research communications
n-butylammonium) [N,N′-(4-trifluoromethyl-1,2-phenylene)bis(oxamato)-κ4O,N,N′,O′]nickelate(II)
of an unknown solvate of bis(tetra-aDepartment of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, BP 2701, Cameroon, and bTechnische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, 09107 Chemnitz, Germany
*Correspondence e-mail: mevae@daad-alumni.de
In the title compound, [N(C4H9)4]2[Ni(C11H3F3N2O6)] or [N(n-Bu)4]2[Ni(topbo)] [n-Bu = n-butyl and topbo = 4-trifluoromethyl-1,2-phenylenebis(oxamate)], the Ni2+ cation is coordinated by two deprotonated amido N atoms and two carboxylate O atoms, setting up a slightly distorted square-planar coordination environment. The [Ni(topbo]2− anion lies on a twofold rotation axis. Due to an incompatibility with the point-group symmetry of the complete molecule, orientational disorder of the CF3 group is observed. The tetrahedral ammonium cations and the anion are linked by weak intermolecular C—H⋯O and C—H⋯F hydrogen-bonding interactions into a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as plausible solvent molecule(s). The given chemical formula and other crystal data do not take into account the unknown solvent molecule.
Keywords: crystal structure; nickel(II); oxamate ligand; non-symmetric compound; disorder; SQUEEZE procedure.
CCDC reference: 1062184
1. Chemical context
Oxamate-bridged polymetallic complexes are of interest in the discipline of supramolecular magnetism as they exhibit diverse supramolecular architectures and magnetic properties (Pardo et al., 2008; Kahn, 1987, 2000) and have been synthesized by, for example, Ruiz et al. (1997a,b), Berg et al. (2002), Martín et al. (2002) and Ottenwaelder et al. (2005). Over the last decade, we have been interested in the synthesis of bis(oxamates) and bis(oxamate) complexes (Rüffer et al., 2007a,b, 2008, 2009; Eya'ane Meva et al., 2012), as well as their deposition as thin films (Bräuer et al., 2006, 2008, 2009). In order to optimize the deposition conditions and to increase the thin-film quality, the monometallic title compound, bis(tetra-n-butylammonium) [N,N′-(4-trifluoromethyl-1,2-phenylene)bis(oxamato)-κ4O,N,N′,O′]nickelate(II), (I), was prepared. The complex includes four sites of coordination and a CF3 group which provides a good solubility in organic solvents.
2. Structural commentary
The contains one [N(n-Bu)4]+ cation and half of the complex anion [Ni(topbo)]2– (Fig. 1). The anion possesses point-group symmetry 2. This imposes orientational disorder of the CF3 group, which lies on both sides of the twofold rotation axis with 0.5 occupancy. The anion is essentially planar (root-mean-square deviation 0.145 Å), the highest deviation from planarity being observed for C6 [0.440 (5) Å]. The Ni2+ cation is coordinated by two deprotonated amido N atoms and two carboxylate O atoms, resulting in a slightly distorted square-planar coordination geometry. In agreement with related nickel compounds, the Ni—N bonds are significantly shorter than the Ni—O bonds, which is due to the stronger donicity of the amido nitrogens (Fettouhi et al., 1996; Rüffer et al., 2007a,b, 2008; Abdulmalic et al., 2013; Milek et al., 2013). Compared to the respective nickel complex without the CF3 group (Abdulmalic et al., 2013), compound (I) exhibits longer Ni—N and Ni—O bonds. It is instructive to note that for other complexes, the presence of electron-withdrawing substituents at the benzene moiety, e.g. Cl, NO2, causes a shortening of the Ni—N and Ni—O bonds (Fettouhi et al., 1996; Rüffer et al., 2008).
of compound (I)3. Supramolecular features
Five weak C—H⋯O and one weak C—H⋯F hydrogen bonds (Steiner, 2002) are observed in the of (I) (Table 1), which connect the [N(n-Bu)4]+ cations and the [Ni(topbo)]2– anion, forming a three-dimensional network. A packing diagram is shown in Fig. 2.
4. Synthesis and crystallization
4-Trifluoromethyl-1,2-phenylenebis(ethyl oxamate) was prepared from ethyl oxalyl chloride and 4-trifluoromethyl-1,2-phenylenediamine in analogy to Cervera et al. (1998). To a solution of 4-trifluoromethyl-1,2-phenylenediamine (0.4 g, 2.22 mmol) dissolved in tetrahydrofuran (50 ml) was added dropwise via a dropping funnel a solution of ethyl oxalyl chloride (5.05 g, 4.45 mmol) in tetrahydrofuran (25 ml) within 20 min. The resulting mixture was refluxed for 30 min at 343 K, filtrated and concentrated to about one third on a rotary evaporator. The careful addition of water resulted in the precipitation of a brown solid which was filtered off and dried in air.
To a solution of 4-trifluoromethyl-1,2-phenylenebis(ethyl oxamate) (0.4 g, 1.06 mmol) in ethanol (40 ml) was added dropwise under stirring [N(n-Bu)4]OH (2.76 g, 4.25 mmol, 40 wt-% aqueous solution) in water (20 ml); the resulting mixture was refluxed for 30 min. After cooling to room temperature, an aqueous solution (20 ml) of NiCl2·6H2O (0.25 g, 1.05 mmol) was added dropwise under stirring. The yellow solution was filtered, concentrated to a volume of 20 ml on a rotatory evaporator, and extracted with dichloromethane (100 ml). The organic layer was separated, washed with water (3 x 25 ml) dried over Na2SO4 and concentrated to a volume of 10 ml. The title compound was precipitated by adding Et2O (100 ml). The yellow solid was filtered off, washed with Et2O and dried in air. Single crystals were obtained by the slow diffusion of Et2O into a of the title compound in CH2Cl2/thf (1:1).
The overall synthetic procedure is schematically shown in Fig. 3.
5. Refinement
Crystal data, data collection and structure . C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and 0.97 Å for methylene protons as well as Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl protons.
details are summarized in Table 2A small region of electron density at a distance of 1.6–3.7 Å from the trifluoromethyl group indicates the presence of a disordered solvent molecule. All attempts to model a disordered tetrahydrofuran, dichloromethane or diethyl ether molecule (solvents used for crystallization) failed. Therefore, the solvent contributions have been removed using the SQUEEZE procedure in PLATON (Spek, 2015). SQUEEZE calculated a void volume of approximately 310 Å3 occupied by 24 electrons per Fig. 2 shows the positions of the voids within the unit cell.
Supporting information
CCDC reference: 1062184
10.1107/S205698901500835X/wm5144sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S205698901500835X/wm5144Isup2.hkl
\ Oxamate-bridged polymetallic complexes are of interest in the discipline of supramolecular magnetism as they exhibit diverse supramolecular architectures and magnetic properties (Pardo et al., 2008; Kahn, 1987, 2000) and have been synthesized by, for example, Ruiz et al. (1997a,b), Berg et al. (2002), Martín et al. (2002) and Ottenwaelder et al. (2005). Over the last decade, we have been interested in the synthesis of bis(oxamates) and bis(oxamate) complexes (Rüffer et al., 2007a,b, 2008, 2009; Eya'ane Meva et al., 2012), as well as their deposition as thin films (Bräuer et al., 2006, 2008, 2009). In order to optimize the deposition conditions and to increase the thin-film quality, the monometallic title compound, bis(tetra-n-butylammonium) [N,N'-(4-trifluoromethyl-1,2-phenylene)bis(oxamato)-\ κ4O,N,N',O']nickelate(II), (I), was prepared. The complex includes four sites of coordination and a CF3 group which provides a good solubility in organic solvents.
The
of compound (I) contains one [N(n-Bu)4]+ cation and half of the complex anion [Ni(topbo)]2– (Fig. 1). The anion possesses point-group symmetry 2. This imposes orientational disorder of the CF3 group, which lies on both sides of the twofold rotation axis with 0.5 occupancy. The anion is essentially planar (root-mean-square deviation 0.145 Å), the highest deviation from planarity being observed for C6 [0.440 (5) Å]. The Ni2+ cation is coordinated by two deprotonated amido N atoms and two carboxylate O atoms, resulting in a slightly distorted square-planar coordination geometry. In agreement with related nickel compounds, the Ni—N bonds are significantly shorter than the Ni—O bonds, which is due to the stronger donicity of the amido nitrogens (Fettouhi et al., 1996; Rüffer et al., 2007a,b, 2008; Abdulmalic et al., 2013; Milek et al., 2013). Compared to the respective nickel complex without the CF3 group (Abdulmalic et al., 2013), compound (I) exhibits longer Ni—N and Ni—O bonds. It is instructive to note that for other complexes, the presence of electron-withdrawing substituents at the benzene moiety, e.g. Cl, NO2, causes a shortening of the Ni—N and Ni—O bonds (Fettouhi et al., 1996; Rüffer et al., 2008).Five weak C—H···O and one weak C—H···F hydrogen bonds (Steiner, 2002) are observed in the
of (I) (Table 1), which connect the [N(n-Bu)4]+ cations and the [Ni(topbo)]2– anion, forming a three-dimensional network (Fig. 2).4-Trifluoromethyl-1,2-phenylenebis(ethyl oxamate) was prepared from ethyl oxalyl chloride and 4-trifluoromethyl-1,2-phenylenediamine in analogy to Cervera et al. (1998). To a solution of 4-trifluoromethyl-1,2-phenylenediamine (0.4 g, 2.22 mmol) dissolved in tetrahydrofuran (50 ml) was added dropwise via a dropping funnel a solution of ethyl oxalyl chloride (5.05 g, 4.45 mmol) in tetrahydrofuran (25 ml) within 20 min. The resulting mixture was refluxed for 30 min at 343 K, filtrated and concentrated to about one third on a rotary evaporator. The careful addition of water resulted in the precipitation of a brown solid which was filtered off and dried in air.
To a solution of 4-trifluoromethyl-1,2-phenylenebis(ethyl oxamate) (0.4 g, 1.06 mmol) in ethanol (40 ml) was added dropwise under stirring [N(n-Bu)4]OH (2.76 g, 4.25 mmol, 40 wt-% aqueous solution) in water (20 ml); the resulting mixture was refluxed for 30 min. After cooling to room temperature, an aqueous solution (20 ml) of NiCl2·6H2O (0.25 g, 1.05 mmol) was added dropwise under stirring. The yellow solution was filtered, concentrated to a volume of 20 ml on a rotatory evaporator, and extracted with dichloromethane (100 ml). The organic layer was separated, washed with water (3 x 25 ml) dried over Na2SO4 and concentrated to a volume of 10 ml. The title compound was precipitated by adding Et2O (100 ml). The yellow solid was filtered off, washed with Et2O and dried in air. Single crystals were obtained by the slow diffusion of Et2O into a
of the title compound in CH2Cl2/thf (1:1).The overall synthetic procedure is schematically shown in Fig. 3.
Crystal data, data collection and structure
details are summarized in Table 2. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and 0.97 Å for methylene protons as well as Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl protons.A small region of electron density at a distance of 1.6–3.7 Å from the trifluoromethyl group indicates the presence of a disordered solvent molecule. All attempts to model a disordered tetrahydrofuran, dichloromethane or diethyl ether molecule (solvents used for crystallization) failed. Therefore, the solvent contributions have been removed using the SQUEEZE procedure in PLATON (Spek, 2015). SQUEEZE calculated a void volume of approximately 310 Å3 occupied by 24 electrons per
Fig. 2 shows the positions of the voids within the unit cell.Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and SQUEEZE (Spek, 2015).Fig. 1. The molecular components of (I) drawn with displacement ellipsoids at the 50% probability level. H atoms were omitted for clarity. Only one disordered part of the –CF3 group is shown. [Symmetry code: (A) -x + 2, y, -z + 3/2.] | |
Fig. 2. Packing diagram of compound (I), with voids in the structure represented by yellow spheres [drawn using the CAVITYPLOT routine in PLATON (Spek, 2009)]. H atoms are omitted for clarity. Color code: black (C), blue (N), red (O), green (F), purple (Ni). | |
Fig. 3. Scheme representing the synthesis of compound (I). |
(C16H36N)2[Ni(C11H3F3N2O6)] | F(000) = 1856 |
Mr = 859.78 | Dx = 1.193 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 19.5285 (3) Å | Cell parameters from 5954 reflections |
b = 17.3370 (3) Å | θ = 4.5–60.4° |
c = 14.1484 (3) Å | µ = 1.06 mm−1 |
β = 92.136 (2)° | T = 110 K |
V = 4786.83 (15) Å3 | Block, orange |
Z = 4 | 0.1 × 0.08 × 0.06 mm |
Oxford Gemini S diffractometer | Rint = 0.023 |
ω scans | θmax = 60.5°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | h = −21→21 |
Tmin = 0.807, Tmax = 1.000 | k = −19→19 |
15600 measured reflections | l = −15→15 |
3545 independent reflections | 2 standard reflections every 25 reflections |
3142 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0577P)2 + 2.8029P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
3545 reflections | Δρmax = 0.32 e Å−3 |
277 parameters | Δρmin = −0.20 e Å−3 |
(C16H36N)2[Ni(C11H3F3N2O6)] | V = 4786.83 (15) Å3 |
Mr = 859.78 | Z = 4 |
Monoclinic, C2/c | Cu Kα radiation |
a = 19.5285 (3) Å | µ = 1.06 mm−1 |
b = 17.3370 (3) Å | T = 110 K |
c = 14.1484 (3) Å | 0.1 × 0.08 × 0.06 mm |
β = 92.136 (2)° |
Oxford Gemini S diffractometer | 3142 reflections with I > 2σ(I) |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | Rint = 0.023 |
Tmin = 0.807, Tmax = 1.000 | θmax = 60.5° |
15600 measured reflections | 2 standard reflections every 25 reflections |
3545 independent reflections | intensity decay: none |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.32 e Å−3 |
3545 reflections | Δρmin = −0.20 e Å−3 |
277 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.88594 (10) | 0.35368 (11) | 0.65544 (14) | 0.0356 (5) | |
C2 | 0.88021 (10) | 0.44362 (12) | 0.65187 (14) | 0.0370 (5) | |
C3 | 0.96883 (10) | 0.25942 (11) | 0.72161 (15) | 0.0371 (4) | |
C4 | 0.94040 (11) | 0.18979 (12) | 0.69174 (16) | 0.0454 (5) | |
H4 | 0.9011 | 0.1893 | 0.6525 | 0.055* | |
C5 | 0.97086 (14) | 0.12088 (13) | 0.72067 (18) | 0.0566 (6) | |
H5 | 0.9519 | 0.0743 | 0.7004 | 0.068* | 0.5 |
C7 | 0.68930 (10) | 0.16654 (11) | 0.76809 (14) | 0.0363 (4) | |
H7A | 0.6668 | 0.2105 | 0.7958 | 0.044* | |
H7B | 0.6729 | 0.1207 | 0.7993 | 0.044* | |
C8 | 0.76537 (10) | 0.17349 (11) | 0.79037 (14) | 0.0386 (5) | |
H8A | 0.7821 | 0.2220 | 0.7661 | 0.046* | |
H8B | 0.7895 | 0.1319 | 0.7600 | 0.046* | |
C9 | 0.77901 (12) | 0.16984 (13) | 0.89696 (15) | 0.0466 (5) | |
H9A | 0.7528 | 0.2100 | 0.9267 | 0.056* | |
H9B | 0.7631 | 0.1206 | 0.9201 | 0.056* | |
C10 | 0.85411 (13) | 0.17956 (14) | 0.92587 (17) | 0.0567 (6) | |
H10A | 0.8596 | 0.1768 | 0.9935 | 0.085* | |
H10B | 0.8699 | 0.2288 | 0.9045 | 0.085* | |
H10C | 0.8803 | 0.1393 | 0.8979 | 0.085* | |
C11 | 0.68357 (10) | 0.23650 (11) | 0.61193 (14) | 0.0356 (4) | |
H11A | 0.7321 | 0.2469 | 0.6224 | 0.043* | |
H11B | 0.6756 | 0.2277 | 0.5447 | 0.043* | |
C12 | 0.64405 (11) | 0.30812 (11) | 0.63902 (16) | 0.0412 (5) | |
H12A | 0.6507 | 0.3180 | 0.7062 | 0.049* | |
H12B | 0.5955 | 0.3006 | 0.6252 | 0.049* | |
C13 | 0.67014 (11) | 0.37655 (12) | 0.58245 (17) | 0.0466 (5) | |
H13A | 0.7196 | 0.3798 | 0.5912 | 0.056* | |
H13B | 0.6596 | 0.3679 | 0.5157 | 0.056* | |
C14 | 0.63858 (16) | 0.45253 (15) | 0.6120 (2) | 0.0789 (9) | |
H14A | 0.6558 | 0.4935 | 0.5739 | 0.118* | |
H14B | 0.6503 | 0.4623 | 0.6774 | 0.118* | |
H14C | 0.5897 | 0.4498 | 0.6032 | 0.118* | |
C15 | 0.59008 (10) | 0.14707 (11) | 0.66235 (14) | 0.0358 (4) | |
H15A | 0.5822 | 0.1001 | 0.6975 | 0.043* | |
H15B | 0.5684 | 0.1889 | 0.6956 | 0.043* | |
C16 | 0.55475 (10) | 0.13920 (11) | 0.56594 (14) | 0.0378 (5) | |
H16A | 0.5698 | 0.0922 | 0.5358 | 0.045* | |
H16B | 0.5668 | 0.1825 | 0.5265 | 0.045* | |
C17 | 0.47760 (10) | 0.13688 (13) | 0.57613 (16) | 0.0445 (5) | |
H17A | 0.4669 | 0.0999 | 0.6248 | 0.053* | |
H17B | 0.4622 | 0.1872 | 0.5966 | 0.053* | |
C18 | 0.43874 (11) | 0.11520 (15) | 0.48520 (17) | 0.0532 (6) | |
H18A | 0.3905 | 0.1147 | 0.4958 | 0.080* | |
H18B | 0.4529 | 0.0649 | 0.4653 | 0.080* | |
H18C | 0.4483 | 0.1522 | 0.4370 | 0.080* | |
C19 | 0.70443 (10) | 0.09850 (10) | 0.61375 (14) | 0.0348 (4) | |
H19A | 0.6871 | 0.0961 | 0.5487 | 0.042* | |
H19B | 0.7526 | 0.1121 | 0.6128 | 0.042* | |
C20 | 0.69831 (11) | 0.01936 (11) | 0.65738 (15) | 0.0390 (5) | |
H20A | 0.6509 | 0.0027 | 0.6530 | 0.047* | |
H20B | 0.7124 | 0.0217 | 0.7238 | 0.047* | |
C21 | 0.74277 (12) | −0.03850 (12) | 0.60717 (17) | 0.0497 (6) | |
H21A | 0.7284 | −0.0410 | 0.5409 | 0.060* | |
H21B | 0.7901 | −0.0214 | 0.6111 | 0.060* | |
C22 | 0.73766 (14) | −0.11826 (13) | 0.65073 (17) | 0.0544 (6) | |
H22A | 0.7661 | −0.1535 | 0.6176 | 0.082* | |
H22B | 0.6909 | −0.1356 | 0.6461 | 0.082* | |
H22C | 0.7527 | −0.1161 | 0.7161 | 0.082* | |
N1 | 0.94347 (8) | 0.33319 (9) | 0.70205 (12) | 0.0356 (4) | |
N2 | 0.66664 (8) | 0.16218 (9) | 0.66403 (11) | 0.0338 (4) | |
O1 | 0.84134 (7) | 0.31211 (8) | 0.61726 (10) | 0.0410 (3) | |
O2 | 0.92921 (7) | 0.48170 (7) | 0.69564 (10) | 0.0391 (3) | |
O3 | 0.83119 (7) | 0.47330 (8) | 0.60942 (10) | 0.0445 (4) | |
C6 | 0.9520 (2) | 0.0478 (2) | 0.6727 (4) | 0.0499 (11) | 0.5 |
F1 | 0.88379 (14) | 0.04371 (15) | 0.6729 (3) | 0.0760 (9) | 0.5 |
F2 | 0.96828 (17) | 0.03869 (15) | 0.5806 (2) | 0.0698 (8) | 0.5 |
F3 | 0.97597 (13) | −0.01539 (13) | 0.7165 (2) | 0.0581 (7) | 0.5 |
Ni1 | 1.0000 | 0.41486 (2) | 0.7500 | 0.02432 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0395 (11) | 0.0420 (11) | 0.0257 (11) | 0.0005 (9) | 0.0080 (8) | 0.0002 (8) |
C2 | 0.0439 (11) | 0.0423 (11) | 0.0253 (11) | 0.0022 (9) | 0.0080 (9) | 0.0001 (9) |
C3 | 0.0452 (10) | 0.0352 (10) | 0.0312 (11) | 0.0002 (8) | 0.0084 (8) | 0.0005 (8) |
C4 | 0.0555 (13) | 0.0409 (12) | 0.0397 (13) | −0.0012 (9) | −0.0016 (10) | −0.0032 (9) |
C5 | 0.0773 (16) | 0.0352 (11) | 0.0563 (15) | −0.0023 (11) | −0.0124 (12) | −0.0044 (11) |
C7 | 0.0501 (11) | 0.0329 (10) | 0.0264 (11) | −0.0015 (8) | 0.0098 (9) | −0.0003 (8) |
C8 | 0.0516 (12) | 0.0328 (10) | 0.0318 (12) | −0.0029 (8) | 0.0068 (9) | −0.0016 (8) |
C9 | 0.0641 (14) | 0.0428 (12) | 0.0328 (13) | −0.0020 (10) | 0.0028 (10) | 0.0022 (9) |
C10 | 0.0729 (16) | 0.0570 (14) | 0.0396 (14) | −0.0056 (12) | −0.0062 (11) | 0.0000 (11) |
C11 | 0.0407 (10) | 0.0342 (10) | 0.0322 (12) | −0.0057 (8) | 0.0073 (8) | 0.0031 (8) |
C12 | 0.0496 (12) | 0.0362 (11) | 0.0384 (13) | −0.0024 (9) | 0.0106 (9) | 0.0017 (9) |
C13 | 0.0521 (12) | 0.0381 (11) | 0.0505 (14) | −0.0008 (9) | 0.0113 (10) | 0.0080 (10) |
C14 | 0.097 (2) | 0.0411 (14) | 0.101 (3) | 0.0092 (14) | 0.0333 (18) | 0.0174 (14) |
C15 | 0.0406 (11) | 0.0334 (10) | 0.0342 (12) | −0.0024 (8) | 0.0120 (8) | −0.0008 (8) |
C16 | 0.0434 (11) | 0.0360 (10) | 0.0348 (12) | −0.0025 (8) | 0.0108 (9) | −0.0011 (8) |
C17 | 0.0429 (11) | 0.0479 (12) | 0.0435 (13) | −0.0054 (9) | 0.0114 (9) | 0.0027 (10) |
C18 | 0.0421 (12) | 0.0666 (15) | 0.0510 (15) | −0.0062 (10) | 0.0040 (10) | 0.0046 (11) |
C19 | 0.0404 (10) | 0.0342 (10) | 0.0303 (11) | −0.0004 (8) | 0.0087 (8) | −0.0038 (8) |
C20 | 0.0500 (12) | 0.0366 (10) | 0.0309 (12) | −0.0019 (9) | 0.0079 (9) | −0.0030 (8) |
C21 | 0.0631 (14) | 0.0442 (12) | 0.0427 (14) | 0.0123 (10) | 0.0124 (11) | 0.0008 (10) |
C22 | 0.0783 (16) | 0.0412 (12) | 0.0437 (14) | 0.0138 (11) | 0.0028 (12) | −0.0010 (10) |
N1 | 0.0391 (9) | 0.0356 (9) | 0.0324 (10) | −0.0001 (7) | 0.0047 (7) | −0.0002 (7) |
N2 | 0.0427 (9) | 0.0326 (8) | 0.0266 (9) | −0.0030 (7) | 0.0096 (7) | −0.0009 (6) |
O1 | 0.0432 (8) | 0.0456 (8) | 0.0344 (8) | −0.0040 (6) | 0.0030 (6) | −0.0010 (6) |
O2 | 0.0435 (7) | 0.0365 (7) | 0.0376 (8) | 0.0027 (6) | 0.0048 (6) | −0.0005 (6) |
O3 | 0.0485 (8) | 0.0476 (8) | 0.0373 (9) | 0.0078 (7) | 0.0012 (7) | 0.0029 (6) |
C6 | 0.050 (3) | 0.037 (2) | 0.062 (3) | 0.0017 (19) | 0.004 (2) | −0.004 (2) |
F1 | 0.0477 (16) | 0.0465 (15) | 0.134 (3) | −0.0011 (12) | 0.0005 (16) | −0.0231 (17) |
F2 | 0.100 (2) | 0.0521 (16) | 0.0572 (19) | 0.0026 (15) | −0.0005 (16) | −0.0133 (14) |
F3 | 0.0630 (17) | 0.0351 (13) | 0.076 (2) | 0.0013 (11) | 0.0042 (12) | 0.0005 (12) |
Ni1 | 0.0293 (2) | 0.0226 (2) | 0.0215 (3) | 0.000 | 0.00539 (16) | 0.000 |
C1—O1 | 1.239 (2) | C14—H14B | 0.9600 |
C1—N1 | 1.330 (3) | C14—H14C | 0.9600 |
C1—C2 | 1.564 (3) | C15—C16 | 1.512 (3) |
C2—O3 | 1.224 (2) | C15—N2 | 1.517 (2) |
C2—O2 | 1.300 (2) | C15—H15A | 0.9700 |
C3—C4 | 1.388 (3) | C15—H15B | 0.9700 |
C3—N1 | 1.396 (2) | C16—C17 | 1.519 (3) |
C3—C3i | 1.433 (4) | C16—H16A | 0.9700 |
C4—C5 | 1.389 (3) | C16—H16B | 0.9700 |
C4—H4 | 0.9300 | C17—C18 | 1.516 (3) |
C5—C5i | 1.383 (5) | C17—H17A | 0.9700 |
C5—H5 | 0.9300 | C17—H17B | 0.9700 |
C7—C8 | 1.512 (3) | C18—H18A | 0.9600 |
C7—N2 | 1.523 (2) | C18—H18B | 0.9600 |
C7—H7A | 0.9700 | C18—H18C | 0.9600 |
C7—H7B | 0.9700 | C19—C20 | 1.511 (3) |
C8—C9 | 1.523 (3) | C19—N2 | 1.519 (2) |
C8—H8A | 0.9700 | C19—H19A | 0.9700 |
C8—H8B | 0.9700 | C19—H19B | 0.9700 |
C9—C10 | 1.517 (3) | C20—C21 | 1.520 (3) |
C9—H9A | 0.9700 | C20—H20A | 0.9700 |
C9—H9B | 0.9700 | C20—H20B | 0.9700 |
C10—H10A | 0.9600 | C21—C22 | 1.519 (3) |
C10—H10B | 0.9600 | C21—H21A | 0.9700 |
C10—H10C | 0.9600 | C21—H21B | 0.9700 |
C11—C12 | 1.519 (3) | C22—H22A | 0.9600 |
C11—N2 | 1.527 (2) | C22—H22B | 0.9600 |
C11—H11A | 0.9700 | C22—H22C | 0.9600 |
C11—H11B | 0.9700 | N1—Ni1 | 1.9047 (16) |
C12—C13 | 1.529 (3) | O2—Ni1 | 1.9407 (13) |
C12—H12A | 0.9700 | C6—F1 | 1.333 (5) |
C12—H12B | 0.9700 | C6—F3 | 1.335 (5) |
C13—C14 | 1.519 (3) | C6—F2 | 1.361 (6) |
C13—H13A | 0.9700 | F3—F3i | 1.308 (5) |
C13—H13B | 0.9700 | Ni1—N1i | 1.9047 (16) |
C14—H14A | 0.9600 | Ni1—O2i | 1.9408 (13) |
O1—C1—N1 | 128.92 (18) | C16—C15—H15B | 108.2 |
O1—C1—C2 | 121.17 (17) | N2—C15—H15B | 108.2 |
N1—C1—C2 | 109.91 (16) | H15A—C15—H15B | 107.3 |
O3—C2—O2 | 124.63 (18) | C15—C16—C17 | 109.73 (16) |
O3—C2—C1 | 119.25 (18) | C15—C16—H16A | 109.7 |
O2—C2—C1 | 116.12 (16) | C17—C16—H16A | 109.7 |
C4—C3—N1 | 127.00 (19) | C15—C16—H16B | 109.7 |
C4—C3—C3i | 119.50 (12) | C17—C16—H16B | 109.7 |
N1—C3—C3i | 113.51 (11) | H16A—C16—H16B | 108.2 |
C3—C4—C5 | 119.7 (2) | C18—C17—C16 | 113.12 (18) |
C3—C4—H4 | 120.1 | C18—C17—H17A | 109.0 |
C5—C4—H4 | 120.1 | C16—C17—H17A | 109.0 |
C5i—C5—C4 | 120.69 (13) | C18—C17—H17B | 109.0 |
C5i—C5—H5 | 119.7 | C16—C17—H17B | 109.0 |
C4—C5—H5 | 119.7 | H17A—C17—H17B | 107.8 |
C8—C7—N2 | 116.96 (15) | C17—C18—H18A | 109.5 |
C8—C7—H7A | 108.1 | C17—C18—H18B | 109.5 |
N2—C7—H7A | 108.1 | H18A—C18—H18B | 109.5 |
C8—C7—H7B | 108.1 | C17—C18—H18C | 109.5 |
N2—C7—H7B | 108.1 | H18A—C18—H18C | 109.5 |
H7A—C7—H7B | 107.3 | H18B—C18—H18C | 109.5 |
C7—C8—C9 | 109.72 (16) | C20—C19—N2 | 114.92 (16) |
C7—C8—H8A | 109.7 | C20—C19—H19A | 108.5 |
C9—C8—H8A | 109.7 | N2—C19—H19A | 108.5 |
C7—C8—H8B | 109.7 | C20—C19—H19B | 108.5 |
C9—C8—H8B | 109.7 | N2—C19—H19B | 108.5 |
H8A—C8—H8B | 108.2 | H19A—C19—H19B | 107.5 |
C10—C9—C8 | 113.21 (18) | C19—C20—C21 | 110.68 (17) |
C10—C9—H9A | 108.9 | C19—C20—H20A | 109.5 |
C8—C9—H9A | 108.9 | C21—C20—H20A | 109.5 |
C10—C9—H9B | 108.9 | C19—C20—H20B | 109.5 |
C8—C9—H9B | 108.9 | C21—C20—H20B | 109.5 |
H9A—C9—H9B | 107.8 | H20A—C20—H20B | 108.1 |
C9—C10—H10A | 109.5 | C22—C21—C20 | 111.33 (18) |
C9—C10—H10B | 109.5 | C22—C21—H21A | 109.4 |
H10A—C10—H10B | 109.5 | C20—C21—H21A | 109.4 |
C9—C10—H10C | 109.5 | C22—C21—H21B | 109.4 |
H10A—C10—H10C | 109.5 | C20—C21—H21B | 109.4 |
H10B—C10—H10C | 109.5 | H21A—C21—H21B | 108.0 |
C12—C11—N2 | 116.55 (16) | C21—C22—H22A | 109.5 |
C12—C11—H11A | 108.2 | C21—C22—H22B | 109.5 |
N2—C11—H11A | 108.2 | H22A—C22—H22B | 109.5 |
C12—C11—H11B | 108.2 | C21—C22—H22C | 109.5 |
N2—C11—H11B | 108.2 | H22A—C22—H22C | 109.5 |
H11A—C11—H11B | 107.3 | H22B—C22—H22C | 109.5 |
C11—C12—C13 | 108.66 (17) | C1—N1—C3 | 129.06 (17) |
C11—C12—H12A | 110.0 | C1—N1—Ni1 | 116.48 (13) |
C13—C12—H12A | 110.0 | C3—N1—Ni1 | 114.46 (13) |
C11—C12—H12B | 110.0 | C15—N2—C19 | 111.27 (14) |
C13—C12—H12B | 110.0 | C15—N2—C7 | 105.92 (14) |
H12A—C12—H12B | 108.3 | C19—N2—C7 | 111.10 (14) |
C14—C13—C12 | 112.47 (19) | C15—N2—C11 | 111.66 (14) |
C14—C13—H13A | 109.1 | C19—N2—C11 | 105.63 (14) |
C12—C13—H13A | 109.1 | C7—N2—C11 | 111.37 (14) |
C14—C13—H13B | 109.1 | C2—O2—Ni1 | 112.72 (12) |
C12—C13—H13B | 109.1 | F1—C6—F3 | 106.8 (4) |
H13A—C13—H13B | 107.8 | F1—C6—F2 | 105.4 (4) |
C13—C14—H14A | 109.5 | F3—C6—F2 | 105.0 (4) |
C13—C14—H14B | 109.5 | F3i—F3—C6 | 124.5 (2) |
H14A—C14—H14B | 109.5 | N1i—Ni1—N1 | 83.96 (9) |
C13—C14—H14C | 109.5 | N1i—Ni1—O2 | 168.49 (6) |
H14A—C14—H14C | 109.5 | N1—Ni1—O2 | 84.71 (6) |
H14B—C14—H14C | 109.5 | N1i—Ni1—O2i | 84.72 (6) |
C16—C15—N2 | 116.49 (15) | N1—Ni1—O2i | 168.49 (6) |
C16—C15—H15A | 108.2 | O2—Ni1—O2i | 106.67 (8) |
N2—C15—H15A | 108.2 | ||
O1—C1—C2—O3 | −1.0 (3) | C3i—C3—N1—C1 | −176.8 (2) |
N1—C1—C2—O3 | 178.08 (18) | C4—C3—N1—Ni1 | −176.64 (18) |
O1—C1—C2—O2 | 178.84 (17) | C3i—C3—N1—Ni1 | 3.0 (3) |
N1—C1—C2—O2 | −2.0 (2) | C16—C15—N2—C19 | −58.4 (2) |
N1—C3—C4—C5 | −177.5 (2) | C16—C15—N2—C7 | −179.28 (16) |
C3i—C3—C4—C5 | 2.9 (4) | C16—C15—N2—C11 | 59.3 (2) |
C3—C4—C5—C5i | 0.3 (5) | C20—C19—N2—C15 | −62.1 (2) |
N2—C7—C8—C9 | −174.95 (15) | C20—C19—N2—C7 | 55.7 (2) |
C7—C8—C9—C10 | −177.74 (18) | C20—C19—N2—C11 | 176.60 (16) |
N2—C11—C12—C13 | 177.74 (17) | C8—C7—N2—C15 | 174.15 (16) |
C11—C12—C13—C14 | −174.2 (2) | C8—C7—N2—C19 | 53.2 (2) |
N2—C15—C16—C17 | −171.21 (16) | C8—C7—N2—C11 | −64.3 (2) |
C15—C16—C17—C18 | −169.98 (18) | C12—C11—N2—C15 | 50.4 (2) |
N2—C19—C20—C21 | −175.07 (17) | C12—C11—N2—C19 | 171.52 (17) |
C19—C20—C21—C22 | 179.53 (19) | C12—C11—N2—C7 | −67.8 (2) |
O1—C1—N1—C3 | −0.8 (3) | O3—C2—O2—Ni1 | −177.48 (16) |
C2—C1—N1—C3 | −179.87 (18) | C1—C2—O2—Ni1 | 2.7 (2) |
O1—C1—N1—Ni1 | 179.39 (16) | F1—C6—F3—F3i | −131.6 (5) |
C2—C1—N1—Ni1 | 0.4 (2) | F2—C6—F3—F3i | 116.8 (5) |
C4—C3—N1—C1 | 3.6 (3) |
Symmetry code: (i) −x+2, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···O1 | 0.97 | 2.42 | 3.347 (2) | 160 |
C11—H11B···O1ii | 0.97 | 2.40 | 3.368 (2) | 172 |
C15—H15A···O2iii | 0.97 | 2.56 | 3.529 (2) | 174 |
C17—H17A···O2iv | 0.97 | 2.41 | 3.333 (3) | 159 |
C19—H19A···O3ii | 0.97 | 2.55 | 3.441 (2) | 152 |
C21—H21B···F1 | 0.97 | 2.29 | 3.208 (4) | 156 |
Symmetry codes: (ii) −x+3/2, −y+1/2, −z+1; (iii) −x+3/2, y−1/2, −z+3/2; (iv) x−1/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···O1 | 0.97 | 2.42 | 3.347 (2) | 160 |
C11—H11B···O1i | 0.97 | 2.40 | 3.368 (2) | 172 |
C15—H15A···O2ii | 0.97 | 2.56 | 3.529 (2) | 174 |
C17—H17A···O2iii | 0.97 | 2.41 | 3.333 (3) | 159 |
C19—H19A···O3i | 0.97 | 2.55 | 3.441 (2) | 152 |
C21—H21B···F1 | 0.97 | 2.29 | 3.208 (4) | 156 |
Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) −x+3/2, y−1/2, −z+3/2; (iii) x−1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | (C16H36N)2[Ni(C11H3F3N2O6)] |
Mr | 859.78 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 110 |
a, b, c (Å) | 19.5285 (3), 17.3370 (3), 14.1484 (3) |
β (°) | 92.136 (2) |
V (Å3) | 4786.83 (15) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.06 |
Crystal size (mm) | 0.1 × 0.08 × 0.06 |
Data collection | |
Diffractometer | Oxford Gemini S diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.807, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15600, 3545, 3142 |
Rint | 0.023 |
θmax (°) | 60.5 |
(sin θ/λ)max (Å−1) | 0.564 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.102, 1.09 |
No. of reflections | 3545 |
No. of parameters | 277 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.20 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXT (Sheldrick, 2015a), SHELXL2013 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and SQUEEZE (Spek, 2015).
Acknowledgements
FEM is grateful to the DAAD for a PhD research fellowship and the DFG research unit `Towards Molecular Spintronics' FOR 1154 for providing fellowships. The authors express their sincere thanks to the Centre for International Migration and Development (CIM), Word University Service (WUS), and the Faculty of Medicine and Pharmaceutical Sciences of the University of Douala for financial support.
References
Abdulmalic, M. A., Aliabadi, A., Petr, A., Kataev, V. & Rüffer, T. (2013). Dalton Trans. 42, 1798–1809. Web of Science CSD CrossRef CAS PubMed Google Scholar
Berg, K. E., Pellegrin, Y., Blondin, G., Ottenwaelder, X., Journaux, Y., Canovas, M. M., Mallah, T., Parsons, S. & Aukauloo, A. (2002). Eur. J. Inorg. Chem. pp. 323–325. CSD CrossRef Google Scholar
Bräuer, B., Grobosch, M., Knupfer, M., Weigend, F., Vaynzof, Y., Kahn, A., Rüffer, T. & Salvan, G. (2009). J. Phys. Chem. B, 113, 10051–10054. Web of Science PubMed Google Scholar
Bräuer, B., Weigend, F., Totti, F., Zahn, D. R. T., Rüffer, T. & Salvan, G. (2008). J. Phys. Chem. B, 112, 5585–5593. Web of Science PubMed Google Scholar
Bräuer, B., Zahn, D. R. T., Rüffer, T. & Salvan, G. (2006). Chem. Phys. Lett. 432, 226–229. Google Scholar
Cervera, B., Sanz, J. L., Ibáñez, M. J., Vila, G., Lloret, F., Julve, M., Ruiz, R., Ottenwaelder, X., Aukauloo, A., Poussereau, S., Journaux, Y. & Muñoz, C. M. (1998). J. Chem. Soc. Dalton Trans. pp. 781–790. Web of Science CSD CrossRef Google Scholar
Eya'ane Meva, F., Schaarschmidt, D., Abdulmalic, M. A. & Rüffer, T. (2012). Acta Cryst. E68, o3460–o3461. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fettouhi, M., Ouahab, L., Boukhari, A., Cador, O., Mathonière, C. & Kahn, O. (1996). Inorg. Chem. 35, 4932–4937. CSD CrossRef PubMed CAS Web of Science Google Scholar
Kahn, O. (1987). Magnetism of the heteropolymetallic systems, in Theoretical Approaches – Structure and Bonding, Vol. 68, pp. 89–167. Berlin-Heidelberg: Springer. Google Scholar
Kahn, O. (2000). Acc. Chem. Res. 33, 647–657. Web of Science CrossRef PubMed CAS Google Scholar
Martín, S., Beitia, J. I., Ugalde, M., Vitoria, P. & Cortés, R. (2002). Acta Cryst. E58, o913–o915. Web of Science CSD CrossRef IUCr Journals Google Scholar
Milek, M., Witt, A., Streb, C., Heinemann, F. W. & Khusniyarov, M. M. (2013). Dalton Trans. 42, 5237–5241. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ottenwaelder, X., Aukauloo, A., Journaux, Y., Carrasco, R., Cano, J., Cervera, B., Castro, I., Curreli, S., Muñoz, M. C., Roselló, A. L., Soto, B. & Ruiz-García, R. (2005). Dalton Trans. pp. 2516–2526. Web of Science CSD CrossRef Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Pardo, E., Ruiz-García, R., Cano, J., Ottenwaelder, X., Lescouëzec, R., Journaux, Y., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 2780–2805. Web of Science CrossRef Google Scholar
Rüffer, T., Bräuer, B., Eya'ane Meva, F. & Sorace, L. (2009). Inorg. Chim. Acta, 362, 563–569. Google Scholar
Rüffer, T., Bräuer, B., Eya'ane Meva, F., Walfort, B., Salvan, G., Powell, A. K., Hewitt, I. J., Sorace, L. & Caneschi, A. (2007b). Inorg. Chim. Acta, 360, 3777–3784. Google Scholar
Rüffer, T., Bräuer, B., Eya'ane Meva, F. & Walfort, B. (2008). Dalton Trans. pp. 5089–5098. Google Scholar
Rüffer, T., Bräuer, B., Powell, A. K., Hewitt, I. & Salvan, G. (2007a). Inorg. Chim. Acta, 360, 3475–3483. Google Scholar
Ruiz, R., Surville-Barland, C., Aukauloo, A., Anxolabehere-Mallart, E., Journaux, Y., Cano, J. & Muñoz, M. C. (1997a). J. Chem. Soc. Dalton Trans. pp. 745–752. CSD CrossRef Web of Science Google Scholar
Ruiz, R., Triannidis, M., Aukauloo, A., Journaux, Y., Fernández, I., Pedro, J. R., Cervera, B., Castro, I. & Muñoz, M. C. (1997b). Chem. Commun. pp. 2283–2284. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.