research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 663-666

Crystal structure of NH4[La(SO4)2(H2O)]

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté des Sciences Exactes, Département de Chimie, Université de Constantine 1, 25000 Constantine, Algeria, and bLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 05 route de Narbonne, 31077 Toulouse Cedex 4
*Correspondence e-mail: b_meriem80@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 April 2015; accepted 18 May 2015; online 23 May 2015)

The principal building units in the crystal structure of ammonium aqua­bis(sulfato)­lanthanate(III) are slightly distorted SO4 tetra­hedra, LaO9 polyhedra in the form of distorted tricapped trigonal prisms, and NH4+ ions. The La3+ cation is coordinated by eight O atoms from six different sulfate tetra­hedra, two of which are bidentate coordinating and four monodentate, as well as one O atom from a water mol­ecule; each sulfate anion bridges three La3+ cations. These bridging modes result in the formation of a three-dimensional anionic [La(SO4)2(H2O)] framework that is stabilized by O—H⋯O hydrogen-bonding inter­actions. The disordered ammonium cations are situated in the cavities of this framework and are hydrogen-bonded to six surrounding O atoms.

1. Chemical context

Three-dimensional framework materials are characterized by their structural diversity. They are of continuing inter­est as a result of their technologically important properties and potential applications in catalysis, ion-exchange, adsorption, inter­calation, and radioactive waste remediation (Szostak, 1989[Szostak, R. (1989). In Molecular Sieves: Principles of Synthesis and Identification. New York: Reinhold.]; Cheetham et al., 1999[Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]; Rosi et al., 2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]; Ok et al., 2007[Ok, K. M., Doran, M. B. & O'Hare, D. (2007). Dalton Trans. pp. 3325-3329.]). Many materials showing such functional features contain structurally versatile cations, in particular heavier metal cations with large coordination spheres. Among many other cations, lanthanide cations have been used widely, since they exhibit high coordination numbers and can show a large topological diversity in the resulting framework structures (Bataille & Louër, 2002[Bataille, T. & Louër, D. (2002). J. Mater. Chem. 12, 3487-3493.]; Wickleder, 2002[Wickleder, M. S. (2002). Chem. Rev. 102, 2011-2088.]; Yuan et al., 2005[Yuan, Y.-P., Wang, R.-Y., Kong, D.-Y., Mao, J.-G. & Clearfield, A. (2005). J. Solid State Chem. 178, 2030-2035.]). One of the most promising synthetic methods for the preparation of compounds with framework structures is the hydro­thermal (or solvothermal) reaction technique (Feng et al., 1997[Feng, P., Bu, X. & Stucky, G. D. (1997). Nature, 388, 735-741.]; Natarajan et al., 2000[Natarajan, S., Neeraj, S., Choudhury, A. & Rao, C. N. R. (2000). Inorg. Chem. 39, 1426-1433.]) in which mineralizers such as acids or bases are introduced to increase the solubility and reactivity of the reagents (Laudise, 1959[Laudise, R. A. (1959). J. Am. Chem. Soc. 81, 562-566.]; Laudise & Ballman, 1958[Laudise, R. A. & Ballman, A. A. (1958). J. Am. Chem. Soc. 80, 2655-2657.]). Moreover, organic or inorganic templates are used to direct the topologies of the framework structures and the concomitant physical and chemical properties of the products (Szostak, 1989[Szostak, R. (1989). In Molecular Sieves: Principles of Synthesis and Identification. New York: Reinhold.]; Breck, 1974[Breck, D. W. (1974). In Zeolite Molecule Sieves: Structure, Chemistry and Use. London: Wiley and Sons.]; Barrer, 1982[Barrer, R. M. (1982). In Hydrothermal Chemistry of Zeolites. London: Academic Press.]). Thus, we have tried to utilize the hydro­thermal technique to react a lanthanide cation (La3+) with sulfuric acid in the presence of NH4OH and 3-amino­benzoic acid as a template to prepare higher dimensional framework materials. However, in the present case the organic template was not incorporated in the resultant crystal structure of the title compound, NH4[La(SO4)2(H2O)], which represents a new hydrate form. Other members in the system NH4+/La3+/SO42−/(H2O) are two forms of anhydrous (NH4)[La(SO4)2] (Sarukhanyan et al., 1984a[Sarukhanyan, N. L., Iskhakova, L. D. & Trunov, V. K. (1984a). Kristallografiya, 29, 435-439]; Bénard-Rocherullé et al., 2001[Bénard-Rocherullé, P., Tronel, H. & Louër, D. (2001). Mater. Sci. Forum, 378-381, 476-481.]), (NH4)5[La(SO4)4] (Niinisto et al., 1980[Niinisto, L., Toivonen, J. & Valkonen, J. (1980). Finn. Chem. Lett. 3, 87-92.]) and (NH4)[La(SO4)2(H2O)4] (Keppert et al., 1999[Kepert, C. J., Junk, P. C., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 601-615.]).

Sulfates with an A+:Ln3+ (A+ = alkaline ions, Ln3+ = lanthanide ions) ratio of 1:1 are one of the best investigated groups among hydrous ternary sulfates. They crystallize either as monohydrates (Blackburn & Gerkin, 1995[Blackburn, A. C. & Gerkin, R. E. (1995). Acta Cryst. C51, 2215-2218.]; Barnes, 1995[Barnes, J. C. (1995). Acta Cryst. C51, 2466-2469.]; Iskhakova et al., 1985a[Iskhakova, L. D., Sarukhanyan, N. L. & Shchegoleva, T. M. (1985a). Kristallographiya, 30, 474-479.]) or tetra­hydrates (Eriksson et al., 1974[Eriksson, B., Larsson, L. O., Niinisto, L. & Skoglund, U. (1974). Inorg. Chem. 13, 290-295.]), and in few cases also as dihydrates (Kaucic et al., 1985[Kaučič, V., Bukovec, N. & Golič, Lj. (1985). Acta Cryst. C41, 636-638.]; Iskhakova & Trunov, 1985[Iskhakova, L. D. & Trunov, V. K. (1985). Kristallographiya, 30, 279-283.]). The tetra­hydrates are mainly found for the bigger monovalent ions Cs+, NH4+, and Rb+. For the smaller A+ ions such as Na+, the monohydrate becomes dominant.

2. Structural commentary

The structure of the title compound comprises LaO9 polyhedra and SO4 tetra­hedra as the principal building units (Fig. 1[link]), forming an anionic [La(SO4)2(H2O)] framework by sharing common edges and vertices (Fig. 2[link]). The NH4+ counter-cations are situated in the cavities of this framework.

[Figure 1]
Figure 1
The principal building units, LaO9 polyhedra and SO4 tetra­hedra, in the crystal structure of (NH4)[La(SO4)2(H2O)], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (ii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (iii) 1 − x, 2 − y, −z; (iv) 2 − x, 2 − y, 1 − z; (v) x, [{3\over 2}] − y, [{1\over 2}] + z.]
[Figure 2]
Figure 2
The connection of LaO9 polyhedra and SO4 tetra­hedra in the crystal structure of (NH4)[La(SO4)2(H2O)], viewed along the a axis.

The La3+ cation is coordinated by eight O atoms from six different sulfate tetra­hedra. Two tetra­hedra are in a bidentate coordination mode and four tetra­hedra are in a monodentate mode. The distorted tricapped trigonal–prismatic coordination sphere is completed by one O atom from a water mol­ecule. The La—O bond lengths, ranging from 2.472 (3) to 2.637 (3) Å with 2.496 (3) Å to the water mol­ecule, and the O—La—O angles, ranging from 53.55 (8) to 145.43 (9)°, are similar to the analogous distances found in NaLa(SO4)2·H2O (Blackburn & Gerkin, 1995[Blackburn, A. C. & Gerkin, R. E. (1995). Acta Cryst. C51, 2215-2218.]). The ninefold coordination of La3+ in NH4[La(SO4)2(H2O)] is typical for the majority of monohydrated alkali rare earth sulfate complexes and of rare earth complexes in general. For early members of the rare earth sulfate series, the coordination number of nine is realized, e.g. for Ce, Pr, La and Nd (Blackburn & Gerkin, 1994[Blackburn, A. C. & Gerkin, R. E. (1994). Acta Cryst. C50, 835-838.], 1995[Blackburn, A. C. & Gerkin, R. E. (1995). Acta Cryst. C51, 2215-2218.]; Iskhakova et al., 1985b[Iskhakova, L. D., Sarukhanyan, N. L. & Trunov, V. K. (1985b). Zh. Neorg. Khim. 30, 978-981.], 1988[Iskhakova, L. D., Gasanov, Y. & Trunov, V. K. (1988). Zh. Strukt. Khim. 29, 95-99.]). For later members of the sulfate series, such as Gd (Sarukhanyan et al., 1984b[Sarukhanyan, N. L., Iskhakova, L. D., Trunov, V. K. & Ilyukhin, V. V. (1984b). Koord. Khim. 10, 981-987.]), the coordination number decreases to eight, presumably in association with the lanthanide contraction. There are two sulfur atoms (S1, S2) in the asymmetric unit of the title compound, both with very similar S—O bond lengths in the ranges 1.465 (3)–1.488 (3) and 1.468 (3)–1.490 (3) Å, respectively. The range of O—S—O bond angles, 106.04 (16)–110.89 (19)° for S1 and 104.70 (16)–111.52 (17)° for S2, reflect the distortion of the two sulfate tetra­hedra. Each SO4 anion bridges three La3+ cations (Fig. 2[link]).

3. Supra­molecular features

The bridging modes of the O atoms result in the formation of a three-dimensional anionic framework, stabilized by O—H⋯O hydrogen-bonding inter­actions between the aqua ligand and the two SO4 tetra­hedra (Table 1[link]) whereby each sulfate tetra­hedron establishes one hydrogen bond with the water mol­ecule via the oxygen atom (O6 and O3) corres­ponding to the longest S—O bonds. The N atoms are situated in the cavities of this framework. Although the H atoms of the ammonium cation could not be located, the N⋯O distances between 2.865 (5) and 3.036 (5) Å strongly suggest N—H⋯O hydrogen bonds of medium strength (Table 1[link]). It appears most likely that the number of O atoms (six) in the vicinity of the N atom is the reason for the disorder of the ammonium cation.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11⋯O3i 0.84 (5) 1.94 (5) 2.717 (5) 153 (5)
O1W—H21⋯O6ii 0.85 (3) 1.95 (3) 2.778 (4) 168 (5)
N1⋯O1iii     2.942 (5)  
N1⋯O6ii     3.036 (5)  
N1⋯O3iv     2.914 (5)  
N1⋯O8v     2.943 (5)  
N1⋯O5vi     2.865 (5)  
N1⋯O4     2.866 (5)  
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+1, -y+2, -z.

4. Synthesis and crystallization

The title compound was obtained during the attempted preparation of a complex resulting from the hydro­thermal reaction of La2O3 (0.1 g, 1 mmol) with 37%wt sulfuric acid and 3-amino­benzoic acid (0.048 g, 1 mmol) in the presence of NH4OH in 10 ml water. The mixture was kept in a 23 ml Teflon-lined steel autoclave at 433 K for 3 d. After this treatment, the autoclave was cooled slowly to room temperature. Slow evaporation of the solvent at room temperature led to the formation of prismatic colourless crystals of the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The oxygen-bound hydrogen atoms were located in a difference Fourier map and were refined with restraints of the O—H bond length [0.85 (1) Å] and H⋯H distances (1.39 Å) and with Uiso(H) = 1.5Ueq(O). The ammonium hydrogen atoms could not be located reliably by difference Fourier methods. Several disorder models considering the hydrogen-bonding environment (see Table 1[link]) failed, eventually leading to the exclusion of the ammonium hydrogen atoms from the refinement. The maximum and minimum peaks in the final difference Fourier map are 0.93 and 0.72 Å, respectively, from atom La1.

Table 2
Experimental details

Crystal data
Chemical formula NH4[La(SO4)2(H2O)]
Mr 367.07
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.4919 (16), 9.978 (2), 11.9268 (19)
β (°) 128.511 (10)
V3) 790.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.96
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction For a sphere (Dwiggins, 1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.])
Tmin, Tmax 0.419, 0.431
No. of measured, independent and observed [I > 2σ(I)] reflections 2414, 2414, 2362
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.081, 1.26
No. of reflections 2414
No. of parameters 124
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.81, −1.48
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Diffraction data were collected some time ago, and merged in the corresponding crystal class. Unfortunately, the original measurement data got lost; experiments to repeat the crystal growth were unsuccessful. Therefore the crystal structure was finally solved and refined with the merged data set.

Supporting information


Chemical context top

Three-dimensional framework materials are characterized by their structural diversity. They are of continuing inter­est as a result of their technologically important properties and potential applications in catalysis, ion-exchange, adsorption, inter­calation, and radioactive waste remediation (Szostak, 1989; Cheetham et al., 1999; Rosi et al., 2003; Ok et al., 2007). Many materials showing such functional features contain structurally versatile cations, in particular heavier metal cations with large coordination spheres. Among many other cations, lanthanide cations have been used widely, since they exhibit high coordination numbers and can show a large topological diversity in the resulting framework structures (Bataille & Louër, 2002; Wickleder, 2002; Yuan et al., 2005). One of the most promising synthetic methods for the preparation of compounds with framework structures is the hydro­thermal (or solvothermal) reaction technique (Feng et al., 1997; Natarajan et al., 2000) in which mineralizers such as acids or bases are introduced to increase the solubility and reactivity of the reagents (Laudise, 1959; Laudise & Ballman, 1958). Moreover, organic or inorganic templates are used to direct the topologies of the framework structures and the concomitant physical and chemical properties of the products (Szostak, 1989; Breck, 1974; Barrer, 1982). Thus, we have tried to utilize the hydro­thermal technique to react a lanthanide cation (La3+) with sulfuric acid in the presence of NH4OH and 3-amino­benzoic acid as a template to prepare higher dimensional framework materials. However, in the present case the organic template was not incorporated in the resultant crystal structure of the title compound, NH4[La(SO4)2(H2O)], which represents a new hydrate form. Other members in the system NH4+/La3+/SO42-/(H2O) are two forms of anhydrous (NH4)[La(SO4)2] (Sarukhanyan et al., 1984a; Bénard-Rocherullé et al., 2001), (NH4)5[La(SO4)4] (Niinisto et al., 1980) and (NH4)[La(SO4)2(H2O)4] (Junk et al., 1999).

Sulfates with an A+:Ln3+ (A+ = alkaline ions, Ln3+ = lanthanide ions) ratio of 1:1 are one of the best investigated groups among hydrous ternary sulfates. They crystallize either as monohydrates (Blackburn & Gerkin, 1995; Barnes, 1995; Iskhakova et al., 1985a) or tetra­hydrates (Eriksson et al., 1974), and in few cases also as dihydrates (Kaucic et al., 1985; Iskhakova & Trunov, 1985). The tetra­hydrates are mainly found for the bigger monovalent ions Cs+, NH4+, and Rb+. For the smaller A+ ions such as Na+, the monohydrate becomes dominant.

Structural commentary top

The structure of the title compound comprises LaO9 polyhedra and SO4 tetra­hedra as the principal building units (Fig. 1), forming an anionic [La(SO4)2(H2O)]- framework by sharing common edges and vertices (Fig. 2). The NH4+ counter-cations are situated in the cavities of this framework.

The La3+ cation is coordinated by eight O atoms from six different sulfate tetra­hedra. Two tetra­hedra are in a bidentate coordination mode and four tetra­hedra are in a monodentate mode. The distorted tricapped trigonal–prismatic coordination sphere is completed by one O atom from a water molecule. The La—O bond lengths, ranging from 2.472 (3) to 2.637 (3) Å with 2.496 (3) Å to the water molecule, and the O—La—O angles, ranging from 53.55 (8) to 145.43 (9)°, are similar to the analogous distances found in NaLa(SO4)2·H2O (Blackburn & Gerkin, 1995). The ninefold coordination of La3+ in NH4[La(SO4)2(H2O)] is typical for the majority of monohydrated alkali rare earth sulfate complexes and of rare earth complexes in general. For early members of the rare earth sulfate series, the coordination number of nine is realized, e.g. for Ce, Pr, La and Nd (Blackburn & Gerkin, 1994, 1995; Iskhakova et al., 1985b, 1988). For later members of the sulfate series, such as Gd (Sarukhanyan et al., 1984b), the coordination number decreases to eight, presumably in association with the lanthanide contraction. There are two sulfur atoms (S1, S2) in the asymmetric unit of the title compound, both with very similar S—O bond lengths in the ranges 1.465 (3)–1.488 (3) and 1.468 (3)–1.490 (3) Å, respectively. The range of O—S—O bond angles, 106.04 (16)–110.89 (19)° for S1 and 104.70 (16)–111.52 (17)° for S2, reflect the distortion of the two sulfate tetra­hedra. Each SO4 anion bridges three La3+ cations (Fig. 2).

Supra­molecular features top

The bridging modes of the O atoms result in the formation of a three-dimensional anionic framework, stabilized by O—H···O hydrogen-bonding inter­actions between the aqua ligand and the two SO4 tetra­hedra (Table 1) whereby each sulfate tetra­hedron establishes one hydrogen bond with the water molecule via the oxygen atom (O6 and O3) corresponding to the longest S—O bonds. The N atoms are situated in the cavities of this framework. Although the H atoms of the ammonium cation could not be located, the N···O distances between 2.865 (5) and 3.036 (5) Å strongly suggest N—H···O hydrogen bonds of medium strength (Table 1). It appears most likely that the number of O atoms (six) in the vicinity of the N atom is the reason for the disorder of the ammonium cation.

Synthesis and crystallization top

The title compound was obtained during the attempted preparation of a complex resulting from the hydro­thermal reaction of La2O3 (0.1 g, 1 mmol) with 37%wt sulfuric acid and 3-amino­benzoic acid (0.048 g, 1 mmol) in the presence of NH4OH in 10 ml water. The mixture was kept in a 23 ml Teflon-lined steel autoclave at 433 K for 3 d. After this treatment, the autoclave was cooled slowly to room temperature. Slow evaporation of the solvent at room temperature led to the formation of prismatic colourless crystals of the title compound.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The oxygen-bound hydrogen atoms were located in a difference Fourier map and were refined with restraints of the O—H bond length [0.85 (1) Å] and H···H distances (1.39 Å) and with Uiso(H) = 1.5Ueq(O). The ammonium hydrogen atoms could not be located reliably by difference Fourier methods. Several disorder models considering the hydrogen-bonding environment (see Table 1) failed, eventually leading to the exclusion of the ammonium hydrogen atoms from the refinement. The maximum and minimum peaks in the final difference Fourier map are 0.93 and 0.72 Å, respectively, from atom La1.

Diffraction data were collected some time ago, and merged in the corresponding crystal class. Unfortunately, the original measurement data got lost; experiments to repeat the crystal growth were unsuccessful. Therefore the crystal structure was finally solved and refined with the merged data set.

Related literature top

For related literature, see: Barnes (1995); Barrer (1982); Bataille & Louer (2002); Bénard-Rocherullé, Tronel & Louer (2001); Blackburn & Gerkin (1994, 1995); Breck (1974); Cheetham et al. (1999); Eriksson et al. (1974); Feng et al. (1997); Iskhakova & Trunov (1985); Iskhakova et al. (1985a, 1985b, 1988); Junk et al. (1999); Kaucic et al. (1985); Laudise (1959); Laudise & Ballman (1958); Natarajan et al. (2000); Niinisto et al. (1980); Ok et al. (2007); Rosi et al. (2003); Sarukhanyan et al. (1984a, 1984b); Szostak (1989); Wickleder (2002); Yuan et al. (2005).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The principal building units, LaO9 polyhedra and SO4 tetrahedra, in the crystal structure of (NH4)[La(SO4)2(H2O)], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, -1/2 + y, 1/2 - z; (ii) 1 - x, 1/2 + y, 1/2 - z; (iii) 1 - x, 2 - y, -z; (iv) 2 - x, 2 - y, 1 - z; (v) x, 3/2 - y, 1/2 + z.]
[Figure 2] Fig. 2. The connection of LaO9 polyhedra and SO4 tetrahedra in the crystal structure of (NH4)[La(SO4)2(H2O)], viewed along the a axis.
Ammonium aquabis(sulfato)lanthanate(III) top
Crystal data top
NH4[La(SO4)2(H2O)]F(000) = 680
Mr = 367.07Dx = 3.083 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2542 reflections
a = 8.4919 (16) Åθ = 3–30.5°
b = 9.978 (2) ŵ = 5.96 mm1
c = 11.9268 (19) ÅT = 100 K
β = 128.511 (10)°Prism, colourless
V = 790.7 (3) Å30.30 × 0.20 × 0.10 × 0.10 (radius) mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2414 independent reflections
Radiation source: fine-focus sealed tube2362 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.0000
Detector resolution: 9 pixels mm-1θmax = 30.5°, θmin = 3.0°
CCD scansh = 120
Absorption correction: for a sphere
(Dwiggins, 1975)
k = 140
Tmin = 0.419, Tmax = 0.431l = 1217
2414 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + (0.0427P)2 + 2.7376P]
where P = (Fo2 + 2Fc2)/3
2414 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 1.81 e Å3
3 restraintsΔρmin = 1.48 e Å3
Crystal data top
NH4[La(SO4)2(H2O)]V = 790.7 (3) Å3
Mr = 367.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4919 (16) ŵ = 5.96 mm1
b = 9.978 (2) ÅT = 100 K
c = 11.9268 (19) Å0.30 × 0.20 × 0.10 × 0.10 (radius) mm
β = 128.511 (10)°
Data collection top
Nonius KappaCCD
diffractometer
2414 independent reflections
Absorption correction: for a sphere
(Dwiggins, 1975)
2362 reflections with I > 2σ(I)
Tmin = 0.419, Tmax = 0.431Rint = 0.0000
2414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.26Δρmax = 1.81 e Å3
2414 reflectionsΔρmin = 1.48 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.71683 (3)0.839390 (18)0.248314 (19)0.01052 (8)
S10.74128 (12)1.09162 (8)0.42791 (8)0.01163 (15)
S20.70608 (12)0.91270 (8)0.02026 (8)0.01129 (15)
O10.6085 (4)1.0290 (3)0.1156 (3)0.0179 (5)
O20.8105 (5)0.8337 (3)0.0602 (3)0.0189 (5)
O30.8535 (4)0.9585 (3)0.1310 (3)0.0156 (5)
O80.9057 (4)1.1402 (3)0.5727 (3)0.0182 (5)
O40.5597 (4)0.8301 (3)0.0221 (3)0.0188 (5)
O70.5667 (4)1.1797 (3)0.3641 (3)0.0229 (6)
O60.6873 (4)0.9516 (3)0.4347 (3)0.0185 (5)
O50.8062 (4)1.0870 (3)0.3387 (3)0.0192 (5)
O1W0.8711 (5)0.6537 (3)0.2059 (3)0.0241 (6)
H110.982 (5)0.615 (6)0.266 (4)0.036*
H210.820 (8)0.632 (6)0.121 (2)0.036*
N10.2567 (6)0.6458 (4)0.2302 (4)0.0244 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01098 (11)0.00981 (11)0.01113 (11)0.00037 (5)0.00706 (9)0.00028 (5)
S10.0106 (3)0.0110 (3)0.0114 (3)0.0009 (3)0.0059 (3)0.0005 (3)
S20.0118 (3)0.0111 (3)0.0101 (3)0.0008 (3)0.0064 (3)0.0000 (2)
O10.0212 (12)0.0144 (11)0.0173 (11)0.0055 (10)0.0116 (10)0.0056 (9)
O20.0214 (13)0.0207 (14)0.0180 (13)0.0035 (10)0.0140 (12)0.0013 (9)
O30.0158 (11)0.0162 (11)0.0111 (10)0.0037 (9)0.0066 (9)0.0028 (9)
O80.0141 (12)0.0206 (12)0.0141 (12)0.0009 (10)0.0059 (10)0.0041 (10)
O40.0181 (13)0.0212 (13)0.0174 (12)0.0061 (9)0.0111 (11)0.0018 (9)
O70.0139 (12)0.0207 (13)0.0217 (13)0.0068 (10)0.0049 (11)0.0025 (10)
O60.0240 (13)0.0145 (11)0.0174 (12)0.0029 (10)0.0130 (11)0.0002 (9)
O50.0246 (13)0.0181 (12)0.0211 (12)0.0020 (10)0.0174 (11)0.0016 (10)
O1W0.0289 (16)0.0220 (14)0.0177 (13)0.0126 (11)0.0127 (12)0.0010 (10)
N10.0248 (16)0.0252 (18)0.0296 (18)0.0037 (13)0.0201 (15)0.0006 (13)
Geometric parameters (Å, º) top
La1—O7i2.472 (3)S1—O81.471 (3)
La1—O1W2.496 (3)S1—O51.472 (3)
La1—O8ii2.521 (3)S1—O61.488 (3)
La1—O1iii2.533 (3)S2—O11.468 (3)
La1—O2iv2.563 (3)S2—O21.470 (3)
La1—O32.596 (3)S2—O41.480 (3)
La1—O52.612 (3)S2—O31.490 (3)
La1—O42.614 (3)O1W—H110.845 (10)
La1—O62.637 (3)O1W—H210.844 (10)
S1—O71.465 (3)
O7i—La1—O1W82.44 (12)O7i—La1—O699.16 (10)
O7i—La1—O8ii143.78 (10)O1W—La1—O6145.43 (9)
O1W—La1—O8ii71.36 (10)O8ii—La1—O689.43 (9)
O7i—La1—O1iii71.36 (10)O1iii—La1—O670.57 (9)
O1W—La1—O1iii139.83 (10)O2iv—La1—O671.00 (9)
O8ii—La1—O1iii143.55 (9)O3—La1—O6124.69 (8)
O7i—La1—O2iv72.90 (10)O5—La1—O653.55 (8)
O1W—La1—O2iv76.67 (10)O4—La1—O6144.28 (9)
O8ii—La1—O2iv76.96 (10)O7—S1—O8109.04 (17)
O1iii—La1—O2iv121.24 (9)O7—S1—O5110.89 (19)
O7i—La1—O3127.89 (10)O8—S1—O5110.49 (17)
O1W—La1—O376.32 (10)O7—S1—O6110.19 (18)
O8ii—La1—O370.11 (9)O8—S1—O6110.17 (16)
O1iii—La1—O396.07 (9)O5—S1—O6106.04 (16)
O2iv—La1—O3142.55 (9)O7—S1—La1119.80 (13)
O7i—La1—O5140.16 (10)O8—S1—La1131.15 (12)
O1W—La1—O5137.02 (11)O5—S1—La152.71 (11)
O8ii—La1—O571.62 (9)O6—S1—La153.78 (11)
O1iii—La1—O572.00 (9)O1—S2—O2109.67 (16)
O2iv—La1—O5114.84 (9)O1—S2—O4111.40 (17)
O3—La1—O571.17 (8)O2—S2—O4111.52 (17)
O7i—La1—O474.43 (10)O1—S2—O3109.85 (16)
O1W—La1—O469.69 (10)O2—S2—O3109.59 (17)
O8ii—La1—O4116.81 (9)O4—S2—O3104.70 (16)
O1iii—La1—O474.17 (9)La1—O1W—H11128 (4)
O2iv—La1—O4135.44 (9)La1—O1W—H21119 (4)
O3—La1—O453.65 (8)H11—O1W—H21112 (3)
O5—La1—O4109.69 (9)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+2, z+1; (iii) x+1, y+2, z; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O3v0.84 (5)1.94 (5)2.717 (5)153 (5)
O1W—H21···O6vi0.85 (3)1.95 (3)2.778 (4)168 (5)
N1···O1vii2.942 (5)
N1···O6vi3.036 (5)
N1···O3viii2.914 (5)
N1···O8i2.943 (5)
N1···O5iii2.865 (5)
N1···O42.866 (5)
Symmetry codes: (i) x+1, y1/2, z+1/2; (iii) x+1, y+2, z; (v) x+2, y1/2, z+1/2; (vi) x, y+3/2, z1/2; (vii) x+1, y1/2, z1/2; (viii) x1, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O3i0.84 (5)1.94 (5)2.717 (5)153 (5)
O1W—H21···O6ii0.85 (3)1.95 (3)2.778 (4)168 (5)
N1···O1iii..2.942 (5).
N1···O6ii..3.036 (5).
N1···O3iv..2.914 (5).
N1···O8v..2.943 (5).
N1···O5vi..2.865 (5).
N1···O4..2.866 (5).
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z1/2; (iv) x1, y+3/2, z1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaNH4[La(SO4)2(H2O)]
Mr367.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.4919 (16), 9.978 (2), 11.9268 (19)
β (°) 128.511 (10)
V3)790.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.96
Crystal size (mm)0.30 × 0.20 × 0.10 × 0.10 (radius)
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionFor a sphere
(Dwiggins, 1975)
Tmin, Tmax0.419, 0.431
No. of measured, independent and
observed [I > 2σ(I)] reflections
2414, 2414, 2362
Rint0.0000
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.081, 1.26
No. of reflections2414
No. of parameters124
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.81, 1.48

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 1999), WinGX (Farrugia, 2012).

 

Acknowledgements

Technical support (X-ray measurements) from Université Henri Poincaré, Nancy 1, is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBarnes, J. C. (1995). Acta Cryst. C51, 2466–2469.  CrossRef CAS IUCr Journals Google Scholar
First citationBarrer, R. M. (1982). In Hydrothermal Chemistry of Zeolites. London: Academic Press.  Google Scholar
First citationBataille, T. & Louër, D. (2002). J. Mater. Chem. 12, 3487–3493.  Web of Science CSD CrossRef CAS Google Scholar
First citationBénard-Rocherullé, P., Tronel, H. & Louër, D. (2001). Mater. Sci. Forum, 378–381, 476–481.  Google Scholar
First citationBlackburn, A. C. & Gerkin, R. E. (1994). Acta Cryst. C50, 835–838.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlackburn, A. C. & Gerkin, R. E. (1995). Acta Cryst. C51, 2215–2218.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBreck, D. W. (1974). In Zeolite Molecule Sieves: Structure, Chemistry and Use. London: Wiley and Sons.  Google Scholar
First citationCheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationEriksson, B., Larsson, L. O., Niinisto, L. & Skoglund, U. (1974). Inorg. Chem. 13, 290–295.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, P., Bu, X. & Stucky, G. D. (1997). Nature, 388, 735–741.  CAS Google Scholar
First citationIskhakova, L. D., Gasanov, Y. & Trunov, V. K. (1988). Zh. Strukt. Khim. 29, 95–99.  Google Scholar
First citationIskhakova, L. D., Sarukhanyan, N. L. & Shchegoleva, T. M. (1985a). Kristallographiya, 30, 474–479.  CAS Google Scholar
First citationIskhakova, L. D., Sarukhanyan, N. L. & Trunov, V. K. (1985b). Zh. Neorg. Khim. 30, 978–981.  Google Scholar
First citationIskhakova, L. D. & Trunov, V. K. (1985). Kristallographiya, 30, 279–283.  CAS Google Scholar
First citationKaučič, V., Bukovec, N. & Golič, Lj. (1985). Acta Cryst. C41, 636–638.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKepert, C. J., Junk, P. C., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 601–615.  CrossRef Google Scholar
First citationLaudise, R. A. (1959). J. Am. Chem. Soc. 81, 562–566.  CrossRef CAS Google Scholar
First citationLaudise, R. A. & Ballman, A. A. (1958). J. Am. Chem. Soc. 80, 2655–2657.  CrossRef CAS Google Scholar
First citationNatarajan, S., Neeraj, S., Choudhury, A. & Rao, C. N. R. (2000). Inorg. Chem. 39, 1426–1433.  CSD CrossRef PubMed CAS Google Scholar
First citationNiinisto, L., Toivonen, J. & Valkonen, J. (1980). Finn. Chem. Lett. 3, 87–92.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOk, K. M., Doran, M. B. & O'Hare, D. (2007). Dalton Trans. pp. 3325–3329.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSarukhanyan, N. L., Iskhakova, L. D. & Trunov, V. K. (1984a). Kristallografiya, 29, 435–439  CAS Google Scholar
First citationSarukhanyan, N. L., Iskhakova, L. D., Trunov, V. K. & Ilyukhin, V. V. (1984b). Koord. Khim. 10, 981–987.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzostak, R. (1989). In Molecular Sieves: Principles of Synthesis and Identification. New York: Reinhold.  Google Scholar
First citationWickleder, M. S. (2002). Chem. Rev. 102, 2011–2088.  CrossRef PubMed CAS Google Scholar
First citationYuan, Y.-P., Wang, R.-Y., Kong, D.-Y., Mao, J.-G. & Clearfield, A. (2005). J. Solid State Chem. 178, 2030–2035.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 663-666
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds