research communications
of 1-[(6-chloropyridin-3-yl)sulfonyl]-1,2,3,4-tetrahydroquinoline
aDepartment of Physics, St Philomena's College (Autonomous), Mysore, Karnataka 570 015, India, bDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur 572 103, Karnataka, India, cDepartment of Chemistry, St Philomena's College (Autonomous), Mysore, Karnataka 570 015, India, and dDepartment of Studies and Research in Physics, U.C.S, Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: jeyaseelans1965@gmail.com
The tetrahydropyridine ring of the quinoline system in the title compound, C14H13ClN2O2S, adopts a half-chair conformation with the bond-angle sum at the N atom being 350.0°. The dihedral angle between the least-squares planes of the two aromatic rings is 50.13 (11)°. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(10) loops. Additional intermolecular C—H⋯O hydrogen bonds generate C(7) chains along [100].
Keywords: crystal structure; 1,2,3,4-tetrahydroquinoline; C—H⋯O interactions; pharmacological activity.
CCDC reference: 1061311
1. Chemical context
1,2,3,4-Tetrahydroquinoline derivatives play a vital role in developing pharmacological agents and they have been considered as potential drugs (White et al., 1994; Kokwaro & Taylor, 1990; Omura & Nakagawa, 1981) and also antagonists for N-methyl-d-aspartate (NMDA) receptors at the glycine (Cai et al., 1996).
Recently, we have synthesized a series of 1,2,3,4-tetrahydroquinoline derivatives and a few molecules in fact exhibit pharmacological activity (unpublished results). In a continuation of our work on the derivatives of 1,2,3,4-tetrahydroquinolines (Jeyaseelan et al., 2014, 2015a,b), we report herein the synthesis and of 1-[(6-chloropyridin-3-yl)sulfonyl]-1,2,3,4-tetrahydroquinoline, (I).
2. Structural commentary
The molecular structure of compound (I) is shown in Fig. 1. The dihedral angle between the planes of the aromatic rings is 50.13 (11)°. In comparison, the dihedral angle in the 1-tosyl-1,2,3,4-tetrahydroquinoline, (II), is 47.74 (9)° (Jeyaseelan et al., 2014), and in 1-benzylsulfonyl-1,2,3,4-tetrahydroquinoline, (III), it is 74.15 (10)° (Jeyaseelan et al., 2015b). In the structures of compounds (II), (III) and 1-methanesulfonyl-1,2,3,4-tetrahydroquinoline, (IV) (Jeyaseelan et al., 2015a), the tetrahydropyridine (C1/C6–C9/N1) ring is in a half-chair conformation, with the methylene C9 atom as the flap. However, the bond-angle sums at the N atom in (I), (II), (III) and (IV) differ somehow, with values of 350.0, 350.2, 354.61 and 347.9°, respectively.
3. Supramolecular features
In the crystal, inversion dimers linked by pairs of C11—H11⋯O2 hydrogen bonds generate R22(10) loops. In addition, molecules are linked by C7—H7A⋯O1 hydrogen bonds, generating C(7) chains along [100], as shown in Fig. 2. Numerical values of these interactions are compiled in Table 1.
4. Synthesis and crystallization
To an ice-cold solution of 1,2,3,4-tetrahydroquinoline (1.332 g, 10 mmol) and triethylamine (1.518 g, 15 mmol) in dichloromethane (50 ml), a solution of 6-chloropyridine-3-sulfonyl chloride (2.332 g, 11 mmol) in dichloromethane (20 ml) was added dropwise and stirred for 30 min. The reaction mixture was diluted with dichloromethane (150 ml), the organic layer washed with aqueous 5% NaHCO3 solution and brine, and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure to give 1-[(6-chloropyridin-3-yl)sulfonyl]-1,2,3,4-tetrahydroquinoline, (I). The product was recrystallized from a mixture of dichloromethane and n-hexane (1:1 v/v) to obtain crystals suitable for X-ray diffraction studies.
5. details
Crystal data, data collection and structure . H atoms were positioned with idealized geometry using a riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms and with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1061311
10.1107/S2056989015008099/wm5147sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015008099/wm5147Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015008099/wm5147Isup3.cml
1,2,3,4-Tetrahydroquinoline derivatives play a vital role in developing pharmacological agents and they have been considered as potential drugs (White et al., 1994; Kokwaro & Taylor, 1990; Omura & Nakagawa, 1981) and also antagonists for N-methyl-d-aspartate (NMDA) receptors at the glycine
(Cai et al., 1996).Recently, we have synthesized a series of 1,2,3,4-tetrahydroquinoline derivatives and a few molecules in fact exhibit pharmacological activity (unpublished results). In a continuation of our work on the derivatives of 1,2,3,4-tetrahydroquinolines (Jeyaseelan et al., 2014, 2015a,b), we report herein the synthesis and
of 1-[(6-chloropyridin-3-yl)sulfonyl]-1,2,3,4-tetrahydroquinoline, (I).The molecular structure of compound (I) is shown in Fig. 1. The dihedral angle between the planes of the aromatic rings is 50.13 (11)°. In comparison, the dihedral angle in the related 1-tosyl-1,2,3,4-tetrahydroquinoline, (II), is 47.74 (9)° (Jeyaseelan et al., 2014), and in 1-benzylsulfonyl-1,2,3,4-tetrahydroquinoline, (III), it is 74.15 (10)° (Jeyaseelan et al., 2015b). In the structures of compounds (II), (III) and 1-methanesulfonyl-1,2,3,4-tetrahydroquinoline, (IV) (Jeyaseelan et al., 2015a), the tetrahydropyridine (C1/C6–C9/N1) ring is in a half-chair conformation, with the methylene C9 atom as the flap. However, the bond-angle sums at the N atom in (I), (II), (III) and (IV) differ somehow, with values of 350.0, 350.2, 354.61 and 347.9°, respectively.
In the crystal, inversion dimers linked by pairs of C11—H11···O2 hydrogen bonds generate R22(10) loops. In addition, molecules are linked by C7—H7A···O1 hydrogen bonds, generating C(7) chains along [100], as shown in Fig 2. Numerical values of these interactions are compiled in Table 1.
To an ice-cold solution of 1,2,3,4-tetrahydroquinoline (1.332 g, 10 mmol) and triethylamine (1.518 g, 15 mmol) in dichloromethane (50 ml), a solution of 6-chloropyridine-3-sulfonyl chloride (2.332 g, 11 mmol) in dichloromethane (20 ml) was added dropwise and stirred for 30 min. The reaction mixture was diluted with dichloromethane (150 ml), the organic layer washed with aqueous 5% NaHCO3 solution and brine, and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure to give 1-[(6-chloropyridin-3-yl)sulfonyl]-1,2,3,4-tetrahydroquinoline, (I). The product was recrystallized from a mixture of dichloromethane and n-hexane (1:1 v/v) to obtain crystals suitable for X-ray diffraction studies.
Crystal data, data collection and structure
details are summarized in Table 2. H atoms were positioned with idealized geometry using a riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms and with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms.Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. The molecular packing of the title compound. Dashed lines indicate the pairs of C—H···O hydrogen bonds which link the molecules into inversion dimers with R22(10) ring motifs and forming C(7) chains along [100]. |
C14H13ClN2O2S | F(000) = 320 |
Mr = 308.77 | prism |
Triclinic, P1 | Dx = 1.474 Mg m−3 |
Hall symbol: -P 1 | Melting point: 413 K |
a = 6.5661 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.2595 (18) Å | Cell parameters from 1980 reflections |
c = 11.3490 (19) Å | θ = 1.9–25.0° |
α = 69.101 (7)° | µ = 0.43 mm−1 |
β = 88.219 (7)° | T = 296 K |
γ = 77.238 (7)° | Prism, colourless |
V = 695.6 (2) Å3 | 0.23 × 0.18 × 0.16 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 2454 independent reflections |
Radiation source: fine-focus sealed tube | 1980 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 2.01 pixels mm-1 | θmax = 25.0°, θmin = 1.9° |
phi and ω scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −12→12 |
Tmin = 0.912, Tmax = 0.934 | l = −13→13 |
9865 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0677P)2 + 0.3614P] where P = (Fo2 + 2Fc2)/3 |
2454 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
0 constraints |
C14H13ClN2O2S | γ = 77.238 (7)° |
Mr = 308.77 | V = 695.6 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.5661 (10) Å | Mo Kα radiation |
b = 10.2595 (18) Å | µ = 0.43 mm−1 |
c = 11.3490 (19) Å | T = 296 K |
α = 69.101 (7)° | 0.23 × 0.18 × 0.16 mm |
β = 88.219 (7)° |
Bruker APEXII CCD diffractometer | 2454 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 1980 reflections with I > 2σ(I) |
Tmin = 0.912, Tmax = 0.934 | Rint = 0.053 |
9865 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.59 e Å−3 |
2454 reflections | Δρmin = −0.43 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3014 (3) | 0.1696 (3) | 0.3092 (2) | 0.0753 (7) | |
S | 0.40371 (11) | 0.28345 (8) | 0.24768 (6) | 0.0562 (3) | |
Cl1 | 1.24374 (14) | 0.01308 (10) | 0.08760 (9) | 0.0853 (3) | |
C10 | 0.6392 (4) | 0.2111 (3) | 0.1933 (2) | 0.0479 (6) | |
N1 | 0.4673 (3) | 0.3394 (2) | 0.35739 (19) | 0.0532 (6) | |
O2 | 0.3005 (3) | 0.4047 (2) | 0.14401 (19) | 0.0712 (6) | |
C11 | 0.7513 (4) | 0.2997 (3) | 0.1091 (2) | 0.0504 (6) | |
H11 | 0.6991 | 0.3983 | 0.0764 | 0.060* | |
N2 | 0.9018 (4) | 0.0058 (3) | 0.2047 (2) | 0.0657 (7) | |
C1 | 0.5901 (4) | 0.4468 (3) | 0.3217 (2) | 0.0479 (6) | |
C13 | 1.0055 (4) | 0.0935 (3) | 0.1264 (2) | 0.0545 (7) | |
C6 | 0.7874 (4) | 0.4136 (3) | 0.3794 (3) | 0.0542 (7) | |
C12 | 0.9387 (4) | 0.2403 (3) | 0.0750 (3) | 0.0545 (7) | |
H12 | 1.0188 | 0.2965 | 0.0190 | 0.065* | |
C14 | 0.7193 (5) | 0.0656 (3) | 0.2371 (3) | 0.0615 (8) | |
H14 | 0.6417 | 0.0064 | 0.2921 | 0.074* | |
C2 | 0.5110 (5) | 0.5812 (3) | 0.2320 (3) | 0.0678 (8) | |
H2 | 0.3760 | 0.6042 | 0.1966 | 0.081* | |
C5 | 0.9038 (5) | 0.5175 (4) | 0.3419 (3) | 0.0690 (8) | |
H5 | 1.0362 | 0.4975 | 0.3798 | 0.083* | |
C9 | 0.5138 (5) | 0.2322 (4) | 0.4875 (3) | 0.0733 (10) | |
H9A | 0.4544 | 0.2766 | 0.5470 | 0.088* | |
H9B | 0.4466 | 0.1542 | 0.4963 | 0.088* | |
C3 | 0.6339 (7) | 0.6804 (3) | 0.1957 (3) | 0.0812 (10) | |
H3 | 0.5830 | 0.7694 | 0.1335 | 0.097* | |
C4 | 0.8292 (6) | 0.6494 (4) | 0.2502 (3) | 0.0766 (10) | |
H4 | 0.9112 | 0.7169 | 0.2255 | 0.092* | |
C7 | 0.8693 (6) | 0.2732 (4) | 0.4825 (4) | 0.0796 (10) | |
H7A | 0.9980 | 0.2263 | 0.4563 | 0.096* | |
H7B | 0.9042 | 0.2917 | 0.5566 | 0.096* | |
C8 | 0.7326 (7) | 0.1753 (5) | 0.5187 (4) | 0.124 (2) | |
H8A | 0.7792 | 0.1037 | 0.4804 | 0.149* | |
H8B | 0.7507 | 0.1261 | 0.6095 | 0.149* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0680 (14) | 0.0963 (16) | 0.0687 (13) | −0.0494 (13) | 0.0085 (11) | −0.0202 (12) |
S | 0.0469 (4) | 0.0698 (5) | 0.0465 (4) | −0.0217 (3) | −0.0027 (3) | −0.0090 (3) |
Cl1 | 0.0736 (6) | 0.0948 (7) | 0.0859 (6) | 0.0056 (5) | −0.0027 (5) | −0.0446 (5) |
C10 | 0.0520 (15) | 0.0511 (15) | 0.0373 (12) | −0.0186 (12) | −0.0063 (11) | −0.0069 (11) |
N1 | 0.0489 (12) | 0.0633 (14) | 0.0406 (11) | −0.0183 (11) | 0.0032 (9) | −0.0072 (10) |
O2 | 0.0547 (12) | 0.0850 (15) | 0.0553 (11) | −0.0067 (11) | −0.0148 (9) | −0.0068 (11) |
C11 | 0.0571 (16) | 0.0441 (14) | 0.0429 (13) | −0.0133 (12) | −0.0019 (12) | −0.0056 (11) |
N2 | 0.0813 (19) | 0.0509 (14) | 0.0591 (15) | −0.0116 (13) | −0.0060 (13) | −0.0140 (12) |
C1 | 0.0511 (15) | 0.0463 (14) | 0.0435 (13) | −0.0087 (12) | 0.0095 (11) | −0.0146 (11) |
C13 | 0.0566 (16) | 0.0595 (17) | 0.0472 (14) | −0.0088 (13) | −0.0096 (12) | −0.0203 (13) |
C6 | 0.0566 (16) | 0.0517 (16) | 0.0551 (15) | −0.0155 (13) | 0.0029 (13) | −0.0184 (13) |
C12 | 0.0561 (16) | 0.0596 (17) | 0.0482 (14) | −0.0218 (14) | 0.0053 (12) | −0.0149 (13) |
C14 | 0.078 (2) | 0.0509 (17) | 0.0508 (15) | −0.0255 (16) | 0.0011 (14) | −0.0056 (13) |
C2 | 0.0673 (19) | 0.0558 (18) | 0.0628 (18) | −0.0001 (15) | 0.0048 (15) | −0.0088 (14) |
C5 | 0.070 (2) | 0.070 (2) | 0.077 (2) | −0.0312 (17) | 0.0105 (16) | −0.0290 (17) |
C9 | 0.079 (2) | 0.093 (2) | 0.0399 (15) | −0.0443 (19) | 0.0005 (14) | −0.0004 (15) |
C3 | 0.105 (3) | 0.0411 (16) | 0.081 (2) | −0.0057 (18) | 0.025 (2) | −0.0101 (15) |
C4 | 0.098 (3) | 0.060 (2) | 0.084 (2) | −0.0356 (19) | 0.033 (2) | −0.0315 (18) |
C7 | 0.066 (2) | 0.068 (2) | 0.086 (2) | −0.0170 (17) | −0.0195 (17) | −0.0029 (17) |
C8 | 0.110 (3) | 0.118 (3) | 0.089 (3) | −0.050 (3) | −0.042 (3) | 0.047 (3) |
O1—S | 1.428 (2) | C6—C5 | 1.385 (4) |
S—O2 | 1.423 (2) | C6—C7 | 1.492 (4) |
S—O1 | 1.428 (2) | C12—H12 | 0.9300 |
S—N1 | 1.644 (2) | C14—H14 | 0.9300 |
S—C10 | 1.756 (3) | C2—C3 | 1.378 (5) |
Cl1—C13 | 1.723 (3) | C2—H2 | 0.9300 |
C10—C14 | 1.376 (4) | C5—C4 | 1.374 (5) |
C10—C11 | 1.383 (3) | C5—H5 | 0.9300 |
N1—C1 | 1.443 (3) | C9—C8 | 1.430 (5) |
N1—C9 | 1.484 (3) | C9—H9A | 0.9700 |
C11—C12 | 1.358 (4) | C9—H9B | 0.9700 |
C11—H11 | 0.9300 | C3—C4 | 1.362 (5) |
N2—C13 | 1.314 (4) | C3—H3 | 0.9300 |
N2—C14 | 1.325 (4) | C4—H4 | 0.9300 |
C1—C2 | 1.386 (4) | C7—C8 | 1.437 (5) |
C1—C6 | 1.387 (4) | C7—H7A | 0.9700 |
C13—C12 | 1.378 (4) | C8—H8A | 0.9700 |
O2—S—O1 | 120.12 (13) | C3—C2—C1 | 119.5 (3) |
O2—S—N1 | 108.30 (13) | C3—C2—H2 | 120.2 |
O1—S—N1 | 106.51 (12) | C1—C2—H2 | 120.2 |
O2—S—C10 | 106.62 (12) | C4—C5—C6 | 121.9 (3) |
O1—S—C10 | 107.97 (14) | C4—C5—H5 | 119.1 |
N1—S—C10 | 106.63 (12) | C6—C5—H5 | 119.1 |
C14—C10—C11 | 118.8 (3) | C8—C9—N1 | 113.3 (3) |
C14—C10—S | 120.6 (2) | C8—C9—H9A | 108.9 |
C11—C10—S | 120.6 (2) | N1—C9—H9A | 108.9 |
C1—N1—C9 | 115.2 (2) | C8—C9—H9B | 108.9 |
C1—N1—S | 117.64 (16) | N1—C9—H9B | 108.9 |
C9—N1—S | 117.2 (2) | H9A—C9—H9B | 107.7 |
C12—C11—C10 | 118.9 (3) | C4—C3—C2 | 120.7 (3) |
C12—C11—H11 | 120.6 | C4—C3—H3 | 119.6 |
C10—C11—H11 | 120.6 | C2—C3—H3 | 119.6 |
C13—N2—C14 | 116.3 (2) | C3—C4—C5 | 119.4 (3) |
C2—C1—C6 | 120.7 (3) | C3—C4—H4 | 120.3 |
C2—C1—N1 | 120.4 (3) | C5—C4—H4 | 120.3 |
C6—C1—N1 | 118.8 (2) | C8—C7—C6 | 116.5 (3) |
N2—C13—C12 | 125.4 (3) | C8—C7—H7A | 108.2 |
N2—C13—Cl1 | 115.3 (2) | C6—C7—H7A | 108.2 |
C12—C13—Cl1 | 119.2 (2) | C8—C7—H7B | 108.2 |
C5—C6—C1 | 117.8 (3) | C6—C7—H7B | 108.2 |
C5—C6—C7 | 120.7 (3) | H7A—C7—H7B | 107.3 |
C1—C6—C7 | 121.5 (2) | C9—C8—C7 | 118.0 (4) |
C11—C12—C13 | 117.4 (3) | C9—C8—H8A | 107.8 |
C11—C12—H12 | 121.3 | C7—C8—H8A | 107.8 |
C13—C12—H12 | 121.3 | C9—C8—H8B | 107.8 |
N2—C14—C10 | 123.1 (3) | C7—C8—H8B | 107.8 |
N2—C14—H14 | 118.4 | H8A—C8—H8B | 107.1 |
C10—C14—H14 | 118.4 | ||
O2—S—C10—C14 | −145.4 (2) | C9—N1—C1—C6 | 27.0 (4) |
O2—S—C10—C14 | −145.4 (2) | S—N1—C1—C6 | −117.9 (2) |
O1—S—C10—C14 | −15.0 (3) | C14—N2—C13—C12 | −1.0 (4) |
O1—S—C10—C14 | −15.0 (3) | C14—N2—C13—Cl1 | 179.2 (2) |
O1—S—C10—C14 | −15.0 (3) | C2—C1—C6—C5 | −1.8 (4) |
N1—S—C10—C14 | 99.1 (2) | N1—C1—C6—C5 | 178.8 (2) |
O2—S—C10—C11 | 37.0 (2) | C2—C1—C6—C7 | 175.7 (3) |
O2—S—C10—C11 | 37.0 (2) | N1—C1—C6—C7 | −3.7 (4) |
O1—S—C10—C11 | 167.3 (2) | C10—C11—C12—C13 | 0.4 (4) |
O1—S—C10—C11 | 167.3 (2) | N2—C13—C12—C11 | 0.9 (4) |
O1—S—C10—C11 | 167.3 (2) | Cl1—C13—C12—C11 | −179.2 (2) |
N1—S—C10—C11 | −78.6 (2) | C13—N2—C14—C10 | −0.3 (4) |
O2—S—N1—C1 | −54.9 (2) | C11—C10—C14—N2 | 1.5 (4) |
O2—S—N1—C1 | −54.9 (2) | S—C10—C14—N2 | −176.1 (2) |
O1—S—N1—C1 | 174.7 (2) | C6—C1—C2—C3 | 3.1 (4) |
O1—S—N1—C1 | 174.7 (2) | N1—C1—C2—C3 | −177.6 (3) |
O1—S—N1—C1 | 174.7 (2) | C1—C6—C5—C4 | −0.3 (5) |
C10—S—N1—C1 | 59.5 (2) | C7—C6—C5—C4 | −177.8 (3) |
O2—S—N1—C9 | 161.0 (2) | C1—N1—C9—C8 | −46.6 (5) |
O2—S—N1—C9 | 161.0 (2) | S—N1—C9—C8 | 98.4 (4) |
O1—S—N1—C9 | 30.5 (2) | C1—C2—C3—C4 | −2.3 (5) |
O1—S—N1—C9 | 30.5 (2) | C2—C3—C4—C5 | 0.2 (5) |
O1—S—N1—C9 | 30.5 (2) | C6—C5—C4—C3 | 1.1 (5) |
C10—S—N1—C9 | −84.6 (2) | C5—C6—C7—C8 | 177.1 (4) |
C14—C10—C11—C12 | −1.6 (4) | C1—C6—C7—C8 | −0.3 (6) |
S—C10—C11—C12 | 176.12 (19) | N1—C9—C8—C7 | 43.5 (6) |
C9—N1—C1—C2 | −152.4 (3) | C6—C7—C8—C9 | −20.5 (7) |
S—N1—C1—C2 | 62.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O2i | 0.93 | 2.60 | 3.309 (3) | 134 |
C7—H7A···O1ii | 0.97 | 2.66 | 3.586 (5) | 160 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O2i | 0.93 | 2.60 | 3.309 (3) | 134.0 |
C7—H7A···O1ii | 0.97 | 2.66 | 3.586 (5) | 160.1 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C14H13ClN2O2S |
Mr | 308.77 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 6.5661 (10), 10.2595 (18), 11.3490 (19) |
α, β, γ (°) | 69.101 (7), 88.219 (7), 77.238 (7) |
V (Å3) | 695.6 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.43 |
Crystal size (mm) | 0.23 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2013) |
Tmin, Tmax | 0.912, 0.934 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9865, 2454, 1980 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.146, 1.09 |
No. of reflections | 2454 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.59, −0.43 |
Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).
Acknowledgements
SJ thanks the Vision Group on Science and Technology, Government of Karnataka, for the award of a major project under the CISE scheme (reference No. VGST/CISE/GRD-192/2013–14), and the Indian Institute of Science, Bangalore, for extending the XRD facility.
References
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, S. X., Zhou, Z. L., Huang, J. C., Whittemore, E. R., Egbuwoku, Z. O., Lü, Y., Hawkinson, J. E., Woodward, R. M., Weber, E. & Keana, J. F. W. (1996). J. Med. Chem. 39, 3248–3255. CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jeyaseelan, S., Asha, K. V., Venkateshappa, G., Raghavendrakumar, P. & Palakshamurthy, B. S. (2014). Acta Cryst. E70, o1176. CSD CrossRef IUCr Journals Google Scholar
Jeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015a). Acta Cryst. E71, o20. CSD CrossRef IUCr Journals Google Scholar
Jeyaseelan, S., Sowmya, B. R., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015b). Acta Cryst. E71, o249–o250. CSD CrossRef IUCr Journals Google Scholar
Kokwaro, G. O. & Taylor, G. (1990). Drug Chem. Toxicol. 13, 347–354. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ōmura, S. & Nakagawa, A. (1981). Tetrahedron Lett. 22, 2199–2202. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
White, J. D., Yager, K. M. & Yakura, T. (1994). J. Am. Chem. Soc. 116, 1831–1838. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.