal, MoO), OB (bridging, µ2-O), OC3-O), and OD4-O). All atoms in the polyanions were located in general positions. The protonated OB atoms in the polyanions were identified by the locations in the difference Fourier maps of the H atoms bound to atoms O7B and O8B and local structural features, as seen previously in sodium and guanidinium salts, respectively. The geometry of the anion agrees well with that in sodium and guanidinium salts. The nine [VO6] o­cta­hedra in the polyanion are distorted [range of V—O distances = 1.596 (3)–2.403 (3) Å], while the [PtO6] o­cta­hedron is relatively regular [Pt—O = 1.985 (3)–2.036 (3) Å]. The two platinum bound µ2-O atoms are protonated in the polyanion. These protons are particularly important in the solid state as they lead to the formation of a dimeric assembly, {[H2PtV9O28]2}10-, through each of the two µ2-O7B–H7···µ2-O19B and µ2-O8B–H8···µ3-O4C inter­anion hydrogen bonds (Fig. 2 and Table 1).

The K+ ions are variously coordinated by O atoms as [K1(OB)(OT)2(OW)5]+ in the range 2.725 (5)–3.351 (6) Å, [K2(OB)2(OT)3(OW)3]+ in the range 2.722 (4)–3.156 (5) Å, [K3(OB)(OT)4(OW)4]+ in the range 2.844 (4)–3.151 (3) Å, [K4(OB)(OT)2(OW)4]+ in the range 2.733 (5)–3.284 (7) Å, and [K5(OB)2(OT)2(OW)3]+ in the range 2.734 (6)–2.996 (4) Å. The bond-valence sums (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991) for the K1, K2, K3, K4, and K5 ions are 0.99, 1.12,1.04, 0.81, and 1.10 v.u, respectively (total v.u. = 5.06).

The polyanion dimers are three dimensionally linked via K···OT and K···OB inter­actions. All water molecules form hydrogen bonds with polyanions except for the O3W and O9W water molecules. (Table 1).

Synthesis and crystallization top

Single crystals of the title compound were obtained in the same way as the sodium salt reported by Lee et al. (2008) using K2Pt(OH)6 and KVO3.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms H7 and H8, bound to µ2-O7B and µ2-O8B, respectively, of the polyanion were found in a difference Fourier map and were freely refined. The H atoms of the O6W molecule were positioned geometrically and refined using a riding model (HFIX 23), with O—H = 0.97 Å and Uiso(H) = 1.5 Ueq(O). All other water H atoms were refined with distance restraints of O—H = 0.85 (3) Å and HA···HB = 1.35 (3) Å using the SHELXL2014 command DFIX, and were included in the refinement with Uiso(H) = 1.5 Ueq(O). The unusually short µ2-O17B···terminal-O21Ti distance of 2.949 (5) Å (symmetry code as in Fig. 2.) is caused by the neighboring hydrogen bonds between the polyanions of the dimer as shown in Fig. 2. The highest peak in the difference map is 0.95 Å from K4 and the largest hole is 0.92 Å from Pt1.

Related literature top

For a structural study of decavanadate, see: Lee (2006). For the structure of the sodium and guanidinium salts of the title compound, see: (Lee et al., 2008) & (Joo et al., 2011). For the related heteropolyoxometalate TBA4[HTeV9O28].2CH3CN, see: Konaka et al. (2011).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4 (Stoe & Cie, 1996); data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Polyhedral view of the inter-anion hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry code: (i) -x, -y + 1, -z.]
Pentapotassium dihydrogen nonavanadato(V)platinate(IV) nonahydrate top
Crystal data top
K5[H2PtV9O28]·9H2OZ = 2
Mr = 1461.21F(000) = 1392
Triclinic, P1Dx = 2.949 Mg m3
a = 10.1663 (7) ÅMo Kα radiation, λ = 0.71069 Å
b = 12.8350 (7) ÅCell parameters from 30 reflections
c = 13.615 (2) Åθ = 9.6–10.5°
α = 103.734 (5)°µ = 7.42 mm1
β = 106.193 (6)°T = 298 K
γ = 92.480 (4)°Block, dark brown
V = 1645.8 (3) Å30.21 × 0.19 × 0.17 mm
Data collection top
Stoe Stadi4
diffractometer
Rint = 0.0000
Radiation source: fine-focus sealed tubeθmax = 26.5°, θmin = 1.6°
ω/2–θ scansh = 1212
Absorption correction: empirical (using intensity measurements)
(X-SHAPE; Stoe & Cie,1996)
k = 1615
Tmin = 0.301, Tmax = 0.378l = 017
6797 measured reflections3 standard reflections every 60 min
6797 independent reflections intensity decay: 2.5%
6242 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0277P)2 + 4.5476P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
6797 reflectionsΔρmax = 1.30 e Å3
526 parametersΔρmin = 1.46 e Å3
25 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00505 (13)
Crystal data top
K5[H2PtV9O28]·9H2Oγ = 92.480 (4)°
Mr = 1461.21V = 1645.8 (3) Å3
Triclinic, P1Z = 2
a = 10.1663 (7) ÅMo Kα radiation
b = 12.8350 (7) ŵ = 7.42 mm1
c = 13.615 (2) ÅT = 298 K
α = 103.734 (5)°0.21 × 0.19 × 0.17 mm
β = 106.193 (6)°
Data collection top
Stoe Stadi4
diffractometer
6242 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(X-SHAPE; Stoe & Cie,1996)
Rint = 0.0000
Tmin = 0.301, Tmax = 0.3783 standard reflections every 60 min
6797 measured reflections intensity decay: 2.5%
6797 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02825 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 1.30 e Å3
6797 reflectionsΔρmin = 1.46 e Å3
526 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.07476 (2)0.66204 (2)0.15945 (2)0.01102 (6)
V10.08091 (8)0.74803 (6)0.03864 (6)0.01675 (16)
V20.05610 (8)0.57644 (6)0.35482 (6)0.01798 (16)
V30.36393 (8)0.67118 (6)0.46862 (6)0.01860 (17)
V40.38427 (7)0.76066 (6)0.27828 (6)0.01375 (15)
V50.38558 (8)0.84633 (6)0.08300 (6)0.01680 (16)
V60.15181 (8)0.90837 (6)0.19135 (6)0.01625 (16)
V70.14522 (8)0.82358 (6)0.38572 (6)0.01838 (17)
V80.28571 (8)0.50931 (6)0.24210 (6)0.01521 (16)
V90.30124 (8)0.59746 (6)0.04752 (6)0.01441 (15)
K10.19325 (16)0.94505 (11)0.81002 (11)0.0433 (3)
K20.32640 (13)0.27185 (9)0.99666 (11)0.0329 (3)
K30.29033 (13)0.19821 (10)0.25987 (10)0.0353 (3)
K40.1688 (2)0.15936 (14)0.5300 (2)0.0819 (7)
K50.33393 (14)0.48579 (12)0.61615 (13)0.0439 (3)
O1D0.2234 (3)0.7454 (2)0.1318 (2)0.0148 (6)
O2D0.2133 (3)0.6723 (2)0.2981 (2)0.0148 (6)
O3C0.0321 (3)0.8071 (2)0.2320 (2)0.0156 (6)
O4C0.1590 (3)0.5298 (2)0.1039 (2)0.0137 (6)
O5C0.2793 (3)0.8770 (2)0.3209 (2)0.0165 (6)
O6C0.3986 (3)0.6174 (2)0.2014 (2)0.0147 (6)
O7B0.0627 (3)0.5793 (3)0.2053 (3)0.0159 (6)
H70.086 (8)0.519 (6)0.152 (6)0.07 (2)*
O8B0.0508 (3)0.6659 (3)0.0160 (3)0.0168 (7)
H80.067 (6)0.609 (5)0.023 (5)0.021 (15)*
O9B0.2105 (3)0.5994 (3)0.4730 (3)0.0202 (7)
O10B0.4757 (3)0.7538 (3)0.3997 (3)0.0207 (7)
O11B0.4856 (3)0.8317 (3)0.2321 (3)0.0179 (7)
O12B0.2409 (3)0.8257 (3)0.0358 (3)0.0197 (7)
O13B0.0439 (3)0.8680 (2)0.0548 (3)0.0182 (7)
O14B0.3033 (3)0.9526 (2)0.1585 (3)0.0174 (6)
O15B0.2871 (3)0.8035 (3)0.4919 (3)0.0215 (7)
O16B0.0221 (3)0.7196 (3)0.3937 (3)0.0204 (7)
O17B0.1402 (3)0.4691 (2)0.2815 (3)0.0176 (6)
O18B0.4015 (3)0.5523 (3)0.3774 (3)0.0184 (7)
O19B0.1590 (3)0.6178 (2)0.0635 (2)0.0158 (6)
O20B0.4224 (3)0.7028 (3)0.0424 (3)0.0179 (7)
O21T0.0224 (4)0.7505 (3)0.1503 (3)0.0270 (8)
O22T0.0570 (4)0.5099 (3)0.3842 (3)0.0257 (8)
O23T0.4743 (4)0.6778 (3)0.5812 (3)0.0287 (8)
O24T0.5067 (3)0.9142 (3)0.0618 (3)0.0238 (7)
O25T0.0976 (4)1.0199 (3)0.2403 (3)0.0245 (7)
O26T0.0934 (4)0.9340 (3)0.4384 (3)0.0301 (8)
O27T0.3379 (4)0.3970 (3)0.1941 (3)0.0237 (7)
O28T0.3493 (4)0.4863 (3)0.0055 (3)0.0234 (7)
O1W0.1060 (6)0.7552 (4)0.6420 (4)0.0514 (12)
H1A0.154 (8)0.721 (6)0.681 (5)0.077*
H1B0.133 (8)0.750 (7)0.589 (4)0.077*
O2W0.3763 (6)0.9426 (4)0.6891 (4)0.0618 (15)
H2A0.347 (9)0.908 (6)0.623 (3)0.093*
H2B0.428 (8)0.997 (5)0.688 (6)0.093*
O3W0.2228 (5)0.1440 (4)0.7752 (6)0.0660 (17)
H3A0.143 (5)0.161 (7)0.775 (8)0.099*
H3B0.268 (7)0.197 (5)0.770 (8)0.099*
O4W0.2138 (4)0.0846 (3)0.0168 (4)0.0356 (9)
H4A0.132 (4)0.097 (5)0.007 (6)0.053*
H4B0.224 (6)0.029 (4)0.038 (6)0.053*
O5W0.5107 (5)0.1657 (4)0.1656 (4)0.0495 (12)
H5A0.550 (8)0.130 (5)0.210 (4)0.074*
H5B0.481 (8)0.120 (5)0.106 (3)0.074*
O6W0.3583 (5)0.0913 (4)0.4279 (4)0.0552 (13)
H6A0.34630.01340.40060.083*
H6B0.45200.11480.47370.083*
O7W0.3045 (5)0.3465 (4)0.7411 (4)0.0471 (12)
H7A0.242 (5)0.367 (6)0.769 (6)0.071*
H7B0.373 (5)0.394 (5)0.774 (6)0.071*
O8W0.3022 (6)0.6482 (5)0.7759 (4)0.0634 (15)
H8A0.375 (6)0.694 (6)0.797 (6)0.095*
H8B0.287 (9)0.645 (7)0.834 (4)0.095*
O9W0.1770 (7)0.3233 (4)0.4164 (5)0.0629 (15)
H9A0.265 (3)0.341 (8)0.444 (7)0.094*
H9B0.159 (8)0.357 (7)0.368 (5)0.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00977 (9)0.00941 (9)0.01224 (9)0.00006 (5)0.00238 (6)0.00097 (6)
V10.0165 (4)0.0157 (4)0.0161 (4)0.0005 (3)0.0017 (3)0.0046 (3)
V20.0159 (4)0.0202 (4)0.0177 (4)0.0023 (3)0.0051 (3)0.0053 (3)
V30.0183 (4)0.0199 (4)0.0148 (4)0.0021 (3)0.0010 (3)0.0047 (3)
V40.0120 (3)0.0126 (3)0.0144 (4)0.0016 (3)0.0020 (3)0.0019 (3)
V50.0162 (4)0.0151 (4)0.0194 (4)0.0013 (3)0.0058 (3)0.0050 (3)
V60.0182 (4)0.0106 (3)0.0187 (4)0.0017 (3)0.0048 (3)0.0022 (3)
V70.0231 (4)0.0151 (4)0.0160 (4)0.0024 (3)0.0076 (3)0.0000 (3)
V80.0168 (4)0.0121 (3)0.0162 (4)0.0025 (3)0.0041 (3)0.0036 (3)
V90.0158 (4)0.0120 (3)0.0157 (4)0.0015 (3)0.0060 (3)0.0026 (3)
K10.0556 (9)0.0407 (7)0.0386 (7)0.0112 (6)0.0207 (7)0.0109 (6)
K20.0380 (7)0.0222 (6)0.0465 (7)0.0055 (5)0.0257 (6)0.0078 (5)
K30.0327 (6)0.0355 (7)0.0352 (7)0.0054 (5)0.0075 (5)0.0090 (5)
K40.1103 (16)0.0426 (9)0.1207 (18)0.0171 (10)0.0879 (15)0.0091 (10)
K50.0328 (7)0.0496 (8)0.0667 (10)0.0148 (6)0.0246 (7)0.0346 (7)
O1D0.0146 (15)0.0120 (14)0.0172 (16)0.0012 (12)0.0047 (12)0.0033 (12)
O2D0.0153 (15)0.0137 (15)0.0126 (15)0.0033 (12)0.0026 (12)0.0010 (12)
O3C0.0157 (15)0.0128 (15)0.0167 (16)0.0019 (12)0.0059 (12)0.0007 (12)
O4C0.0136 (14)0.0106 (14)0.0153 (15)0.0004 (11)0.0036 (12)0.0017 (12)
O5C0.0169 (15)0.0136 (15)0.0161 (15)0.0002 (12)0.0028 (12)0.0012 (12)
O6C0.0128 (14)0.0135 (15)0.0153 (15)0.0002 (12)0.0012 (12)0.0030 (12)
O7B0.0159 (15)0.0150 (16)0.0159 (16)0.0004 (12)0.0051 (13)0.0022 (13)
O8B0.0147 (15)0.0162 (17)0.0156 (16)0.0006 (13)0.0005 (13)0.0031 (14)
O9B0.0221 (17)0.0206 (17)0.0169 (16)0.0022 (13)0.0055 (13)0.0040 (13)
O10B0.0194 (16)0.0191 (16)0.0205 (17)0.0027 (13)0.0026 (13)0.0044 (13)
O11B0.0142 (15)0.0180 (16)0.0204 (17)0.0025 (12)0.0038 (13)0.0049 (13)
O12B0.0243 (17)0.0174 (16)0.0179 (16)0.0010 (13)0.0055 (14)0.0069 (13)
O13B0.0162 (15)0.0129 (15)0.0236 (17)0.0007 (12)0.0031 (13)0.0050 (13)
O14B0.0187 (16)0.0124 (15)0.0210 (17)0.0007 (12)0.0061 (13)0.0041 (13)
O15B0.0273 (18)0.0197 (17)0.0141 (16)0.0007 (14)0.0062 (14)0.0017 (13)
O16B0.0226 (17)0.0192 (16)0.0204 (17)0.0025 (13)0.0107 (14)0.0018 (13)
O17B0.0190 (16)0.0142 (15)0.0185 (16)0.0015 (12)0.0049 (13)0.0039 (13)
O18B0.0169 (15)0.0173 (16)0.0185 (16)0.0016 (12)0.0009 (13)0.0052 (13)
O19B0.0167 (15)0.0144 (15)0.0138 (15)0.0029 (12)0.0022 (12)0.0014 (12)
O20B0.0180 (16)0.0178 (16)0.0200 (17)0.0031 (13)0.0085 (13)0.0054 (13)
O21T0.0298 (19)0.0255 (18)0.0220 (18)0.0016 (15)0.0007 (15)0.0075 (15)
O22T0.0233 (18)0.0306 (19)0.0266 (19)0.0029 (15)0.0109 (15)0.0106 (15)
O23T0.0287 (19)0.033 (2)0.0186 (18)0.0072 (16)0.0024 (15)0.0079 (15)
O24T0.0224 (17)0.0224 (17)0.0281 (19)0.0033 (14)0.0091 (15)0.0086 (15)
O25T0.0245 (18)0.0164 (16)0.032 (2)0.0048 (14)0.0081 (15)0.0041 (14)
O26T0.039 (2)0.0213 (18)0.029 (2)0.0061 (16)0.0154 (17)0.0020 (15)
O27T0.0264 (18)0.0180 (17)0.0283 (19)0.0074 (14)0.0085 (15)0.0077 (14)
O28T0.0278 (18)0.0164 (16)0.0277 (19)0.0037 (14)0.0130 (15)0.0034 (14)
O1W0.066 (3)0.050 (3)0.041 (3)0.008 (2)0.025 (3)0.007 (2)
O2W0.080 (4)0.056 (3)0.035 (3)0.024 (3)0.017 (3)0.010 (2)
O3W0.028 (2)0.058 (3)0.126 (5)0.013 (2)0.028 (3)0.044 (4)
O4W0.028 (2)0.035 (2)0.054 (3)0.0107 (17)0.0133 (19)0.027 (2)
O5W0.052 (3)0.041 (3)0.049 (3)0.008 (2)0.013 (2)0.004 (2)
O6W0.051 (3)0.034 (2)0.056 (3)0.011 (2)0.003 (2)0.014 (2)
O7W0.030 (2)0.043 (3)0.078 (4)0.0107 (19)0.023 (2)0.025 (2)
O8W0.080 (4)0.066 (4)0.042 (3)0.016 (3)0.028 (3)0.002 (3)
O9W0.095 (4)0.051 (3)0.056 (3)0.025 (3)0.029 (3)0.028 (3)
Geometric parameters (Å, º) top
Pt1—V63.1213 (8)V8—O27T1.612 (3)
Pt1—V83.1262 (8)V8—O17B1.803 (3)
Pt1—V93.1359 (8)V8—O18B1.826 (3)
Pt1—V73.1480 (9)V8—O6C2.033 (3)
Pt1—V43.1566 (8)V8—O4C2.045 (3)
Pt1—V23.1574 (9)V8—O2D2.278 (3)
V1—V53.1204 (11)V9—O28T1.601 (3)
V1—V63.1801 (11)V9—O20B1.816 (3)
V1—V93.1802 (11)V9—O19B1.856 (3)
V2—V33.1217 (11)V9—O6C2.001 (3)
V2—V73.1566 (11)V9—O4C2.064 (3)
V2—V83.1767 (11)V9—O1D2.270 (3)
V2—V44.4982 (11)K1—O3Wi2.725 (5)
V3—V43.1255 (11)K1—O2W2.804 (6)
V3—V83.1476 (11)K1—O1W2.827 (5)
V3—V73.1731 (11)K1—O12Bii2.830 (3)
V4—V53.1120 (11)K1—O4Wiii2.903 (5)
V4—V93.1960 (11)K1—O25Tiv2.924 (4)
V4—V73.2078 (11)K1—O24Tv3.267 (4)
V4—V83.2162 (10)K1—O5Wvi3.351 (6)
V5—V93.1578 (10)K2—O4Wii2.722 (4)
V5—V63.1654 (11)K2—O27Tii2.753 (4)
V6—V73.1068 (12)K2—O28Tii2.760 (3)
V8—V93.1566 (11)K2—O20Bvi2.772 (3)
Pt1—O1D1.985 (3)K2—O8Bvii2.917 (3)
Pt1—O2D1.986 (3)K2—O3W2.936 (7)
Pt1—O4C2.015 (3)K2—O24Tvi3.069 (4)
Pt1—O3C2.017 (3)K2—O5Wii3.156 (5)
Pt1—O8B2.027 (3)K3—O23Tvi2.844 (4)
Pt1—O7B2.036 (3)K3—O25Tviii2.860 (4)
V1—O21T1.598 (3)K3—O5W2.876 (5)
V1—O12B1.857 (3)K3—O6W2.878 (6)
V1—O13B1.876 (3)K3—O9W2.890 (6)
V1—O19B1.880 (3)K3—O21Tix2.904 (4)
V1—O8B2.064 (3)K3—O27T2.960 (4)
V1—O1D2.377 (3)K3—O4W3.139 (5)
V2—O22T1.596 (3)K3—O14Bviii3.151 (3)
V2—O9B1.862 (3)K4—O6W2.733 (5)
V2—O16B1.863 (3)K4—O16Bvii2.806 (4)
V2—O17B1.885 (3)K4—O26Tviii2.841 (4)
V2—O7B2.067 (3)K4—O9W2.904 (5)
V2—O2D2.374 (3)K4—O26Tvii3.055 (4)
V3—O23T1.608 (3)K4—O7W3.187 (6)
V3—O9B1.800 (3)K4—O3W3.284 (7)
V3—O18B1.853 (3)K5—O8W2.734 (6)
V3—O15B1.895 (3)K5—O18Bvi2.736 (3)
V3—O10B2.064 (3)K5—O9B2.764 (4)
V3—O2D2.403 (3)K5—O7W2.803 (5)
V4—O10B1.681 (3)K5—O22Tvii2.817 (4)
V4—O11B1.685 (3)K5—O9W2.982 (7)
V4—O6C1.921 (3)K5—O23T2.996 (4)
V4—O5C1.943 (3)O7B—H70.90 (8)
V4—O2D2.148 (3)O8B—H80.77 (6)
V4—O1D2.158 (3)O1W—H1A0.84 (3)
V5—O24T1.607 (3)O1W—H1B0.83 (3)
V5—O12B1.813 (3)O2W—H2A0.87 (3)
V5—O20B1.878 (3)O2W—H2B0.86 (3)
V5—O14B1.879 (3)O3W—H3A0.84 (3)
V5—O11B2.058 (3)O3W—H3B0.83 (3)
V5—O1D2.381 (3)O4W—H4A0.83 (3)
V6—O25T1.617 (3)O4W—H4B0.83 (3)
V6—O13B1.812 (3)O5W—H5A0.87 (3)
V6—O14B1.824 (3)O5W—H5B0.84 (3)
V6—O3C2.014 (3)O6W—H6A0.9700
V6—O5C2.015 (3)O6W—H6B0.9700
V6—O1D2.284 (3)O7W—H7A0.85 (3)
V7—O26T1.610 (3)O7W—H7B0.84 (3)
V7—O15B1.812 (3)O8W—H8A0.86 (3)
V7—O16B1.832 (3)O8W—H8B0.86 (3)
V7—O5C1.997 (3)O9W—H9A0.87 (3)
V7—O3C2.043 (3)O9W—H9B0.85 (3)
V7—O2D2.269 (3)
O1D—Pt1—O2D84.61 (12)Pt1—V4—V858.745 (19)
O1D—Pt1—O4C85.94 (12)V9—V4—V858.98 (2)
O2D—Pt1—O4C85.94 (12)V7—V4—V889.47 (3)
O1D—Pt1—O3C85.44 (12)V4—V5—V192.76 (3)
O2D—Pt1—O3C84.79 (12)V4—V5—V961.29 (2)
O4C—Pt1—O3C167.89 (12)V1—V5—V960.86 (2)
O1D—Pt1—O8B88.49 (13)V4—V5—V662.06 (2)
O2D—Pt1—O8B172.89 (13)V1—V5—V660.78 (3)
O4C—Pt1—O8B95.27 (13)V9—V5—V691.58 (3)
O3C—Pt1—O8B92.99 (13)V4—V5—Pt146.338 (17)
O1D—Pt1—O7B173.32 (13)V1—V5—Pt146.428 (18)
O2D—Pt1—O7B88.75 (12)V9—V5—Pt145.928 (17)
O4C—Pt1—O7B94.36 (12)V6—V5—Pt145.659 (17)
O3C—Pt1—O7B93.22 (13)V7—V6—Pt160.72 (2)
O8B—Pt1—O7B98.12 (13)V7—V6—V5118.88 (3)
O1D—Pt1—V646.91 (9)Pt1—V6—V587.85 (2)
O2D—Pt1—V688.79 (9)V7—V6—V1120.95 (3)
O4C—Pt1—V6132.85 (9)Pt1—V6—V160.23 (2)
O3C—Pt1—V639.21 (9)V5—V6—V158.91 (2)
O8B—Pt1—V685.25 (10)V6—V7—V3120.25 (3)
O7B—Pt1—V6132.36 (9)Pt1—V7—V387.79 (2)
O1D—Pt1—V889.65 (9)V2—V7—V359.10 (2)
O2D—Pt1—V846.63 (9)V6—V7—V461.64 (2)
O4C—Pt1—V840.00 (9)Pt1—V7—V459.55 (2)
O3C—Pt1—V8131.42 (9)V2—V7—V489.94 (3)
O8B—Pt1—V8135.22 (10)V3—V7—V458.66 (2)
O7B—Pt1—V886.34 (9)Pt1—V8—V388.63 (2)
V6—Pt1—V8123.63 (2)Pt1—V8—V959.88 (2)
O1D—Pt1—V946.16 (9)V3—V8—V9119.00 (3)
O2D—Pt1—V989.07 (9)V3—V8—V259.15 (2)
O4C—Pt1—V940.35 (9)V9—V8—V2120.00 (3)
O3C—Pt1—V9131.59 (9)V3—V8—V458.82 (2)
O8B—Pt1—V987.36 (10)V9—V8—V460.19 (2)
O7B—Pt1—V9134.69 (9)V2—V8—V489.43 (3)
V6—Pt1—V992.83 (2)Pt1—V9—V859.58 (2)
V8—Pt1—V960.54 (2)Pt1—V9—V587.73 (2)
O1D—Pt1—V788.61 (9)V8—V9—V5119.42 (3)
O2D—Pt1—V745.87 (9)Pt1—V9—V160.07 (2)
O4C—Pt1—V7131.81 (9)V8—V9—V1119.64 (3)
O3C—Pt1—V739.46 (9)V5—V9—V158.99 (2)
O8B—Pt1—V7132.43 (10)Pt1—V9—V459.80 (2)
O7B—Pt1—V786.22 (9)V8—V9—V460.83 (2)
V6—Pt1—V759.41 (2)V5—V9—V458.65 (2)
V8—Pt1—V792.22 (2)V1—V9—V490.08 (3)
V9—Pt1—V7122.21 (2)O3Wi—K1—O2W71.45 (18)
O1D—Pt1—V442.45 (9)O3Wi—K1—O1W122.0 (2)
O2D—Pt1—V442.16 (9)O2W—K1—O1W73.89 (15)
O4C—Pt1—V484.02 (8)O3Wi—K1—O12Bii145.45 (18)
O3C—Pt1—V483.88 (9)O2W—K1—O12Bii118.85 (16)
O8B—Pt1—V4130.94 (9)O1W—K1—O12Bii92.12 (13)
O7B—Pt1—V4130.91 (9)O3Wi—K1—O4Wiii78.75 (18)
V6—Pt1—V462.06 (2)O2W—K1—O4Wiii128.72 (14)
V8—Pt1—V461.58 (2)O1W—K1—O4Wiii155.55 (14)
V9—Pt1—V461.05 (2)O12Bii—K1—O4Wiii69.55 (10)
V7—Pt1—V461.17 (2)O3Wi—K1—O25Tiv82.50 (12)
O1D—Pt1—V2133.30 (9)O2W—K1—O25Tiv129.92 (16)
O2D—Pt1—V248.70 (9)O1W—K1—O25Tiv85.91 (13)
O4C—Pt1—V290.75 (9)O12Bii—K1—O25Tiv106.98 (11)
O3C—Pt1—V288.98 (9)O4Wiii—K1—O25Tiv84.34 (11)
O8B—Pt1—V2138.14 (9)O3Wi—K1—O24Tv65.13 (14)
O7B—Pt1—V240.05 (9)O2W—K1—O24Tv65.37 (12)
V6—Pt1—V2119.45 (2)O1W—K1—O24Tv133.36 (13)
V8—Pt1—V260.73 (2)O12Bii—K1—O24Tv88.44 (10)
V9—Pt1—V2121.27 (2)O4Wiii—K1—O24Tv64.45 (10)
V7—Pt1—V260.08 (2)O25Tiv—K1—O24Tv138.04 (10)
V4—Pt1—V290.86 (2)O3Wi—K1—O5Wvi110.45 (14)
O21T—V1—O12B102.27 (17)O2W—K1—O5Wvi51.31 (16)
O21T—V1—O13B102.73 (17)O1W—K1—O5Wvi79.54 (14)
O12B—V1—O13B90.13 (14)O12Bii—K1—O5Wvi67.77 (12)
O21T—V1—O19B105.72 (16)O4Wiii—K1—O5Wvi106.58 (12)
O12B—V1—O19B91.05 (14)O25Tiv—K1—O5Wvi164.20 (12)
O13B—V1—O19B150.57 (14)O24Tv—K1—O5Wvi57.73 (10)
O21T—V1—O8B99.44 (16)O4Wii—K2—O27Tii96.79 (13)
O12B—V1—O8B158.14 (14)O4Wii—K2—O28Tii157.70 (12)
O13B—V1—O8B82.64 (14)O27Tii—K2—O28Tii71.43 (10)
O19B—V1—O8B85.45 (14)O4Wii—K2—O20Bvi124.36 (11)
O21T—V1—O1D176.60 (16)O27Tii—K2—O20Bvi110.65 (11)
O12B—V1—O1D80.42 (12)O28Tii—K2—O20Bvi77.91 (10)
O13B—V1—O1D75.06 (12)O4Wii—K2—O8Bvii82.79 (11)
O19B—V1—O1D76.16 (12)O27Tii—K2—O8Bvii73.02 (10)
O8B—V1—O1D77.79 (12)O28Tii—K2—O8Bvii75.73 (10)
O22T—V2—O9B103.62 (17)O20Bvi—K2—O8Bvii150.46 (10)
O22T—V2—O16B104.45 (17)O4Wii—K2—O3W78.19 (15)
O9B—V2—O16B91.43 (15)O27Tii—K2—O3W162.23 (13)
O22T—V2—O17B104.04 (17)O28Tii—K2—O3W107.12 (13)
O9B—V2—O17B88.97 (14)O20Bvi—K2—O3W85.81 (12)
O16B—V2—O17B150.56 (14)O8Bvii—K2—O3W89.37 (12)
O22T—V2—O7B97.56 (16)O4Wii—K2—O24Tvi69.29 (11)
O9B—V2—O7B158.78 (14)O27Tii—K2—O24Tvi128.86 (11)
O16B—V2—O7B84.50 (14)O28Tii—K2—O24Tvi132.88 (10)
O17B—V2—O7B84.59 (13)O20Bvi—K2—O24Tvi55.63 (9)
O22T—V2—O2D175.77 (15)O8Bvii—K2—O24Tvi145.32 (10)
O9B—V2—O2D80.53 (13)O3W—K2—O24Tvi65.65 (11)
O16B—V2—O2D76.07 (13)O4Wii—K2—O5Wii63.16 (12)
O17B—V2—O2D74.97 (12)O27Tii—K2—O5Wii72.57 (12)
O7B—V2—O2D78.27 (11)O28Tii—K2—O5Wii126.96 (12)
O23T—V3—O9B104.10 (17)O20Bvi—K2—O5Wii79.90 (12)
O23T—V3—O18B104.12 (17)O8Bvii—K2—O5Wii127.23 (12)
O9B—V3—O18B92.55 (15)O3W—K2—O5Wii118.55 (13)
O23T—V3—O15B103.56 (18)O24Tvi—K2—O5Wii57.03 (11)
O9B—V3—O15B90.80 (15)O23Tvi—K3—O25Tviii136.47 (11)
O18B—V3—O15B150.37 (14)O23Tvi—K3—O5W75.77 (13)
O23T—V3—O10B101.92 (16)O25Tviii—K3—O5W120.42 (12)
O9B—V3—O10B153.94 (14)O23Tvi—K3—O6W72.84 (12)
O18B—V3—O10B82.41 (14)O25Tviii—K3—O6W64.17 (12)
O15B—V3—O10B81.76 (14)O5W—K3—O6W104.30 (15)
O23T—V3—O2D174.90 (16)O23Tvi—K3—O9W76.16 (15)
O9B—V3—O2D80.92 (13)O25Tviii—K3—O9W87.40 (14)
O18B—V3—O2D76.28 (12)O5W—K3—O9W150.12 (16)
O15B—V3—O2D75.21 (12)O6W—K3—O9W76.75 (14)
O10B—V3—O2D73.04 (12)O23Tvi—K3—O21Tix133.79 (11)
O10B—V4—O11B108.05 (16)O25Tviii—K3—O21Tix74.44 (10)
O10B—V4—O6C98.10 (15)O5W—K3—O21Tix123.14 (14)
O11B—V4—O6C99.13 (15)O6W—K3—O21Tix128.44 (13)
O10B—V4—O5C98.12 (15)O9W—K3—O21Tix71.85 (14)
O11B—V4—O5C96.71 (15)O23Tvi—K3—O27T74.05 (10)
O6C—V4—O5C152.55 (13)O25Tviii—K3—O27T146.54 (11)
O10B—V4—O2D87.63 (14)O5W—K3—O27T73.96 (12)
O11B—V4—O2D164.23 (14)O6W—K3—O27T146.13 (12)
O6C—V4—O2D79.74 (12)O9W—K3—O27T88.67 (13)
O5C—V4—O2D78.95 (12)O21Tix—K3—O27T72.77 (10)
O10B—V4—O1D164.37 (14)O23Tvi—K3—O4W136.36 (11)
O11B—V4—O1D87.58 (14)O25Tviii—K3—O4W78.53 (11)
O6C—V4—O1D79.38 (12)O5W—K3—O4W61.86 (12)
O5C—V4—O1D79.03 (12)O6W—K3—O4W125.62 (12)
O2D—V4—O1D76.74 (12)O9W—K3—O4W141.67 (15)
O24T—V5—O12B104.93 (17)O21Tix—K3—O4W70.07 (10)
O24T—V5—O20B103.26 (16)O27T—K3—O4W84.26 (10)
O12B—V5—O20B91.36 (15)O23Tvi—K3—O14Bviii119.30 (11)
O24T—V5—O14B103.76 (16)O25Tviii—K3—O14Bviii53.38 (9)
O12B—V5—O14B91.43 (15)O5W—K3—O14Bviii67.26 (11)
O20B—V5—O14B151.11 (14)O6W—K3—O14Bviii72.00 (11)
O24T—V5—O11B100.00 (16)O9W—K3—O14Bviii137.58 (13)
O12B—V5—O11B155.07 (14)O21Tix—K3—O14Bviii106.80 (10)
O20B—V5—O11B82.61 (14)O27T—K3—O14Bviii132.52 (10)
O14B—V5—O11B82.82 (14)O4W—K3—O14Bviii53.88 (9)
O24T—V5—O1D173.91 (15)O6W—K4—O16Bvii162.73 (15)
O12B—V5—O1D81.14 (13)O6W—K4—O26Tviii73.88 (13)
O20B—V5—O1D75.91 (12)O16Bvii—K4—O26Tviii118.24 (13)
O14B—V5—O1D76.13 (12)O6W—K4—O9W78.81 (17)
O11B—V5—O1D73.92 (11)O16Bvii—K4—O9W83.95 (15)
O25T—V6—O13B103.58 (16)O26Tviii—K4—O9W126.27 (17)
O25T—V6—O14B103.90 (16)O6W—K4—O26Tvii138.56 (13)
O13B—V6—O14B94.04 (15)O16Bvii—K4—O26Tvii54.50 (10)
O25T—V6—O3C97.90 (16)O26Tviii—K4—O26Tvii64.75 (12)
O13B—V6—O3C91.22 (14)O9W—K4—O26Tvii124.14 (16)
O14B—V6—O3C155.66 (14)O6W—K4—O7W111.55 (14)
O25T—V6—O5C102.60 (16)O16Bvii—K4—O7W65.92 (11)
O13B—V6—O5C152.25 (14)O26Tviii—K4—O7W146.61 (15)
O14B—V6—O5C88.47 (14)O9W—K4—O7W86.49 (16)
O3C—V6—O5C76.20 (13)O26Tvii—K4—O7W104.46 (12)
O25T—V6—O1D175.51 (15)O6W—K4—O3W118.81 (16)
O13B—V6—O1D78.63 (13)O16Bvii—K4—O3W74.21 (12)
O14B—V6—O1D79.71 (12)O26Tviii—K4—O3W95.01 (14)
O3C—V6—O1D78.07 (12)O9W—K4—O3W138.71 (17)
O5C—V6—O1D74.63 (12)O26Tvii—K4—O3W68.97 (12)
O26T—V7—O15B103.92 (18)O7W—K4—O3W52.73 (14)
O26T—V7—O16B102.74 (18)O8W—K5—O18Bvi116.68 (16)
O15B—V7—O16B95.34 (16)O8W—K5—O9B88.96 (16)
O26T—V7—O5C102.03 (17)O18Bvi—K5—O9B115.20 (11)
O15B—V7—O5C89.99 (14)O8W—K5—O7W86.37 (17)
O16B—V7—O5C152.57 (14)O18Bvi—K5—O7W94.58 (12)
O26T—V7—O3C98.14 (17)O9B—K5—O7W148.49 (12)
O15B—V7—O3C155.92 (14)O8W—K5—O22Tvii67.49 (15)
O16B—V7—O3C89.04 (14)O18Bvi—K5—O22Tvii170.27 (11)
O5C—V7—O3C75.93 (13)O9B—K5—O22Tvii72.81 (10)
O26T—V7—O2D175.00 (16)O7W—K5—O22Tvii76.63 (12)
O15B—V7—O2D80.25 (13)O8W—K5—O9W142.73 (18)
O16B—V7—O2D79.42 (13)O18Bvi—K5—O9W100.56 (14)
O5C—V7—O2D75.00 (12)O9B—K5—O9W73.02 (12)
O3C—V7—O2D77.31 (12)O7W—K5—O9W92.42 (15)
O27T—V8—O17B104.28 (16)O22Tvii—K5—O9W75.98 (14)
O27T—V8—O18B102.86 (16)O8W—K5—O23T78.72 (14)
O17B—V8—O18B94.12 (15)O18Bvi—K5—O23T71.86 (10)
O27T—V8—O6C101.85 (16)O9B—K5—O23T55.51 (10)
O17B—V8—O6C152.21 (14)O7W—K5—O23T152.01 (14)
O18B—V8—O6C89.12 (14)O22Tvii—K5—O23T117.87 (11)
O27T—V8—O4C98.38 (15)O9W—K5—O23T113.75 (13)
O17B—V8—O4C91.54 (13)Pt1—O1D—V499.17 (13)
O18B—V8—O4C155.90 (13)Pt1—O1D—V994.73 (12)
O6C—V8—O4C75.36 (12)V4—O1D—V992.37 (12)
O27T—V8—O2D175.32 (15)Pt1—O1D—V693.70 (12)
O17B—V8—O2D78.97 (13)V4—O1D—V693.47 (12)
O18B—V8—O2D80.09 (13)V9—O1D—V6168.86 (15)
O6C—V8—O2D74.42 (12)Pt1—O1D—V192.47 (12)
O4C—V8—O2D78.04 (11)V4—O1D—V1168.36 (15)
O28T—V9—O20B105.26 (16)V9—O1D—V186.35 (11)
O28T—V9—O19B102.34 (16)V6—O1D—V186.01 (10)
O20B—V9—O19B94.63 (14)Pt1—O1D—V5174.40 (16)
O28T—V9—O6C102.11 (16)V4—O1D—V586.40 (11)
O20B—V9—O6C90.31 (14)V9—O1D—V585.49 (10)
O19B—V9—O6C152.78 (13)V6—O1D—V585.42 (10)
O28T—V9—O4C96.57 (15)V1—O1D—V581.96 (10)
O20B—V9—O4C156.16 (14)Pt1—O2D—V499.47 (13)
O19B—V9—O4C89.88 (13)Pt1—O2D—V795.20 (12)
O6C—V9—O4C75.62 (12)V4—O2D—V793.10 (11)
O28T—V9—O1D174.17 (15)Pt1—O2D—V894.04 (12)
O20B—V9—O1D80.02 (13)V4—O2D—V893.16 (12)
O19B—V9—O1D79.42 (12)V7—O2D—V8167.84 (15)
O6C—V9—O1D75.11 (12)Pt1—O2D—V292.35 (11)
O4C—V9—O1D77.82 (11)V4—O2D—V2168.17 (15)
V5—V1—Pt187.93 (2)V7—O2D—V285.63 (11)
V5—V1—V660.31 (2)V8—O2D—V286.10 (10)
Pt1—V1—V658.97 (2)Pt1—O2D—V3173.86 (16)
V5—V1—V960.15 (2)V4—O2D—V386.57 (10)
Pt1—V1—V959.27 (2)V7—O2D—V385.52 (10)
V6—V1—V990.89 (3)V8—O2D—V384.47 (10)
V5—V1—V443.54 (2)V2—O2D—V381.61 (10)
Pt1—V1—V444.385 (15)V6—O3C—Pt1101.52 (13)
V6—V1—V445.82 (2)V6—O3C—V799.96 (13)
V9—V1—V445.099 (19)Pt1—O3C—V7101.69 (14)
V3—V2—V760.71 (3)Pt1—O4C—V8100.70 (13)
V3—V2—Pt188.53 (3)Pt1—O4C—V9100.45 (13)
V7—V2—Pt159.81 (2)V8—O4C—V9100.37 (13)
V3—V2—V859.96 (3)V4—O5C—V7109.01 (15)
V7—V2—V891.11 (3)V4—O5C—V6109.70 (15)
Pt1—V2—V859.15 (2)V7—O5C—V6101.51 (14)
V3—V2—V443.98 (2)V4—O6C—V9109.15 (14)
V7—V2—V445.49 (2)V4—O6C—V8108.85 (15)
Pt1—V2—V444.562 (14)V9—O6C—V8103.00 (13)
V8—V2—V445.641 (19)Pt1—O7B—V2100.62 (13)
V3—V2—V189.54 (2)Pt1—O8B—V1101.22 (14)
V7—V2—V159.98 (2)V4—O10B—V3112.76 (17)
Pt1—V2—V11.113 (10)V4—O11B—V5112.09 (16)
V8—V2—V160.11 (2)V5—O12B—V1116.48 (17)
V4—V2—V145.564 (14)V6—O13B—V1119.14 (17)
V2—V3—V492.11 (3)V6—O14B—V5117.51 (16)
V2—V3—V860.89 (3)V7—O15B—V3117.70 (17)
V4—V3—V861.69 (3)V7—O16B—V2117.32 (17)
V2—V3—V760.19 (3)V8—O17B—V2118.96 (16)
V4—V3—V761.23 (2)V8—O18B—V3117.66 (17)
V8—V3—V791.34 (3)V9—O19B—V1116.70 (16)
V5—V4—Pt188.17 (2)V9—O20B—V5117.45 (17)
V3—V4—Pt188.48 (2)H1A—O1W—H1B109 (5)
V5—V4—V960.06 (2)H2A—O2W—H2B102 (4)
V3—V4—V9118.47 (3)H3A—O3W—H3B107 (5)
Pt1—V4—V959.155 (19)H4A—O4W—H4B109 (4)
V5—V4—V7117.42 (3)H5A—O5W—H5B106 (4)
V3—V4—V760.12 (3)H6A—O6W—H6B109.4
Pt1—V4—V759.28 (2)H7A—O7W—H7B105 (4)
V9—V4—V7118.44 (3)H8A—O8W—H8B103 (4)
V5—V4—V8118.99 (3)H9A—O9W—H9B101 (4)
V3—V4—V859.49 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x, y+2, z+1; (v) x+1, y+2, z+1; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x, y1, z; (ix) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7B—H7···O19Bix0.90 (8)1.86 (8)2.738 (4)164 (8)
O8B—H8···O4Cix0.77 (6)1.90 (6)2.645 (5)161 (6)
O1W—H1B···O9B0.83 (3)2.50 (6)3.127 (6)133 (7)
O1W—H1A···O8W0.84 (3)2.10 (3)2.930 (9)170 (8)
O2W—H2A···O15B0.87 (3)1.88 (3)2.728 (6)166 (8)
O2W—H2B···O11Bv0.86 (3)2.23 (5)2.975 (6)145 (8)
O3W—H3A···O3Cvii0.84 (3)1.83 (3)2.673 (5)177 (10)
O3W—H3B···O7W0.83 (3)2.09 (5)2.875 (7)158 (8)
O4W—H4A···O13Bix0.83 (3)1.88 (3)2.680 (5)162 (7)
O4W—H4B···O14Bviii0.83 (3)2.10 (4)2.850 (5)151 (7)
O5W—H5A···O2Wvi0.87 (3)1.84 (3)2.710 (8)175 (8)
O5W—H5B···O24Tx0.84 (3)2.26 (5)2.972 (6)142 (7)
O6W—H6A···O5Cviii0.971.812.755 (5)163
O6W—H6B···O10Bvi0.972.042.755 (5)129
O7W—H7A···O7Bvii0.85 (3)2.07 (4)2.891 (5)163 (8)
O7W—H7B···O6Cvi0.84 (3)2.27 (6)2.885 (5)130 (6)
O8W—H8A···O5Wvi0.86 (3)1.98 (5)2.795 (7)159 (10)
O8W—H8B···O19Bii0.86 (3)2.22 (4)3.031 (6)156 (8)
Symmetry codes: (ii) x, y, z+1; (v) x+1, y+2, z+1; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x, y1, z; (ix) x, y+1, z; (x) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7B—H7···O19Bi0.90 (8)1.86 (8)2.738 (4)164 (8)
O8B—H8···O4Ci0.77 (6)1.90 (6)2.645 (5)161 (6)
O1W—H1B···O9B0.83 (3)2.50 (6)3.127 (6)133 (7)
O1W—H1A···O8W0.84 (3)2.10 (3)2.930 (9)170 (8)
O2W—H2A···O15B0.87 (3)1.88 (3)2.728 (6)166 (8)
O2W—H2B···O11Bii0.86 (3)2.23 (5)2.975 (6)145 (8)
O3W—H3A···O3Ciii0.84 (3)1.83 (3)2.673 (5)177 (10)
O3W—H3B···O7W0.83 (3)2.09 (5)2.875 (7)158 (8)
O4W—H4A···O13Bi0.83 (3)1.88 (3)2.680 (5)162 (7)
O4W—H4B···O14Biv0.83 (3)2.10 (4)2.850 (5)151 (7)
O5W—H5A···O2Wv0.87 (3)1.84 (3)2.710 (8)175 (8)
O5W—H5B···O24Tvi0.84 (3)2.26 (5)2.972 (6)142 (7)
O6W—H6A···O5Civ0.971.812.755 (5)162.7
O6W—H6B···O10Bv0.972.042.755 (5)129.0
O7W—H7A···O7Biii0.85 (3)2.07 (4)2.891 (5)163 (8)
O7W—H7B···O6Cv0.84 (3)2.27 (6)2.885 (5)130 (6)
O8W—H8A···O5Wv0.86 (3)1.98 (5)2.795 (7)159 (10)
O8W—H8B···O19Bvii0.86 (3)2.22 (4)3.031 (6)156 (8)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1, y+1, z+1; (vi) x+1, y+1, z; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaK5[H2PtV9O28]·9H2O
Mr1461.21
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.1663 (7), 12.8350 (7), 13.615 (2)
α, β, γ (°)103.734 (5), 106.193 (6), 92.480 (4)
V3)1645.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)7.42
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerStoe Stadi4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(X-SHAPE; Stoe & Cie,1996)
Tmin, Tmax0.301, 0.378
No. of measured, independent and
observed [I > 2σ(I)] reflections
6797, 6797, 6242
Rint0.0000
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.066, 1.10
No. of reflections6797
No. of parameters526
No. of restraints25
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.30, 1.46

Computer programs: STADI4 (Stoe & Cie, 1996), X-RED (Stoe & Cie, 1996), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801–m1802.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKonaka, S., Ozawa, Y., Shonaka, T., Watanabe, S. & Yagasaki, A. (2011). Inorg. Chem. 50, 6183–6188.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLee, U. (2006). Acta Cryst. E62, i176–i178.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U., Joo, H.-C., Park, K.-M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. Ed. 47, 793–796.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie Gmbh, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 647-649
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds