research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 578-581

Crystal structure of an unknown solvate of bis­­(tetra-n-butyl­ammonium) [N,N′-(4-tri­fluoro­methyl-1,2-phenyl­ene)bis­­(oxamato)-κ4O,N,N′,O′]nickelate(II)

aDepartment of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, BP 2701, Cameroon, and bTechnische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, 09107 Chemnitz, Germany
*Correspondence e-mail: mevae@daad-alumni.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 March 2015; accepted 28 April 2015; online 7 May 2015)

In the title compound, [N(C4H9)4]2[Ni(C11H3F3N2O6)] or [N(n-Bu)4]2[Ni(topbo)] [n-Bu = n-butyl and topbo = 4-tri­fluoro­methyl-1,2-phenyl­enebis(oxamate)], the Ni2+ cation is coordinated by two deprotonated amido N atoms and two carboxyl­ate O atoms, setting up a slightly distorted square-planar coordination environment. The [Ni(topbo]2− anion lies on a twofold rotation axis. Due to an incompatibility with the point-group symmetry of the complete mol­ecule, orientational disorder of the CF3 group is observed. The tetra­hedral ammonium cations and the anion are linked by weak inter­molecular C—H⋯O and C—H⋯F hydrogen-bonding inter­actions into a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as plausible solvent mol­ecule(s). The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule.

1. Chemical context

Oxamate-bridged polymetallic complexes are of inter­est in the discipline of supra­molecular magnetism as they exhibit diverse supra­molecular architectures and magnetic properties (Pardo et al., 2008[Pardo, E., Ruiz-García, R., Cano, J., Ottenwaelder, X., Lescouëzec, R., Journaux, Y., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 2780-2805.]; Kahn, 1987[Kahn, O. (1987). Magnetism of the heteropolymetallic systems, in Theoretical Approaches - Structure and Bonding, Vol. 68, pp. 89-167. Berlin-Heidelberg: Springer.], 2000[Kahn, O. (2000). Acc. Chem. Res. 33, 647-657.]) and have been synthesized by, for example, Ruiz et al. (1997a[Ruiz, R., Surville-Barland, C., Aukauloo, A., Anxolabehere-Mallart, E., Journaux, Y., Cano, J. & Muñoz, M. C. (1997a). J. Chem. Soc. Dalton Trans. pp. 745-752.],b[Ruiz, R., Triannidis, M., Aukauloo, A., Journaux, Y., Fernández, I., Pedro, J. R., Cervera, B., Castro, I. & Muñoz, M. C. (1997b). Chem. Commun. pp. 2283-2284.]), Berg et al. (2002[Berg, K. E., Pellegrin, Y., Blondin, G., Ottenwaelder, X., Journaux, Y., Canovas, M. M., Mallah, T., Parsons, S. & Aukauloo, A. (2002). Eur. J. Inorg. Chem. pp. 323-325.]), Martín et al. (2002[Martín, S., Beitia, J. I., Ugalde, M., Vitoria, P. & Cortés, R. (2002). Acta Cryst. E58, o913-o915.]) and Ottenwaelder et al. (2005[Ottenwaelder, X., Aukauloo, A., Journaux, Y., Carrasco, R., Cano, J., Cervera, B., Castro, I., Curreli, S., Muñoz, M. C., Roselló, A. L., Soto, B. & Ruiz-García, R. (2005). Dalton Trans. pp. 2516-2526.]). Over the last decade, we have been inter­ested in the synthesis of bis­(oxamates) and bis­(oxamate) complexes (Rüffer et al., 2007a[Rüffer, T., Bräuer, B., Powell, A. K., Hewitt, I. & Salvan, G. (2007a). Inorg. Chim. Acta, 360, 3475-3483.],b[Rüffer, T., Bräuer, B., Eya'ane Meva, F., Walfort, B., Salvan, G., Powell, A. K., Hewitt, I. J., Sorace, L. & Caneschi, A. (2007b). Inorg. Chim. Acta, 360, 3777-3784.], 2008[Rüffer, T., Bräuer, B., Eya'ane Meva, F. & Walfort, B. (2008). Dalton Trans. pp. 5089-5098.], 2009[Rüffer, T., Bräuer, B., Eya'ane Meva, F. & Sorace, L. (2009). Inorg. Chim. Acta, 362, 563-569.]; Eya'ane Meva et al., 2012[Eya'ane Meva, F., Schaarschmidt, D., Abdulmalic, M. A. & Rüffer, T. (2012). Acta Cryst. E68, o3460-o3461.]), as well as their deposition as thin films (Bräuer et al., 2006[Bräuer, B., Zahn, D. R. T., Rüffer, T. & Salvan, G. (2006). Chem. Phys. Lett. 432, 226-229.], 2008[Bräuer, B., Weigend, F., Totti, F., Zahn, D. R. T., Rüffer, T. & Salvan, G. (2008). J. Phys. Chem. B, 112, 5585-5593.], 2009[Bräuer, B., Grobosch, M., Knupfer, M., Weigend, F., Vaynzof, Y., Kahn, A., Rüffer, T. & Salvan, G. (2009). J. Phys. Chem. B, 113, 10051-10054.]). In order to optimize the deposition conditions and to increase the thin-film quality, the monometallic title compound, bis­(tetra-n-butyl­ammonium) [N,N′-(4-tri­fluoro­methyl-1,2-phenyl­ene)bis­(oxa­mato)-κ4O,N,N′,O′]nickelate(II), (I)[link], was prepared. The complex includes four sites of coordination and a CF3 group which provides a good solubility in organic solvents.

[Scheme 1]

2. Structural commentary

The asymmetric unit of compound (I)[link] contains one [N(n-Bu)4]+ cation and half of the complex anion [Ni(topbo)]2– (Fig. 1[link]). The anion possesses point-group symmetry 2. This imposes orientational disorder of the CF3 group, which lies on both sides of the twofold rotation axis with 0.5 occupancy. The anion is essentially planar (root-mean-square deviation 0.145 Å), the highest deviation from planarity being observed for C6 [0.440 (5) Å]. The Ni2+ cation is coordinated by two deprotonated amido N atoms and two carboxyl­ate O atoms, resulting in a slightly distorted square-planar coordination geometry. In agreement with related nickel compounds, the Ni—N bonds are significantly shorter than the Ni—O bonds, which is due to the stronger donicity of the amido nitro­gens (Fettouhi et al., 1996[Fettouhi, M., Ouahab, L., Boukhari, A., Cador, O., Mathonière, C. & Kahn, O. (1996). Inorg. Chem. 35, 4932-4937.]; Rüffer et al., 2007a[Rüffer, T., Bräuer, B., Powell, A. K., Hewitt, I. & Salvan, G. (2007a). Inorg. Chim. Acta, 360, 3475-3483.],b[Rüffer, T., Bräuer, B., Eya'ane Meva, F., Walfort, B., Salvan, G., Powell, A. K., Hewitt, I. J., Sorace, L. & Caneschi, A. (2007b). Inorg. Chim. Acta, 360, 3777-3784.], 2008[Rüffer, T., Bräuer, B., Eya'ane Meva, F. & Walfort, B. (2008). Dalton Trans. pp. 5089-5098.]; Abdulmalic et al., 2013[Abdulmalic, M. A., Aliabadi, A., Petr, A., Kataev, V. & Rüffer, T. (2013). Dalton Trans. 42, 1798-1809.]; Milek et al., 2013[Milek, M., Witt, A., Streb, C., Heinemann, F. W. & Khusniyarov, M. M. (2013). Dalton Trans. 42, 5237-5241.]). Compared to the respective nickel complex without the CF3 group (Abdulmalic et al., 2013[Abdulmalic, M. A., Aliabadi, A., Petr, A., Kataev, V. & Rüffer, T. (2013). Dalton Trans. 42, 1798-1809.]), compound (I)[link] exhibits longer Ni—N and Ni—O bonds. It is instructive to note that for other complexes, the presence of electron-withdrawing substituents at the benzene moiety, e.g. Cl, NO2, causes a shortening of the Ni—N and Ni—O bonds (Fettouhi et al., 1996[Fettouhi, M., Ouahab, L., Boukhari, A., Cador, O., Mathonière, C. & Kahn, O. (1996). Inorg. Chem. 35, 4932-4937.]; Rüffer et al., 2008[Rüffer, T., Bräuer, B., Eya'ane Meva, F. & Walfort, B. (2008). Dalton Trans. pp. 5089-5098.]).

[Figure 1]
Figure 1
The mol­ecular components of (I)[link] drawn with displacement ellipsoids at the 50% probability level. H atoms were omitted for clarity. Only one disordered part of the –CF3 group is shown. [Symmetry code: (A) −x + 2, y, −z + [{3\over 2}].]

3. Supra­molecular features

Five weak C—H⋯O and one weak C—H⋯F hydrogen bonds (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]) are observed in the crystal structure of (I)[link] (Table 1[link]), which connect the [N(n-Bu)4]+ cations and the [Ni(topbo)]2– anion, forming a three-dimensional network. A packing diagram is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1 0.97 2.42 3.347 (2) 160
C11—H11B⋯O1i 0.97 2.40 3.368 (2) 172
C15—H15A⋯O2ii 0.97 2.56 3.529 (2) 174
C17—H17A⋯O2iii 0.97 2.41 3.333 (3) 159
C19—H19A⋯O3i 0.97 2.55 3.441 (2) 152
C21—H21B⋯F1 0.97 2.29 3.208 (4) 156
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Packing diagram of compound (I)[link], with voids in the structure represented by yellow spheres [drawn using the CAVITYPLOT routine in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])]. H atoms are omitted for clarity. Color code: black (C), blue (N), red (O), green (F), purple (Ni).

4. Synthesis and crystallization

4-Tri­fluoro­methyl-1,2-phenyl­enebis(ethyl oxamate) was prepared from ethyl oxalyl chloride and 4-tri­fluoro­methyl-1,2-phenyl­enedi­amine in analogy to Cervera et al. (1998[Cervera, B., Sanz, J. L., Ibáñez, M. J., Vila, G., Lloret, F., Julve, M., Ruiz, R., Ottenwaelder, X., Aukauloo, A., Poussereau, S., Journaux, Y. & Muñoz, C. M. (1998). J. Chem. Soc. Dalton Trans. pp. 781-790.]). To a solution of 4-tri­fluoro­methyl-1,2-phenyl­enedi­amine (0.4 g, 2.22 mmol) dissolved in tetra­hydro­furan (50 ml) was added dropwise via a dropping funnel a solution of ethyl oxalyl chloride (5.05 g, 4.45 mmol) in tetra­hydro­furan (25 ml) within 20 min. The resulting mixture was refluxed for 30 min at 343 K, filtrated and concentrated to about one third on a rotary evaporator. The careful addition of water resulted in the precipitation of a brown solid which was filtered off and dried in air.

To a solution of 4-tri­fluoro­methyl-1,2-phenyl­enebis(ethyl oxamate) (0.4 g, 1.06 mmol) in ethanol (40 ml) was added dropwise under stirring [N(n-Bu)4]OH (2.76 g, 4.25 mmol, 40 wt-% aqueous solution) in water (20 ml); the resulting mixture was refluxed for 30 min. After cooling to room temperature, an aqueous solution (20 ml) of NiCl2·6H2O (0.25 g, 1.05 mmol) was added dropwise under stirring. The yellow solution was filtered, concentrated to a volume of 20 ml on a rotatory evaporator, and extracted with di­chloro­methane (100 ml). The organic layer was separated, washed with water (3 x 25 ml) dried over Na2SO4 and concentrated to a volume of 10 ml. The title compound was precipitated by adding Et2O (100 ml). The yellow solid was filtered off, washed with Et2O and dried in air. Single crystals were obtained by the slow diffusion of Et2O into a saturated solution of the title compound in CH2Cl2/thf (1:1).

The overall synthetic procedure is schematically shown in Fig. 3[link].

[Figure 3]
Figure 3
Scheme representing the synthesis of compound (I)[link].

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and 0.97 Å for methyl­ene protons as well as Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl protons.

Table 2
Experimental details

Crystal data
Chemical formula (C16H36N)2[Ni(C11H3F3N2O6)]
Mr 859.78
Crystal system, space group Monoclinic, C2/c
Temperature (K) 110
a, b, c (Å) 19.5285 (3), 17.3370 (3), 14.1484 (3)
β (°) 92.136 (2)
V3) 4786.83 (15)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.06
Crystal size (mm) 0.10 × 0.08 × 0.06
 
Data collection
Diffractometer Oxford Gemini S
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.807, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15600, 3545, 3142
Rint 0.023
θmax (°) 60.5
(sin θ/λ)max−1) 0.564
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.09
No. of reflections 3545
No. of parameters 277
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.20
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

A small region of electron density at a distance of 1.6–3.7 Å from the tri­fluoro­methyl group indicates the presence of a disordered solvent mol­ecule. All attempts to model a disordered tetra­hydro­furan, di­chloro­methane or diethyl ether mol­ecule (solvents used for crystallization) failed. Therefore, the solvent contributions have been removed using the SQUEEZE procedure in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). SQUEEZE calculated a void volume of approximately 310 Å3 occupied by 24 electrons per unit cell. Fig. 2[link] shows the positions of the voids within the unit cell.

Supporting information


Chemical context top

\ Oxamate-bridged polymetallic complexes are of inter­est in the discipline of supra­molecular magnetism as they exhibit diverse supra­molecular architectures and magnetic properties (Pardo et al., 2008; Kahn, 1987, 2000) and have been synthesized by, for example, Ruiz et al. (1997a,b), Berg et al. (2002), Martín et al. (2002) and Ottenwaelder et al. (2005). Over the last decade, we have been inter­ested in the synthesis of bis­(oxamates) and bis­(oxamate) complexes (Rüffer et al., 2007a,b, 2008, 2009; Eya'ane Meva et al., 2012), as well as their deposition as thin films (Bräuer et al., 2006, 2008, 2009). In order to optimize the deposition conditions and to increase the thin-film quality, the monometallic title compound, bis­(tetra-n-butyl­ammonium) [N,N'-(4-tri­fluoro­methyl-1,2-phenyl­ene)bis­(oxamato)-\ κ4O,N,N',O']nickelate(II), (I), was prepared. The complex includes four sites of coordination and a CF3 group which provides a good solubility in organic solvents.

Structural commentary top

The asymmetric unit of compound (I) contains one [N(n-Bu)4]+ cation and half of the complex anion [Ni(topbo)]2– (Fig. 1). The anion possesses point-group symmetry 2. This imposes orientational disorder of the CF3 group, which lies on both sides of the twofold rotation axis with 0.5 occupancy. The anion is essentially planar (root-mean-square deviation 0.145 Å), the highest deviation from planarity being observed for C6 [0.440 (5) Å]. The Ni2+ cation is coordinated by two deprotonated amido N atoms and two carboxyl­ate O atoms, resulting in a slightly distorted square-planar coordination geometry. In agreement with related nickel compounds, the Ni—N bonds are significantly shorter than the Ni—O bonds, which is due to the stronger donicity of the amido nitro­gens (Fettouhi et al., 1996; Rüffer et al., 2007a,b, 2008; Abdulmalic et al., 2013; Milek et al., 2013). Compared to the respective nickel complex without the CF3 group (Abdulmalic et al., 2013), compound (I) exhibits longer Ni—N and Ni—O bonds. It is instructive to note that for other complexes, the presence of electron-withdrawing substituents at the benzene moiety, e.g. Cl, NO2, causes a shortening of the Ni—N and Ni—O bonds (Fettouhi et al., 1996; Rüffer et al., 2008).

Supra­molecular features top

Five weak C—H···O and one weak C—H···F hydrogen bonds (Steiner, 2002) are observed in the crystal structure of (I) (Table 1), which connect the [N(n-Bu)4]+ cations and the [Ni(topbo)]2– anion, forming a three-dimensional network (Fig. 2).

Synthesis and crystallization top

4-Tri­fluoro­methyl-1,2-phenyl­enebis(ethyl oxamate) was prepared from ethyl oxalyl chloride and 4-tri­fluoro­methyl-1,2-phenyl­enedi­amine in analogy to Cervera et al. (1998). To a solution of 4-tri­fluoro­methyl-1,2-phenyl­enedi­amine (0.4 g, 2.22 mmol) dissolved in tetra­hydro­furan (50 ml) was added dropwise via a dropping funnel a solution of ethyl oxalyl chloride (5.05 g, 4.45 mmol) in tetra­hydro­furan (25 ml) within 20 min. The resulting mixture was refluxed for 30 min at 343 K, filtrated and concentrated to about one third on a rotary evaporator. The careful addition of water resulted in the precipitation of a brown solid which was filtered off and dried in air.

To a solution of 4-tri­fluoro­methyl-1,2-phenyl­enebis(ethyl oxamate) (0.4 g, 1.06 mmol) in ethanol (40 ml) was added dropwise under stirring [N(n-Bu)4]OH (2.76 g, 4.25 mmol, 40 wt-% aqueous solution) in water (20 ml); the resulting mixture was refluxed for 30 min. After cooling to room temperature, an aqueous solution (20 ml) of NiCl2·6H2O (0.25 g, 1.05 mmol) was added dropwise under stirring. The yellow solution was filtered, concentrated to a volume of 20 ml on a rotatory evaporator, and extracted with di­chloro­methane (100 ml). The organic layer was separated, washed with water (3 x 25 ml) dried over Na2SO4 and concentrated to a volume of 10 ml. The title compound was precipitated by adding Et2O (100 ml). The yellow solid was filtered off, washed with Et2O and dried in air. Single crystals were obtained by the slow diffusion of Et2O into a saturated solution of the title compound in CH2Cl2/thf (1:1).

The overall synthetic procedure is schematically shown in Fig. 3.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and 0.97 Å for methyl­ene protons as well as Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl protons.

A small region of electron density at a distance of 1.6–3.7 Å from the tri­fluoro­methyl group indicates the presence of a disordered solvent molecule. All attempts to model a disordered tetra­hydro­furan, di­chloro­methane or di­ethyl ether molecule (solvents used for crystallization) failed. Therefore, the solvent contributions have been removed using the SQUEEZE procedure in PLATON (Spek, 2015). SQUEEZE calculated a void volume of approximately 310 Å3 occupied by 24 electrons per unit cell. Fig. 2 shows the positions of the voids within the unit cell.

Related literature top

For related literature, see: Abdulmalic et al. (2013pp); Berg et al. (2002pp); Bräuer et al. (2006pp, 2008p, 2009p); Cervera et al. (1998pp); Eya'ane Meva, Schaarschmidt, Abdulmalic & Rüffer (2012); Fettouhi et al. (1996pp); Kahn (1987pxpx, 2000p); Martín et al. (2002); Milek et al. (2013pp); Ottenwaelder et al. (2005pp); Pardo et al. (2008pp); Rüffer et al. (2008pp, 2009p); Rüffer, Bräuer, Eya'ane Meva, Walfort, Salvan, Powell, Hewitt, Sorace & Caneschi (2007); Rüffer, Bräuer, Powell, Hewitt & Salvan (2007); Ruiz, Surville-Barland, Aukauloo, Anxolabehere-Mallart, Journaux, Cano & Muñoz (1997); Ruiz, Triannidis, Aukauloo, Journaux, Fernández, Pedro, Cervera, Castro & Muñoz (1997); Spek (2009); Steiner (2002pp).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and SQUEEZE (Spek, 2015).

Figures top
[Figure 1] Fig. 1. The molecular components of (I) drawn with displacement ellipsoids at the 50% probability level. H atoms were omitted for clarity. Only one disordered part of the –CF3 group is shown. [Symmetry code: (A) -x + 2, y, -z + 3/2.]
[Figure 2] Fig. 2. Packing diagram of compound (I), with voids in the structure represented by yellow spheres [drawn using the CAVITYPLOT routine in PLATON (Spek, 2009)]. H atoms are omitted for clarity. Color code: black (C), blue (N), red (O), green (F), purple (Ni).
[Figure 3] Fig. 3. Scheme representing the synthesis of compound (I).
Bis(tetra-n-butylammonium) [N,N'-(4-trifluoromethyl-1,2-phenylene)bis(oxamato)-κ4O,N,N',O']nickelate(II) top
Crystal data top
(C16H36N)2[Ni(C11H3F3N2O6)]F(000) = 1856
Mr = 859.78Dx = 1.193 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 19.5285 (3) ÅCell parameters from 5954 reflections
b = 17.3370 (3) Åθ = 4.5–60.4°
c = 14.1484 (3) ŵ = 1.06 mm1
β = 92.136 (2)°T = 110 K
V = 4786.83 (15) Å3Block, orange
Z = 40.1 × 0.08 × 0.06 mm
Data collection top
Oxford Gemini S
diffractometer
Rint = 0.023
ω scansθmax = 60.5°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 2121
Tmin = 0.807, Tmax = 1.000k = 1919
15600 measured reflectionsl = 1515
3545 independent reflections2 standard reflections every 25 reflections
3142 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0577P)2 + 2.8029P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3545 reflectionsΔρmax = 0.32 e Å3
277 parametersΔρmin = 0.20 e Å3
Crystal data top
(C16H36N)2[Ni(C11H3F3N2O6)]V = 4786.83 (15) Å3
Mr = 859.78Z = 4
Monoclinic, C2/cCu Kα radiation
a = 19.5285 (3) ŵ = 1.06 mm1
b = 17.3370 (3) ÅT = 110 K
c = 14.1484 (3) Å0.1 × 0.08 × 0.06 mm
β = 92.136 (2)°
Data collection top
Oxford Gemini S
diffractometer
3142 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Rint = 0.023
Tmin = 0.807, Tmax = 1.000θmax = 60.5°
15600 measured reflections2 standard reflections every 25 reflections
3545 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.09Δρmax = 0.32 e Å3
3545 reflectionsΔρmin = 0.20 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.88594 (10)0.35368 (11)0.65544 (14)0.0356 (5)
C20.88021 (10)0.44362 (12)0.65187 (14)0.0370 (5)
C30.96883 (10)0.25942 (11)0.72161 (15)0.0371 (4)
C40.94040 (11)0.18979 (12)0.69174 (16)0.0454 (5)
H40.90110.18930.65250.055*
C50.97086 (14)0.12088 (13)0.72067 (18)0.0566 (6)
H50.95190.07430.70040.068*0.5
C70.68930 (10)0.16654 (11)0.76809 (14)0.0363 (4)
H7A0.66680.21050.79580.044*
H7B0.67290.12070.79930.044*
C80.76537 (10)0.17349 (11)0.79037 (14)0.0386 (5)
H8A0.78210.22200.76610.046*
H8B0.78950.13190.76000.046*
C90.77901 (12)0.16984 (13)0.89696 (15)0.0466 (5)
H9A0.75280.21000.92670.056*
H9B0.76310.12060.92010.056*
C100.85411 (13)0.17956 (14)0.92587 (17)0.0567 (6)
H10A0.85960.17680.99350.085*
H10B0.86990.22880.90450.085*
H10C0.88030.13930.89790.085*
C110.68357 (10)0.23650 (11)0.61193 (14)0.0356 (4)
H11A0.73210.24690.62240.043*
H11B0.67560.22770.54470.043*
C120.64405 (11)0.30812 (11)0.63902 (16)0.0412 (5)
H12A0.65070.31800.70620.049*
H12B0.59550.30060.62520.049*
C130.67014 (11)0.37655 (12)0.58245 (17)0.0466 (5)
H13A0.71960.37980.59120.056*
H13B0.65960.36790.51570.056*
C140.63858 (16)0.45253 (15)0.6120 (2)0.0789 (9)
H14A0.65580.49350.57390.118*
H14B0.65030.46230.67740.118*
H14C0.58970.44980.60320.118*
C150.59008 (10)0.14707 (11)0.66235 (14)0.0358 (4)
H15A0.58220.10010.69750.043*
H15B0.56840.18890.69560.043*
C160.55475 (10)0.13920 (11)0.56594 (14)0.0378 (5)
H16A0.56980.09220.53580.045*
H16B0.56680.18250.52650.045*
C170.47760 (10)0.13688 (13)0.57613 (16)0.0445 (5)
H17A0.46690.09990.62480.053*
H17B0.46220.18720.59660.053*
C180.43874 (11)0.11520 (15)0.48520 (17)0.0532 (6)
H18A0.39050.11470.49580.080*
H18B0.45290.06490.46530.080*
H18C0.44830.15220.43700.080*
C190.70443 (10)0.09850 (10)0.61375 (14)0.0348 (4)
H19A0.68710.09610.54870.042*
H19B0.75260.11210.61280.042*
C200.69831 (11)0.01936 (11)0.65738 (15)0.0390 (5)
H20A0.65090.00270.65300.047*
H20B0.71240.02170.72380.047*
C210.74277 (12)0.03850 (12)0.60717 (17)0.0497 (6)
H21A0.72840.04100.54090.060*
H21B0.79010.02140.61110.060*
C220.73766 (14)0.11826 (13)0.65073 (17)0.0544 (6)
H22A0.76610.15350.61760.082*
H22B0.69090.13560.64610.082*
H22C0.75270.11610.71610.082*
N10.94347 (8)0.33319 (9)0.70205 (12)0.0356 (4)
N20.66664 (8)0.16218 (9)0.66403 (11)0.0338 (4)
O10.84134 (7)0.31211 (8)0.61726 (10)0.0410 (3)
O20.92921 (7)0.48170 (7)0.69564 (10)0.0391 (3)
O30.83119 (7)0.47330 (8)0.60942 (10)0.0445 (4)
C60.9520 (2)0.0478 (2)0.6727 (4)0.0499 (11)0.5
F10.88379 (14)0.04371 (15)0.6729 (3)0.0760 (9)0.5
F20.96828 (17)0.03869 (15)0.5806 (2)0.0698 (8)0.5
F30.97597 (13)0.01539 (13)0.7165 (2)0.0581 (7)0.5
Ni11.00000.41486 (2)0.75000.02432 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0395 (11)0.0420 (11)0.0257 (11)0.0005 (9)0.0080 (8)0.0002 (8)
C20.0439 (11)0.0423 (11)0.0253 (11)0.0022 (9)0.0080 (9)0.0001 (9)
C30.0452 (10)0.0352 (10)0.0312 (11)0.0002 (8)0.0084 (8)0.0005 (8)
C40.0555 (13)0.0409 (12)0.0397 (13)0.0012 (9)0.0016 (10)0.0032 (9)
C50.0773 (16)0.0352 (11)0.0563 (15)0.0023 (11)0.0124 (12)0.0044 (11)
C70.0501 (11)0.0329 (10)0.0264 (11)0.0015 (8)0.0098 (9)0.0003 (8)
C80.0516 (12)0.0328 (10)0.0318 (12)0.0029 (8)0.0068 (9)0.0016 (8)
C90.0641 (14)0.0428 (12)0.0328 (13)0.0020 (10)0.0028 (10)0.0022 (9)
C100.0729 (16)0.0570 (14)0.0396 (14)0.0056 (12)0.0062 (11)0.0000 (11)
C110.0407 (10)0.0342 (10)0.0322 (12)0.0057 (8)0.0073 (8)0.0031 (8)
C120.0496 (12)0.0362 (11)0.0384 (13)0.0024 (9)0.0106 (9)0.0017 (9)
C130.0521 (12)0.0381 (11)0.0505 (14)0.0008 (9)0.0113 (10)0.0080 (10)
C140.097 (2)0.0411 (14)0.101 (3)0.0092 (14)0.0333 (18)0.0174 (14)
C150.0406 (11)0.0334 (10)0.0342 (12)0.0024 (8)0.0120 (8)0.0008 (8)
C160.0434 (11)0.0360 (10)0.0348 (12)0.0025 (8)0.0108 (9)0.0011 (8)
C170.0429 (11)0.0479 (12)0.0435 (13)0.0054 (9)0.0114 (9)0.0027 (10)
C180.0421 (12)0.0666 (15)0.0510 (15)0.0062 (10)0.0040 (10)0.0046 (11)
C190.0404 (10)0.0342 (10)0.0303 (11)0.0004 (8)0.0087 (8)0.0038 (8)
C200.0500 (12)0.0366 (10)0.0309 (12)0.0019 (9)0.0079 (9)0.0030 (8)
C210.0631 (14)0.0442 (12)0.0427 (14)0.0123 (10)0.0124 (11)0.0008 (10)
C220.0783 (16)0.0412 (12)0.0437 (14)0.0138 (11)0.0028 (12)0.0010 (10)
N10.0391 (9)0.0356 (9)0.0324 (10)0.0001 (7)0.0047 (7)0.0002 (7)
N20.0427 (9)0.0326 (8)0.0266 (9)0.0030 (7)0.0096 (7)0.0009 (6)
O10.0432 (8)0.0456 (8)0.0344 (8)0.0040 (6)0.0030 (6)0.0010 (6)
O20.0435 (7)0.0365 (7)0.0376 (8)0.0027 (6)0.0048 (6)0.0005 (6)
O30.0485 (8)0.0476 (8)0.0373 (9)0.0078 (7)0.0012 (7)0.0029 (6)
C60.050 (3)0.037 (2)0.062 (3)0.0017 (19)0.004 (2)0.004 (2)
F10.0477 (16)0.0465 (15)0.134 (3)0.0011 (12)0.0005 (16)0.0231 (17)
F20.100 (2)0.0521 (16)0.0572 (19)0.0026 (15)0.0005 (16)0.0133 (14)
F30.0630 (17)0.0351 (13)0.076 (2)0.0013 (11)0.0042 (12)0.0005 (12)
Ni10.0293 (2)0.0226 (2)0.0215 (3)0.0000.00539 (16)0.000
Geometric parameters (Å, º) top
C1—O11.239 (2)C14—H14B0.9600
C1—N11.330 (3)C14—H14C0.9600
C1—C21.564 (3)C15—C161.512 (3)
C2—O31.224 (2)C15—N21.517 (2)
C2—O21.300 (2)C15—H15A0.9700
C3—C41.388 (3)C15—H15B0.9700
C3—N11.396 (2)C16—C171.519 (3)
C3—C3i1.433 (4)C16—H16A0.9700
C4—C51.389 (3)C16—H16B0.9700
C4—H40.9300C17—C181.516 (3)
C5—C5i1.383 (5)C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
C7—C81.512 (3)C18—H18A0.9600
C7—N21.523 (2)C18—H18B0.9600
C7—H7A0.9700C18—H18C0.9600
C7—H7B0.9700C19—C201.511 (3)
C8—C91.523 (3)C19—N21.519 (2)
C8—H8A0.9700C19—H19A0.9700
C8—H8B0.9700C19—H19B0.9700
C9—C101.517 (3)C20—C211.520 (3)
C9—H9A0.9700C20—H20A0.9700
C9—H9B0.9700C20—H20B0.9700
C10—H10A0.9600C21—C221.519 (3)
C10—H10B0.9600C21—H21A0.9700
C10—H10C0.9600C21—H21B0.9700
C11—C121.519 (3)C22—H22A0.9600
C11—N21.527 (2)C22—H22B0.9600
C11—H11A0.9700C22—H22C0.9600
C11—H11B0.9700N1—Ni11.9047 (16)
C12—C131.529 (3)O2—Ni11.9407 (13)
C12—H12A0.9700C6—F11.333 (5)
C12—H12B0.9700C6—F31.335 (5)
C13—C141.519 (3)C6—F21.361 (6)
C13—H13A0.9700F3—F3i1.308 (5)
C13—H13B0.9700Ni1—N1i1.9047 (16)
C14—H14A0.9600Ni1—O2i1.9408 (13)
O1—C1—N1128.92 (18)C16—C15—H15B108.2
O1—C1—C2121.17 (17)N2—C15—H15B108.2
N1—C1—C2109.91 (16)H15A—C15—H15B107.3
O3—C2—O2124.63 (18)C15—C16—C17109.73 (16)
O3—C2—C1119.25 (18)C15—C16—H16A109.7
O2—C2—C1116.12 (16)C17—C16—H16A109.7
C4—C3—N1127.00 (19)C15—C16—H16B109.7
C4—C3—C3i119.50 (12)C17—C16—H16B109.7
N1—C3—C3i113.51 (11)H16A—C16—H16B108.2
C3—C4—C5119.7 (2)C18—C17—C16113.12 (18)
C3—C4—H4120.1C18—C17—H17A109.0
C5—C4—H4120.1C16—C17—H17A109.0
C5i—C5—C4120.69 (13)C18—C17—H17B109.0
C5i—C5—H5119.7C16—C17—H17B109.0
C4—C5—H5119.7H17A—C17—H17B107.8
C8—C7—N2116.96 (15)C17—C18—H18A109.5
C8—C7—H7A108.1C17—C18—H18B109.5
N2—C7—H7A108.1H18A—C18—H18B109.5
C8—C7—H7B108.1C17—C18—H18C109.5
N2—C7—H7B108.1H18A—C18—H18C109.5
H7A—C7—H7B107.3H18B—C18—H18C109.5
C7—C8—C9109.72 (16)C20—C19—N2114.92 (16)
C7—C8—H8A109.7C20—C19—H19A108.5
C9—C8—H8A109.7N2—C19—H19A108.5
C7—C8—H8B109.7C20—C19—H19B108.5
C9—C8—H8B109.7N2—C19—H19B108.5
H8A—C8—H8B108.2H19A—C19—H19B107.5
C10—C9—C8113.21 (18)C19—C20—C21110.68 (17)
C10—C9—H9A108.9C19—C20—H20A109.5
C8—C9—H9A108.9C21—C20—H20A109.5
C10—C9—H9B108.9C19—C20—H20B109.5
C8—C9—H9B108.9C21—C20—H20B109.5
H9A—C9—H9B107.8H20A—C20—H20B108.1
C9—C10—H10A109.5C22—C21—C20111.33 (18)
C9—C10—H10B109.5C22—C21—H21A109.4
H10A—C10—H10B109.5C20—C21—H21A109.4
C9—C10—H10C109.5C22—C21—H21B109.4
H10A—C10—H10C109.5C20—C21—H21B109.4
H10B—C10—H10C109.5H21A—C21—H21B108.0
C12—C11—N2116.55 (16)C21—C22—H22A109.5
C12—C11—H11A108.2C21—C22—H22B109.5
N2—C11—H11A108.2H22A—C22—H22B109.5
C12—C11—H11B108.2C21—C22—H22C109.5
N2—C11—H11B108.2H22A—C22—H22C109.5
H11A—C11—H11B107.3H22B—C22—H22C109.5
C11—C12—C13108.66 (17)C1—N1—C3129.06 (17)
C11—C12—H12A110.0C1—N1—Ni1116.48 (13)
C13—C12—H12A110.0C3—N1—Ni1114.46 (13)
C11—C12—H12B110.0C15—N2—C19111.27 (14)
C13—C12—H12B110.0C15—N2—C7105.92 (14)
H12A—C12—H12B108.3C19—N2—C7111.10 (14)
C14—C13—C12112.47 (19)C15—N2—C11111.66 (14)
C14—C13—H13A109.1C19—N2—C11105.63 (14)
C12—C13—H13A109.1C7—N2—C11111.37 (14)
C14—C13—H13B109.1C2—O2—Ni1112.72 (12)
C12—C13—H13B109.1F1—C6—F3106.8 (4)
H13A—C13—H13B107.8F1—C6—F2105.4 (4)
C13—C14—H14A109.5F3—C6—F2105.0 (4)
C13—C14—H14B109.5F3i—F3—C6124.5 (2)
H14A—C14—H14B109.5N1i—Ni1—N183.96 (9)
C13—C14—H14C109.5N1i—Ni1—O2168.49 (6)
H14A—C14—H14C109.5N1—Ni1—O284.71 (6)
H14B—C14—H14C109.5N1i—Ni1—O2i84.72 (6)
C16—C15—N2116.49 (15)N1—Ni1—O2i168.49 (6)
C16—C15—H15A108.2O2—Ni1—O2i106.67 (8)
N2—C15—H15A108.2
O1—C1—C2—O31.0 (3)C3i—C3—N1—C1176.8 (2)
N1—C1—C2—O3178.08 (18)C4—C3—N1—Ni1176.64 (18)
O1—C1—C2—O2178.84 (17)C3i—C3—N1—Ni13.0 (3)
N1—C1—C2—O22.0 (2)C16—C15—N2—C1958.4 (2)
N1—C3—C4—C5177.5 (2)C16—C15—N2—C7179.28 (16)
C3i—C3—C4—C52.9 (4)C16—C15—N2—C1159.3 (2)
C3—C4—C5—C5i0.3 (5)C20—C19—N2—C1562.1 (2)
N2—C7—C8—C9174.95 (15)C20—C19—N2—C755.7 (2)
C7—C8—C9—C10177.74 (18)C20—C19—N2—C11176.60 (16)
N2—C11—C12—C13177.74 (17)C8—C7—N2—C15174.15 (16)
C11—C12—C13—C14174.2 (2)C8—C7—N2—C1953.2 (2)
N2—C15—C16—C17171.21 (16)C8—C7—N2—C1164.3 (2)
C15—C16—C17—C18169.98 (18)C12—C11—N2—C1550.4 (2)
N2—C19—C20—C21175.07 (17)C12—C11—N2—C19171.52 (17)
C19—C20—C21—C22179.53 (19)C12—C11—N2—C767.8 (2)
O1—C1—N1—C30.8 (3)O3—C2—O2—Ni1177.48 (16)
C2—C1—N1—C3179.87 (18)C1—C2—O2—Ni12.7 (2)
O1—C1—N1—Ni1179.39 (16)F1—C6—F3—F3i131.6 (5)
C2—C1—N1—Ni10.4 (2)F2—C6—F3—F3i116.8 (5)
C4—C3—N1—C13.6 (3)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O10.972.423.347 (2)160
C11—H11B···O1ii0.972.403.368 (2)172
C15—H15A···O2iii0.972.563.529 (2)174
C17—H17A···O2iv0.972.413.333 (3)159
C19—H19A···O3ii0.972.553.441 (2)152
C21—H21B···F10.972.293.208 (4)156
Symmetry codes: (ii) x+3/2, y+1/2, z+1; (iii) x+3/2, y1/2, z+3/2; (iv) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O10.972.423.347 (2)160
C11—H11B···O1i0.972.403.368 (2)172
C15—H15A···O2ii0.972.563.529 (2)174
C17—H17A···O2iii0.972.413.333 (3)159
C19—H19A···O3i0.972.553.441 (2)152
C21—H21B···F10.972.293.208 (4)156
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula(C16H36N)2[Ni(C11H3F3N2O6)]
Mr859.78
Crystal system, space groupMonoclinic, C2/c
Temperature (K)110
a, b, c (Å)19.5285 (3), 17.3370 (3), 14.1484 (3)
β (°) 92.136 (2)
V3)4786.83 (15)
Z4
Radiation typeCu Kα
µ (mm1)1.06
Crystal size (mm)0.1 × 0.08 × 0.06
Data collection
DiffractometerOxford Gemini S
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.807, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15600, 3545, 3142
Rint0.023
θmax (°)60.5
(sin θ/λ)max1)0.564
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.09
No. of reflections3545
No. of parameters277
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.20

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXT (Sheldrick, 2015a), SHELXL2013 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and SQUEEZE (Spek, 2015).

 

Acknowledgements

FEM is grateful to the DAAD for a PhD research fellowship and the DFG research unit `Towards Mol­ecular Spintronics' FOR 1154 for providing fellowships. The authors express their sincere thanks to the Centre for Inter­national Migration and Development (CIM), Word University Service (WUS), and the Faculty of Medicine and Pharmaceutical Sciences of the University of Douala for financial support.

References

First citationAbdulmalic, M. A., Aliabadi, A., Petr, A., Kataev, V. & Rüffer, T. (2013). Dalton Trans. 42, 1798–1809.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBerg, K. E., Pellegrin, Y., Blondin, G., Ottenwaelder, X., Journaux, Y., Canovas, M. M., Mallah, T., Parsons, S. & Aukauloo, A. (2002). Eur. J. Inorg. Chem. pp. 323–325.  CSD CrossRef Google Scholar
First citationBräuer, B., Grobosch, M., Knupfer, M., Weigend, F., Vaynzof, Y., Kahn, A., Rüffer, T. & Salvan, G. (2009). J. Phys. Chem. B, 113, 10051–10054.  Web of Science PubMed Google Scholar
First citationBräuer, B., Weigend, F., Totti, F., Zahn, D. R. T., Rüffer, T. & Salvan, G. (2008). J. Phys. Chem. B, 112, 5585–5593.  Web of Science PubMed Google Scholar
First citationBräuer, B., Zahn, D. R. T., Rüffer, T. & Salvan, G. (2006). Chem. Phys. Lett. 432, 226–229.  Google Scholar
First citationCervera, B., Sanz, J. L., Ibáñez, M. J., Vila, G., Lloret, F., Julve, M., Ruiz, R., Ottenwaelder, X., Aukauloo, A., Poussereau, S., Journaux, Y. & Muñoz, C. M. (1998). J. Chem. Soc. Dalton Trans. pp. 781–790.  Web of Science CSD CrossRef Google Scholar
First citationEya'ane Meva, F., Schaarschmidt, D., Abdulmalic, M. A. & Rüffer, T. (2012). Acta Cryst. E68, o3460–o3461.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFettouhi, M., Ouahab, L., Boukhari, A., Cador, O., Mathonière, C. & Kahn, O. (1996). Inorg. Chem. 35, 4932–4937.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKahn, O. (1987). Magnetism of the heteropolymetallic systems, in Theoretical Approaches – Structure and Bonding, Vol. 68, pp. 89–167. Berlin-Heidelberg: Springer.  Google Scholar
First citationKahn, O. (2000). Acc. Chem. Res. 33, 647–657.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMartín, S., Beitia, J. I., Ugalde, M., Vitoria, P. & Cortés, R. (2002). Acta Cryst. E58, o913–o915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMilek, M., Witt, A., Streb, C., Heinemann, F. W. & Khusniyarov, M. M. (2013). Dalton Trans. 42, 5237–5241.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOttenwaelder, X., Aukauloo, A., Journaux, Y., Carrasco, R., Cano, J., Cervera, B., Castro, I., Curreli, S., Muñoz, M. C., Roselló, A. L., Soto, B. & Ruiz-García, R. (2005). Dalton Trans. pp. 2516–2526.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPardo, E., Ruiz-García, R., Cano, J., Ottenwaelder, X., Lescouëzec, R., Journaux, Y., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 2780–2805.  Web of Science CrossRef Google Scholar
First citationRüffer, T., Bräuer, B., Eya'ane Meva, F. & Sorace, L. (2009). Inorg. Chim. Acta, 362, 563–569.  Google Scholar
First citationRüffer, T., Bräuer, B., Eya'ane Meva, F., Walfort, B., Salvan, G., Powell, A. K., Hewitt, I. J., Sorace, L. & Caneschi, A. (2007b). Inorg. Chim. Acta, 360, 3777–3784.  Google Scholar
First citationRüffer, T., Bräuer, B., Eya'ane Meva, F. & Walfort, B. (2008). Dalton Trans. pp. 5089–5098.  Google Scholar
First citationRüffer, T., Bräuer, B., Powell, A. K., Hewitt, I. & Salvan, G. (2007a). Inorg. Chim. Acta, 360, 3475–3483.  Google Scholar
First citationRuiz, R., Surville-Barland, C., Aukauloo, A., Anxolabehere-Mallart, E., Journaux, Y., Cano, J. & Muñoz, M. C. (1997a). J. Chem. Soc. Dalton Trans. pp. 745–752.  CSD CrossRef Web of Science Google Scholar
First citationRuiz, R., Triannidis, M., Aukauloo, A., Journaux, Y., Fernández, I., Pedro, J. R., Cervera, B., Castro, I. & Muñoz, M. C. (1997b). Chem. Commun. pp. 2283–2284.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 578-581
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds