research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 660-662

Crystal structure of 1-[(6-chloro­pyridin-3-yl)sulfon­yl]-1,2,3,4-tetra­hydro­quinoline

aDepartment of Physics, St Philomena's College (Autonomous), Mysore, Karnataka 570 015, India, bDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur 572 103, Karnataka, India, cDepartment of Chemistry, St Philomena's College (Autonomous), Mysore, Karnataka 570 015, India, and dDepartment of Studies and Research in Physics, U.C.S, Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: jeyaseelans1965@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 April 2015; accepted 23 April 2015; online 23 May 2015)

The tetra­hydro­pyridine ring of the quinoline system in the title compound, C14H13ClN2O2S, adopts a half-chair conformation with the bond-angle sum at the N atom being 350.0°. The dihedral angle between the least-squares planes of the two aromatic rings is 50.13 (11)°. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(10) loops. Additional inter­molecular C—H⋯O hydrogen bonds generate C(7) chains along [100].

1. Chemical context

1,2,3,4-Tetra­hydro­quinoline derivatives play a vital role in developing pharmacological agents and they have been considered as potential drugs (White et al., 1994[White, J. D., Yager, K. M. & Yakura, T. (1994). J. Am. Chem. Soc. 116, 1831-1838.]; Kokwaro & Taylor, 1990[Kokwaro, G. O. & Taylor, G. (1990). Drug Chem. Toxicol. 13, 347-354.]; Omura & Nakagawa, 1981[Ōmura, S. & Nakagawa, A. (1981). Tetrahedron Lett. 22, 2199-2202.]) and also antagonists for N-methyl-d-aspartate (NMDA) receptors at the glycine recognition site (Cai et al., 1996[Cai, S. X., Zhou, Z. L., Huang, J. C., Whittemore, E. R., Egbuwoku, Z. O., Lü, Y., Hawkinson, J. E., Woodward, R. M., Weber, E. & Keana, J. F. W. (1996). J. Med. Chem. 39, 3248-3255.]).

[Scheme 1]

Recently, we have synthesized a series of 1,2,3,4-tetra­hydro­quinoline derivatives and a few mol­ecules in fact exhibit pharmacological activity (unpublished results). In a contin­uation of our work on the derivatives of 1,2,3,4-tetra­hydro­quinolines (Jeyaseelan et al., 2014[Jeyaseelan, S., Asha, K. V., Venkateshappa, G., Raghavendrakumar, P. & Palakshamurthy, B. S. (2014). Acta Cryst. E70, o1176.], 2015a[Jeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015a). Acta Cryst. E71, o20.],b[Jeyaseelan, S., Sowmya, B. R., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015b). Acta Cryst. E71, o249-o250.]), we report herein the synthesis and crystal structure of 1-[(6-chloro­pyridin-3-yl)sulfon­yl]-1,2,3,4-tetra­hydro­quinoline, (I)[link].

2. Structural commentary

The mol­ecular structure of compound (I)[link] is shown in Fig. 1[link]. The dihedral angle between the planes of the aromatic rings is 50.13 (11)°. In comparison, the dihedral angle in the 1-tosyl-1,2,3,4-tetra­hydro­quinoline, (II), is 47.74 (9)° (Jeyaseelan et al., 2014[Jeyaseelan, S., Asha, K. V., Venkateshappa, G., Raghavendrakumar, P. & Palakshamurthy, B. S. (2014). Acta Cryst. E70, o1176.]), and in 1-benzyl­sulfonyl-1,2,3,4-tetra­hydro­quinoline, (III), it is 74.15 (10)° (Jeyaseelan et al., 2015b[Jeyaseelan, S., Sowmya, B. R., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015b). Acta Cryst. E71, o249-o250.]). In the structures of compounds (II), (III) and 1-methane­sulfonyl-1,2,3,4-tetra­hydro­quinoline, (IV) (Jeyaseelan et al., 2015a[Jeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015a). Acta Cryst. E71, o20.]), the tetra­hydro­pyridine (C1/C6–C9/N1) ring is in a half-chair conformation, with the methyl­ene C9 atom as the flap. However, the bond-angle sums at the N atom in (I)[link], (II), (III) and (IV) differ somehow, with values of 350.0, 350.2, 354.61 and 347.9°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, inversion dimers linked by pairs of C11—H11⋯O2 hydrogen bonds generate R22(10) loops. In addition, mol­ecules are linked by C7—H7A⋯O1 hydrogen bonds, generating C(7) chains along [100], as shown in Fig. 2[link]. Numerical values of these inter­actions are compiled in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O2i 0.93 2.60 3.309 (3) 134
C7—H7A⋯O1ii 0.97 2.66 3.586 (5) 160
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound. Dashed lines indicate the pairs of C—H⋯O hydrogen bonds which link the mol­ecules into inversion dimers with R22(10) ring motifs and forming C(7) chains along [100].

4. Synthesis and crystallization

To an ice-cold solution of 1,2,3,4-tetra­hydro­quinoline (1.332 g, 10 mmol) and tri­ethyl­amine (1.518 g, 15 mmol) in di­chloro­methane (50 ml), a solution of 6-chloro­pyridine-3-sulfonyl chloride (2.332 g, 11 mmol) in di­chloro­methane (20 ml) was added dropwise and stirred for 30 min. The reaction mixture was diluted with di­chloro­methane (150 ml), the organic layer washed with aqueous 5% NaHCO3 solution and brine, and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure to give 1-[(6-chloro­pyridin-3-yl)sulfon­yl]-1,2,3,4-tetra­hydro­quinoline, (I)[link]. The product was recrystallized from a mixture of di­chloro­methane and n-hexane (1:1 v/v) to obtain crystals suitable for X-ray diffraction studies.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned with idealized geometry using a riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms and with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C14H13ClN2O2S
Mr 308.77
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.5661 (10), 10.2595 (18), 11.3490 (19)
α, β, γ (°) 69.101 (7), 88.219 (7), 77.238 (7)
V3) 695.6 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.43
Crystal size (mm) 0.23 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.912, 0.934
No. of measured, independent and observed [I > 2σ(I)] reflections 9865, 2454, 1980
Rint 0.053
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.146, 1.09
No. of reflections 2454
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.43
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

1,2,3,4-Tetra­hydro­quinoline derivatives play a vital role in developing pharmacological agents and they have been considered as potential drugs (White et al., 1994; Kokwaro & Taylor, 1990; Omura & Nakagawa, 1981) and also antagonists for N-methyl-d-aspartate (NMDA) receptors at the glycine recognition site (Cai et al., 1996).

Recently, we have synthesized a series of 1,2,3,4-tetra­hydro­quinoline derivatives and a few molecules in fact exhibit pharmacological activity (unpublished results). In a continuation of our work on the derivatives of 1,2,3,4-tetra­hydro­quinolines (Jeyaseelan et al., 2014, 2015a,b), we report herein the synthesis and crystal structure of 1-[(6-chloro­pyridin-3-yl)sulfonyl]-1,2,3,4-tetra­hydro­quinoline, (I).

Structural commentary top

The molecular structure of compound (I) is shown in Fig. 1. The dihedral angle between the planes of the aromatic rings is 50.13 (11)°. In comparison, the dihedral angle in the related 1-tosyl-1,2,3,4-tetra­hydro­quinoline, (II), is 47.74 (9)° (Jeyaseelan et al., 2014), and in 1-benzyl­sulfonyl-1,2,3,4-tetra­hydro­quinoline, (III), it is 74.15 (10)° (Jeyaseelan et al., 2015b). In the structures of compounds (II), (III) and 1-methane­sulfonyl-1,2,3,4-tetra­hydro­quinoline, (IV) (Jeyaseelan et al., 2015a), the tetra­hydro­pyridine (C1/C6–C9/N1) ring is in a half-chair conformation, with the methyl­ene C9 atom as the flap. However, the bond-angle sums at the N atom in (I), (II), (III) and (IV) differ somehow, with values of 350.0, 350.2, 354.61 and 347.9°, respectively.

Supra­molecular features top

In the crystal, inversion dimers linked by pairs of C11—H11···O2 hydrogen bonds generate R22(10) loops. In addition, molecules are linked by C7—H7A···O1 hydrogen bonds, generating C(7) chains along [100], as shown in Fig 2. Numerical values of these inter­actions are compiled in Table 1.

Synthesis and crystallization top

To an ice-cold solution of 1,2,3,4-tetra­hydro­quinoline (1.332 g, 10 mmol) and tri­ethyl­amine (1.518 g, 15 mmol) in di­chloro­methane (50 ml), a solution of 6-chloro­pyridine-3-sulfonyl chloride (2.332 g, 11 mmol) in di­chloro­methane (20 ml) was added dropwise and stirred for 30 min. The reaction mixture was diluted with di­chloro­methane (150 ml), the organic layer washed with aqueous 5% NaHCO3 solution and brine, and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure to give 1-[(6-chloro­pyridin-3-yl)sulfonyl]-1,2,3,4-tetra­hydro­quinoline, (I). The product was recrystallized from a mixture of di­chloro­methane and n-hexane (1:1 v/v) to obtain crystals suitable for X-ray diffraction studies.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned with idealized geometry using a riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms and with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H atoms.

Related literature top

For pharmacological background of tetrahydroquinolines, see: White et al., (1994); Kokwaro et al., (1990); Omura et al., (1981); Cai et al., (1996). For a related structures, see: Jeyaseelan et al., (2014); Jeyaseelan and Palakshamurthy et al., (2015); Jeyaseelan et al., (2015).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound. Dashed lines indicate the pairs of C—H···O hydrogen bonds which link the molecules into inversion dimers with R22(10) ring motifs and forming C(7) chains along [100].
1-[(6-Chloropyridin-3-yl)sulfonyl]-1,2,3,4-tetrahydroquinoline top
Crystal data top
C14H13ClN2O2SF(000) = 320
Mr = 308.77prism
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Melting point: 413 K
a = 6.5661 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2595 (18) ÅCell parameters from 1980 reflections
c = 11.3490 (19) Åθ = 1.9–25.0°
α = 69.101 (7)°µ = 0.43 mm1
β = 88.219 (7)°T = 296 K
γ = 77.238 (7)°Prism, colourless
V = 695.6 (2) Å30.23 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2454 independent reflections
Radiation source: fine-focus sealed tube1980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 2.01 pixels mm-1θmax = 25.0°, θmin = 1.9°
phi and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1212
Tmin = 0.912, Tmax = 0.934l = 1313
9865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.3614P]
where P = (Fo2 + 2Fc2)/3
2454 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.43 e Å3
0 constraints
Crystal data top
C14H13ClN2O2Sγ = 77.238 (7)°
Mr = 308.77V = 695.6 (2) Å3
Triclinic, P1Z = 2
a = 6.5661 (10) ÅMo Kα radiation
b = 10.2595 (18) ŵ = 0.43 mm1
c = 11.3490 (19) ÅT = 296 K
α = 69.101 (7)°0.23 × 0.18 × 0.16 mm
β = 88.219 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2454 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1980 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.934Rint = 0.053
9865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.09Δρmax = 0.59 e Å3
2454 reflectionsΔρmin = 0.43 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3014 (3)0.1696 (3)0.3092 (2)0.0753 (7)
S0.40371 (11)0.28345 (8)0.24768 (6)0.0562 (3)
Cl11.24374 (14)0.01308 (10)0.08760 (9)0.0853 (3)
C100.6392 (4)0.2111 (3)0.1933 (2)0.0479 (6)
N10.4673 (3)0.3394 (2)0.35739 (19)0.0532 (6)
O20.3005 (3)0.4047 (2)0.14401 (19)0.0712 (6)
C110.7513 (4)0.2997 (3)0.1091 (2)0.0504 (6)
H110.69910.39830.07640.060*
N20.9018 (4)0.0058 (3)0.2047 (2)0.0657 (7)
C10.5901 (4)0.4468 (3)0.3217 (2)0.0479 (6)
C131.0055 (4)0.0935 (3)0.1264 (2)0.0545 (7)
C60.7874 (4)0.4136 (3)0.3794 (3)0.0542 (7)
C120.9387 (4)0.2403 (3)0.0750 (3)0.0545 (7)
H121.01880.29650.01900.065*
C140.7193 (5)0.0656 (3)0.2371 (3)0.0615 (8)
H140.64170.00640.29210.074*
C20.5110 (5)0.5812 (3)0.2320 (3)0.0678 (8)
H20.37600.60420.19660.081*
C50.9038 (5)0.5175 (4)0.3419 (3)0.0690 (8)
H51.03620.49750.37980.083*
C90.5138 (5)0.2322 (4)0.4875 (3)0.0733 (10)
H9A0.45440.27660.54700.088*
H9B0.44660.15420.49630.088*
C30.6339 (7)0.6804 (3)0.1957 (3)0.0812 (10)
H30.58300.76940.13350.097*
C40.8292 (6)0.6494 (4)0.2502 (3)0.0766 (10)
H40.91120.71690.22550.092*
C70.8693 (6)0.2732 (4)0.4825 (4)0.0796 (10)
H7A0.99800.22630.45630.096*
H7B0.90420.29170.55660.096*
C80.7326 (7)0.1753 (5)0.5187 (4)0.124 (2)
H8A0.77920.10370.48040.149*
H8B0.75070.12610.60950.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0680 (14)0.0963 (16)0.0687 (13)0.0494 (13)0.0085 (11)0.0202 (12)
S0.0469 (4)0.0698 (5)0.0465 (4)0.0217 (3)0.0027 (3)0.0090 (3)
Cl10.0736 (6)0.0948 (7)0.0859 (6)0.0056 (5)0.0027 (5)0.0446 (5)
C100.0520 (15)0.0511 (15)0.0373 (12)0.0186 (12)0.0063 (11)0.0069 (11)
N10.0489 (12)0.0633 (14)0.0406 (11)0.0183 (11)0.0032 (9)0.0072 (10)
O20.0547 (12)0.0850 (15)0.0553 (11)0.0067 (11)0.0148 (9)0.0068 (11)
C110.0571 (16)0.0441 (14)0.0429 (13)0.0133 (12)0.0019 (12)0.0056 (11)
N20.0813 (19)0.0509 (14)0.0591 (15)0.0116 (13)0.0060 (13)0.0140 (12)
C10.0511 (15)0.0463 (14)0.0435 (13)0.0087 (12)0.0095 (11)0.0146 (11)
C130.0566 (16)0.0595 (17)0.0472 (14)0.0088 (13)0.0096 (12)0.0203 (13)
C60.0566 (16)0.0517 (16)0.0551 (15)0.0155 (13)0.0029 (13)0.0184 (13)
C120.0561 (16)0.0596 (17)0.0482 (14)0.0218 (14)0.0053 (12)0.0149 (13)
C140.078 (2)0.0509 (17)0.0508 (15)0.0255 (16)0.0011 (14)0.0056 (13)
C20.0673 (19)0.0558 (18)0.0628 (18)0.0001 (15)0.0048 (15)0.0088 (14)
C50.070 (2)0.070 (2)0.077 (2)0.0312 (17)0.0105 (16)0.0290 (17)
C90.079 (2)0.093 (2)0.0399 (15)0.0443 (19)0.0005 (14)0.0004 (15)
C30.105 (3)0.0411 (16)0.081 (2)0.0057 (18)0.025 (2)0.0101 (15)
C40.098 (3)0.060 (2)0.084 (2)0.0356 (19)0.033 (2)0.0315 (18)
C70.066 (2)0.068 (2)0.086 (2)0.0170 (17)0.0195 (17)0.0029 (17)
C80.110 (3)0.118 (3)0.089 (3)0.050 (3)0.042 (3)0.047 (3)
Geometric parameters (Å, º) top
O1—S1.428 (2)C6—C51.385 (4)
S—O21.423 (2)C6—C71.492 (4)
S—O11.428 (2)C12—H120.9300
S—N11.644 (2)C14—H140.9300
S—C101.756 (3)C2—C31.378 (5)
Cl1—C131.723 (3)C2—H20.9300
C10—C141.376 (4)C5—C41.374 (5)
C10—C111.383 (3)C5—H50.9300
N1—C11.443 (3)C9—C81.430 (5)
N1—C91.484 (3)C9—H9A0.9700
C11—C121.358 (4)C9—H9B0.9700
C11—H110.9300C3—C41.362 (5)
N2—C131.314 (4)C3—H30.9300
N2—C141.325 (4)C4—H40.9300
C1—C21.386 (4)C7—C81.437 (5)
C1—C61.387 (4)C7—H7A0.9700
C13—C121.378 (4)C8—H8A0.9700
O2—S—O1120.12 (13)C3—C2—C1119.5 (3)
O2—S—N1108.30 (13)C3—C2—H2120.2
O1—S—N1106.51 (12)C1—C2—H2120.2
O2—S—C10106.62 (12)C4—C5—C6121.9 (3)
O1—S—C10107.97 (14)C4—C5—H5119.1
N1—S—C10106.63 (12)C6—C5—H5119.1
C14—C10—C11118.8 (3)C8—C9—N1113.3 (3)
C14—C10—S120.6 (2)C8—C9—H9A108.9
C11—C10—S120.6 (2)N1—C9—H9A108.9
C1—N1—C9115.2 (2)C8—C9—H9B108.9
C1—N1—S117.64 (16)N1—C9—H9B108.9
C9—N1—S117.2 (2)H9A—C9—H9B107.7
C12—C11—C10118.9 (3)C4—C3—C2120.7 (3)
C12—C11—H11120.6C4—C3—H3119.6
C10—C11—H11120.6C2—C3—H3119.6
C13—N2—C14116.3 (2)C3—C4—C5119.4 (3)
C2—C1—C6120.7 (3)C3—C4—H4120.3
C2—C1—N1120.4 (3)C5—C4—H4120.3
C6—C1—N1118.8 (2)C8—C7—C6116.5 (3)
N2—C13—C12125.4 (3)C8—C7—H7A108.2
N2—C13—Cl1115.3 (2)C6—C7—H7A108.2
C12—C13—Cl1119.2 (2)C8—C7—H7B108.2
C5—C6—C1117.8 (3)C6—C7—H7B108.2
C5—C6—C7120.7 (3)H7A—C7—H7B107.3
C1—C6—C7121.5 (2)C9—C8—C7118.0 (4)
C11—C12—C13117.4 (3)C9—C8—H8A107.8
C11—C12—H12121.3C7—C8—H8A107.8
C13—C12—H12121.3C9—C8—H8B107.8
N2—C14—C10123.1 (3)C7—C8—H8B107.8
N2—C14—H14118.4H8A—C8—H8B107.1
C10—C14—H14118.4
O2—S—C10—C14145.4 (2)C9—N1—C1—C627.0 (4)
O2—S—C10—C14145.4 (2)S—N1—C1—C6117.9 (2)
O1—S—C10—C1415.0 (3)C14—N2—C13—C121.0 (4)
O1—S—C10—C1415.0 (3)C14—N2—C13—Cl1179.2 (2)
O1—S—C10—C1415.0 (3)C2—C1—C6—C51.8 (4)
N1—S—C10—C1499.1 (2)N1—C1—C6—C5178.8 (2)
O2—S—C10—C1137.0 (2)C2—C1—C6—C7175.7 (3)
O2—S—C10—C1137.0 (2)N1—C1—C6—C73.7 (4)
O1—S—C10—C11167.3 (2)C10—C11—C12—C130.4 (4)
O1—S—C10—C11167.3 (2)N2—C13—C12—C110.9 (4)
O1—S—C10—C11167.3 (2)Cl1—C13—C12—C11179.2 (2)
N1—S—C10—C1178.6 (2)C13—N2—C14—C100.3 (4)
O2—S—N1—C154.9 (2)C11—C10—C14—N21.5 (4)
O2—S—N1—C154.9 (2)S—C10—C14—N2176.1 (2)
O1—S—N1—C1174.7 (2)C6—C1—C2—C33.1 (4)
O1—S—N1—C1174.7 (2)N1—C1—C2—C3177.6 (3)
O1—S—N1—C1174.7 (2)C1—C6—C5—C40.3 (5)
C10—S—N1—C159.5 (2)C7—C6—C5—C4177.8 (3)
O2—S—N1—C9161.0 (2)C1—N1—C9—C846.6 (5)
O2—S—N1—C9161.0 (2)S—N1—C9—C898.4 (4)
O1—S—N1—C930.5 (2)C1—C2—C3—C42.3 (5)
O1—S—N1—C930.5 (2)C2—C3—C4—C50.2 (5)
O1—S—N1—C930.5 (2)C6—C5—C4—C31.1 (5)
C10—S—N1—C984.6 (2)C5—C6—C7—C8177.1 (4)
C14—C10—C11—C121.6 (4)C1—C6—C7—C80.3 (6)
S—C10—C11—C12176.12 (19)N1—C9—C8—C743.5 (6)
C9—N1—C1—C2152.4 (3)C6—C7—C8—C920.5 (7)
S—N1—C1—C262.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.932.603.309 (3)134
C7—H7A···O1ii0.972.663.586 (5)160
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.932.603.309 (3)134.0
C7—H7A···O1ii0.972.663.586 (5)160.1
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H13ClN2O2S
Mr308.77
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.5661 (10), 10.2595 (18), 11.3490 (19)
α, β, γ (°)69.101 (7), 88.219 (7), 77.238 (7)
V3)695.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.23 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.912, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
9865, 2454, 1980
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.146, 1.09
No. of reflections2454
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.43

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

 

Acknowledgements

SJ thanks the Vision Group on Science and Technology, Government of Karnataka, for the award of a major project under the CISE scheme (reference No. VGST/CISE/GRD-192/2013–14), and the Indian Institute of Science, Bangalore, for extending the XRD facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, S. X., Zhou, Z. L., Huang, J. C., Whittemore, E. R., Egbuwoku, Z. O., Lü, Y., Hawkinson, J. E., Woodward, R. M., Weber, E. & Keana, J. F. W. (1996). J. Med. Chem. 39, 3248–3255.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJeyaseelan, S., Asha, K. V., Venkateshappa, G., Raghavendrakumar, P. & Palakshamurthy, B. S. (2014). Acta Cryst. E70, o1176.  CSD CrossRef IUCr Journals Google Scholar
First citationJeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015a). Acta Cryst. E71, o20.  CSD CrossRef IUCr Journals Google Scholar
First citationJeyaseelan, S., Sowmya, B. R., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015b). Acta Cryst. E71, o249–o250.  CSD CrossRef IUCr Journals Google Scholar
First citationKokwaro, G. O. & Taylor, G. (1990). Drug Chem. Toxicol. 13, 347–354.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŌmura, S. & Nakagawa, A. (1981). Tetrahedron Lett. 22, 2199–2202.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWhite, J. D., Yager, K. M. & Yakura, T. (1994). J. Am. Chem. Soc. 116, 1831–1838.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 660-662
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds