metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages m127-m128

Crystal structure of poly[di­aqua­(μ2-benzene-1,4-di­carboxyl­ato-κ2O1:O4)(μ2-benzene-1,4-di­carboxyl­ato-κ4O1,O1′:O4,O4′)bis­­(μ2-3,3′,5,5′-tetra­methyl-4,4′-bi­pyrazole-κ2N:N′)dinickel(II)]

aSchool of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
*Correspondence e-mail: g_jhe@126.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 April 2015; accepted 28 April 2015; online 7 May 2015)

The asymmetric unit of the polymeric title compound, [Ni(C8H4O4)(C10H14N4)(H2O)]n, contains one Ni2+ cation, one coordinating water mol­ecule, one 3,3′,5,5′-tetra­methyl-4,4′-bi­pyrazole ligand and half each of two benzene-1,4-di­carboxyl­ate anions, the other halves being generated by inversion symmetry. The Ni2+ cation exhibits an octa­hedral N2O4 coordination sphere defined by the O atoms of the water mol­ecule and two different anions and the N atoms of two symmetry-related N-heterocycles. The N-heterocycles and both anions bridge adjacent Ni2+ cations into a three-dimensional network structure, with one of the anions in a bis-bidentate and the other in a bis-monodentate bridging mode. N—H⋯O and O—H⋯O hydrogen bonds between the N-heterocycles and water mol­ecules as donor groups and the carboxyl­ate O atoms as acceptor groups consolidate the crystal packing.

1. Related literature

In the related water-free coordination polymer {[Zn(tereph­thalate)(H2Bpz)]·0.5(H2Bpz)}n (H2Bpz = 3,3′,5,5′-tetra­methyl-4,4′-bi­pyrazole), the Zn2+ cation is tetra­hedrally coordinated, see: He et al. (2007[He, J., Zhang, J.-X., Tan, G.-P., Yin, Y.-G., Zhang, D. & Hu, M.-H. (2007). Cryst. Growth Des. 7, 1508-1513.]). For the structure of [Ni(terephthalate)(pyrazole)4], see: Hong et al. (2005[Hong, C. S., Yoon, J. H., Lim, J. H. & Ko, M. H. (2005). Eur. J. Inorg. Chem. pp. 4818-4821.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ni(C8H4O4)(C10H14N4)(H2O)]

  • Mr = 431.09

  • Monoclinic, P 21 /n

  • a = 11.1603 (7) Å

  • b = 17.3367 (11) Å

  • c = 11.2345 (7) Å

  • β = 116.081 (1)°

  • V = 1952.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 293 K

  • 0.28 × 0.18 × 0.15 mm

2.2. Data collection

  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.645, Tmax = 0.746

  • 11758 measured reflections

  • 4236 independent reflections

  • 3627 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.04

  • 4236 reflections

  • 272 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O1i 0.84 (1) 1.80 (2) 2.601 (2) 159 (4)
O1w—H12⋯O4i 0.84 (1) 1.90 (2) 2.731 (2) 173 (3)
N2—H2⋯O4 0.88 (1) 1.98 (1) 2.837 (2) 164 (2)
N4—H4⋯O4ii 0.87 (1) 2.23 (1) 3.080 (3) 164 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

An aqueous mixture of nickel sulfate hexahydrate (52.6 mg, 0.2 mmol), 3,3',5,5'-tetra­methyl-4,4'-bi­pyrazole (38.1 mg, 0.2 mmol) and 1,4-benzene di­carb­oxy­lic acid (33.2 mg, 0.2 mmol) was placed in a Teflon-lined, stainless-steel reactor. The reactor was heated to 393 K for 48 hours. It was then cooled to room temperatuer at the rate of 5 K per hour. Green crystals were isolated in 70% yield. C, H, N elemental analysis. Calcd. for C18H20N4O5Ni: C 50.15, H 4.68, N 13.00%; found C 50.28, H 4.81, N 12.92%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2 to 1.5 times Uiso(C). The water and amino H-atoms were located in a difference Fourier map, and were refined with distance restraints of O—H 0.84 (1) Å and N—H 0.88 (1) Å; their Uiso(H) parameter were refined independently.

Related literature top

In the related water-free coordination polymer {[Zn(terephthalate)(H2Bpz)]·0.5(H2Bpz)}n (H2Bpz = 3,3',5,5'-tetramethyl-4,4'-bipyrazole), the Zn2+ cation is tetrahedrally coordinated, see: He et al. (2007). For the structure of [Ni(terephthalate)(pyrazole)4], see: Hong et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of a fragment of the three-dimensional network of [Ni(H2O)(C10H14N4)(C8H4O4)]n drawn at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Poly[diaqua(µ2-benzene-1,4-dicarboxylato-κ2O1:O4)(µ2-benzene-1,4-dicarboxylato-κ4O1,O1':O4,O4')bis(µ2-3,3',5,5'-tetramethyl-4,4'-bipyrazole-κ2N:N')dinickel(II)] top
Crystal data top
[Ni(C8H4O4)(C10H14N4)(H2O)]F(000) = 896
Mr = 431.09Dx = 1.467 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3721 reflections
a = 11.1603 (7) Åθ = 2.3–26.7°
b = 17.3367 (11) ŵ = 1.03 mm1
c = 11.2345 (7) ÅT = 293 K
β = 116.081 (1)°Prism, green
V = 1952.3 (2) Å30.28 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
4236 independent reflections
Radiation source: fine-focus sealed tube3627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1314
Tmin = 0.645, Tmax = 0.746k = 2122
11758 measured reflectionsl = 1014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.4664P]
where P = (Fo2 + 2Fc2)/3
4236 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.40 e Å3
4 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C8H4O4)(C10H14N4)(H2O)]V = 1952.3 (2) Å3
Mr = 431.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1603 (7) ŵ = 1.03 mm1
b = 17.3367 (11) ÅT = 293 K
c = 11.2345 (7) Å0.28 × 0.18 × 0.15 mm
β = 116.081 (1)°
Data collection top
Bruker SMART
diffractometer
4236 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
3627 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.746Rint = 0.027
11758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0354 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.40 e Å3
4236 reflectionsΔρmin = 0.25 e Å3
272 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.36576 (2)0.277787 (13)0.18220 (2)0.01814 (10)
O10.19348 (13)0.32361 (8)0.02675 (15)0.0266 (3)
O20.29813 (13)0.38770 (8)0.21146 (14)0.0261 (3)
O30.40583 (14)0.17246 (8)0.12360 (15)0.0279 (3)
O40.21805 (14)0.11750 (9)0.02559 (15)0.0308 (4)
O1w0.52381 (16)0.27350 (9)0.36205 (17)0.0316 (4)
H110.561 (3)0.2350 (13)0.408 (3)0.068 (11)*
H120.580 (2)0.3083 (13)0.400 (3)0.057 (9)*
N10.24869 (18)0.22143 (9)0.25933 (18)0.0253 (4)
N20.17275 (17)0.15986 (10)0.19515 (17)0.0243 (4)
H20.172 (2)0.1420 (14)0.1219 (15)0.034 (7)*
N30.01548 (17)0.17170 (10)0.59896 (18)0.0269 (4)
N40.10431 (19)0.13770 (12)0.67197 (19)0.0326 (4)
H40.125 (3)0.1247 (15)0.7539 (13)0.044 (8)*
C10.20219 (18)0.38216 (11)0.0984 (2)0.0221 (4)
C20.09733 (19)0.44350 (11)0.0473 (2)0.0234 (4)
C30.0975 (2)0.50261 (12)0.1296 (2)0.0285 (5)
H30.16330.50430.21670.034*
C40.0006 (2)0.55935 (12)0.0835 (2)0.0285 (5)
H4A0.00070.59900.13930.034*
C50.3431 (2)0.12127 (11)0.0413 (2)0.0241 (4)
C60.42497 (19)0.05760 (12)0.0211 (2)0.0234 (4)
C70.3661 (2)0.01133 (13)0.0363 (3)0.0348 (5)
H70.27600.01930.06020.042*
C80.4405 (2)0.06880 (13)0.0584 (2)0.0326 (5)
H80.40000.11480.09830.039*
C90.2976 (3)0.29163 (17)0.4676 (3)0.0512 (8)
H9A0.30630.33680.42260.077*
H9B0.38440.27480.53060.077*
H9C0.24450.30360.51310.077*
C100.2318 (2)0.22909 (12)0.3692 (2)0.0289 (5)
C110.1447 (2)0.17158 (12)0.3746 (2)0.0262 (4)
C120.1100 (2)0.12834 (12)0.2614 (2)0.0261 (4)
C130.0226 (2)0.05878 (14)0.2117 (3)0.0408 (6)
H13A0.03150.06340.11800.061*
H13B0.03390.05490.25580.061*
H13C0.07710.01340.22960.061*
C140.1337 (3)0.22052 (18)0.3690 (3)0.0508 (8)
H14A0.20200.23180.39640.076*
H14B0.16770.18500.29600.076*
H14C0.10660.26730.34190.076*
C150.0169 (2)0.18548 (13)0.4814 (2)0.0287 (5)
C160.1032 (2)0.16093 (13)0.4805 (2)0.0278 (5)
C170.1780 (2)0.13039 (15)0.6040 (2)0.0358 (5)
C180.3125 (3)0.0935 (2)0.6595 (3)0.0668 (10)
H18A0.36480.11170.74810.100*
H18B0.35630.10650.60530.100*
H18C0.30290.03850.66060.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01651 (14)0.01908 (15)0.01932 (16)0.00261 (9)0.00832 (11)0.00007 (10)
O10.0223 (7)0.0220 (7)0.0284 (8)0.0043 (5)0.0047 (6)0.0059 (6)
O20.0222 (7)0.0227 (7)0.0269 (8)0.0042 (5)0.0049 (6)0.0023 (6)
O30.0311 (8)0.0217 (7)0.0331 (9)0.0056 (6)0.0161 (7)0.0049 (6)
O40.0239 (7)0.0372 (9)0.0292 (9)0.0117 (6)0.0097 (7)0.0029 (7)
O1w0.0261 (8)0.0268 (9)0.0284 (9)0.0014 (6)0.0006 (7)0.0042 (7)
N10.0289 (9)0.0267 (9)0.0251 (9)0.0038 (7)0.0162 (8)0.0052 (7)
N20.0255 (8)0.0302 (9)0.0211 (9)0.0027 (7)0.0138 (8)0.0041 (7)
N30.0248 (9)0.0342 (10)0.0237 (9)0.0024 (7)0.0126 (8)0.0008 (8)
N40.0358 (10)0.0439 (11)0.0248 (11)0.0133 (8)0.0195 (9)0.0087 (9)
C10.0194 (9)0.0201 (10)0.0258 (11)0.0013 (7)0.0090 (8)0.0001 (8)
C20.0191 (9)0.0208 (10)0.0276 (11)0.0029 (7)0.0076 (8)0.0001 (8)
C30.0241 (10)0.0278 (11)0.0249 (11)0.0054 (8)0.0027 (9)0.0024 (9)
C40.0295 (11)0.0234 (10)0.0265 (12)0.0061 (8)0.0069 (9)0.0043 (9)
C50.0293 (10)0.0245 (10)0.0231 (11)0.0078 (8)0.0158 (9)0.0036 (8)
C60.0241 (10)0.0238 (10)0.0228 (11)0.0064 (7)0.0108 (8)0.0019 (8)
C70.0207 (10)0.0328 (12)0.0516 (15)0.0008 (8)0.0166 (10)0.0108 (11)
C80.0273 (11)0.0262 (11)0.0442 (14)0.0023 (8)0.0157 (10)0.0132 (10)
C90.0678 (19)0.0585 (17)0.0416 (16)0.0270 (15)0.0372 (15)0.0238 (13)
C100.0310 (11)0.0344 (12)0.0278 (12)0.0031 (9)0.0190 (10)0.0045 (9)
C110.0266 (10)0.0320 (11)0.0251 (11)0.0031 (8)0.0159 (9)0.0009 (9)
C120.0238 (10)0.0306 (11)0.0268 (11)0.0009 (8)0.0138 (9)0.0009 (9)
C130.0405 (13)0.0400 (14)0.0455 (15)0.0118 (11)0.0223 (12)0.0045 (11)
C140.0406 (15)0.086 (2)0.0278 (14)0.0220 (14)0.0174 (12)0.0123 (14)
C150.0309 (11)0.0345 (12)0.0264 (12)0.0011 (9)0.0178 (10)0.0006 (9)
C160.0293 (10)0.0336 (12)0.0261 (11)0.0002 (9)0.0173 (9)0.0014 (9)
C170.0355 (12)0.0491 (14)0.0298 (13)0.0106 (10)0.0209 (11)0.0032 (11)
C180.0548 (17)0.109 (3)0.0436 (17)0.0446 (19)0.0283 (14)0.0177 (18)
Geometric parameters (Å, º) top
Ni1—O12.1036 (14)C5—C61.512 (3)
Ni1—O22.1276 (14)C6—C71.380 (3)
Ni1—O32.0559 (14)C6—C8iv1.383 (3)
Ni1—O1w2.0164 (16)C7—C81.388 (3)
Ni1—N12.0995 (17)C7—H70.9300
Ni1—N3i2.1185 (17)C8—C6iv1.383 (3)
O1—C11.273 (2)C8—H80.9300
O2—C11.254 (2)C9—C101.491 (3)
O3—C51.251 (3)C9—H9A0.9600
O4—C51.262 (2)C9—H9B0.9600
O1w—H110.836 (10)C9—H9C0.9600
O1w—H120.836 (10)C10—C111.412 (3)
N1—C101.335 (3)C11—C121.378 (3)
N1—N21.357 (2)C11—C161.466 (3)
N2—C121.342 (3)C12—C131.496 (3)
N2—H20.877 (10)C13—H13A0.9600
N3—C151.335 (3)C13—H13B0.9600
N3—N41.358 (2)C13—H13C0.9600
N3—Ni1ii2.1185 (17)C14—C151.489 (3)
N4—C171.352 (3)C14—H14A0.9600
N4—H40.874 (10)C14—H14B0.9600
C1—C21.497 (3)C14—H14C0.9600
C2—C31.380 (3)C15—C161.410 (3)
C2—C4iii1.395 (3)C16—C171.372 (3)
C3—C41.383 (3)C17—C181.493 (3)
C3—H30.9300C18—H18A0.9600
C4—C2iii1.395 (3)C18—H18B0.9600
C4—H4A0.9300C18—H18C0.9600
O1w—Ni1—O394.04 (6)C8iv—C6—C5119.95 (19)
O1w—Ni1—N189.90 (7)C6—C7—C8120.42 (19)
O3—Ni1—N188.93 (6)C6—C7—H7119.8
O1w—Ni1—O1157.43 (6)C8—C7—H7119.8
O3—Ni1—O1108.52 (6)C6iv—C8—C7120.0 (2)
N1—Ni1—O190.63 (7)C6iv—C8—H8120.0
O1w—Ni1—N3i90.92 (7)C7—C8—H8120.0
O3—Ni1—N3i87.68 (6)C10—C9—H9A109.5
N1—Ni1—N3i176.55 (7)C10—C9—H9B109.5
O1—Ni1—N3i89.90 (6)H9A—C9—H9B109.5
O1w—Ni1—O295.26 (6)C10—C9—H9C109.5
O3—Ni1—O2170.69 (6)H9A—C9—H9C109.5
N1—Ni1—O291.47 (6)H9B—C9—H9C109.5
O1—Ni1—O262.17 (5)N1—C10—C11110.44 (19)
N3i—Ni1—O291.79 (6)N1—C10—C9122.3 (2)
C1—O1—Ni189.33 (11)C11—C10—C9127.3 (2)
C1—O2—Ni188.74 (11)C12—C11—C10105.30 (18)
C5—O3—Ni1137.48 (13)C12—C11—C16128.3 (2)
Ni1—O1w—H11129 (2)C10—C11—C16126.3 (2)
Ni1—O1w—H12127 (2)N2—C12—C11106.69 (18)
H11—O1w—H12102 (3)N2—C12—C13122.4 (2)
C10—N1—N2105.09 (17)C11—C12—C13130.9 (2)
C10—N1—Ni1134.60 (15)C12—C13—H13A109.5
N2—N1—Ni1120.24 (13)C12—C13—H13B109.5
C12—N2—N1112.47 (17)H13A—C13—H13B109.5
C12—N2—H2126.0 (16)C12—C13—H13C109.5
N1—N2—H2121.4 (16)H13A—C13—H13C109.5
C15—N3—N4104.79 (17)H13B—C13—H13C109.5
C15—N3—Ni1ii128.69 (15)C15—C14—H14A109.5
N4—N3—Ni1ii123.63 (14)C15—C14—H14B109.5
C17—N4—N3112.41 (19)H14A—C14—H14B109.5
C17—N4—H4128.6 (18)C15—C14—H14C109.5
N3—N4—H4119.0 (17)H14A—C14—H14C109.5
O2—C1—O1119.70 (17)H14B—C14—H14C109.5
O2—C1—C2120.65 (18)N3—C15—C16110.80 (19)
O1—C1—C2119.65 (18)N3—C15—C14122.5 (2)
C3—C2—C4iii120.16 (18)C16—C15—C14126.7 (2)
C3—C2—C1120.00 (18)C17—C16—C15105.50 (19)
C4iii—C2—C1119.84 (18)C17—C16—C11126.9 (2)
C2—C3—C4120.5 (2)C15—C16—C11127.4 (2)
C2—C3—H3119.8N4—C17—C16106.5 (2)
C4—C3—H3119.8N4—C17—C18123.6 (2)
C3—C4—C2iii119.38 (19)C16—C17—C18129.9 (2)
C3—C4—H4A120.3C17—C18—H18A109.5
C2iii—C4—H4A120.3C17—C18—H18B109.5
O3—C5—O4126.16 (18)H18A—C18—H18B109.5
O3—C5—C6116.72 (18)C17—C18—H18C109.5
O4—C5—C6117.12 (18)H18A—C18—H18C109.5
C7—C6—C8iv119.55 (19)H18B—C18—H18C109.5
C7—C6—C5120.49 (18)
O1w—Ni1—O1—C11.3 (2)Ni1—O3—C5—C6170.67 (14)
O3—Ni1—O1—C1178.98 (11)O3—C5—C6—C7161.3 (2)
N1—Ni1—O1—C189.91 (12)O4—C5—C6—C718.2 (3)
N3i—Ni1—O1—C193.50 (12)O3—C5—C6—C8iv19.8 (3)
O2—Ni1—O1—C11.42 (11)O4—C5—C6—C8iv160.8 (2)
O1w—Ni1—O2—C1178.52 (12)C8iv—C6—C7—C80.9 (4)
O3—Ni1—O2—C13.8 (4)C5—C6—C7—C8178.0 (2)
N1—Ni1—O2—C188.49 (12)C6—C7—C8—C6iv0.9 (4)
O1—Ni1—O2—C11.45 (11)N2—N1—C10—C110.2 (2)
N3i—Ni1—O2—C190.39 (12)Ni1—N1—C10—C11176.44 (15)
O1w—Ni1—O3—C5157.3 (2)N2—N1—C10—C9179.1 (2)
N1—Ni1—O3—C567.5 (2)Ni1—N1—C10—C94.2 (4)
O1—Ni1—O3—C522.8 (2)N1—C10—C11—C120.2 (3)
N3i—Ni1—O3—C5112.0 (2)C9—C10—C11—C12179.5 (3)
O2—Ni1—O3—C525.1 (5)N1—C10—C11—C16179.4 (2)
O1w—Ni1—N1—C1044.9 (2)C9—C10—C11—C161.3 (4)
O3—Ni1—N1—C10138.9 (2)N1—N2—C12—C110.7 (2)
O1—Ni1—N1—C10112.6 (2)N1—N2—C12—C13178.74 (19)
N3i—Ni1—N1—C10148.7 (11)C10—C11—C12—N20.5 (2)
O2—Ni1—N1—C1050.4 (2)C16—C11—C12—N2179.7 (2)
O1w—Ni1—N1—N2131.40 (15)C10—C11—C12—C13178.9 (2)
O3—Ni1—N1—N237.35 (15)C16—C11—C12—C130.4 (4)
O1—Ni1—N1—N271.16 (15)N4—N3—C15—C160.7 (2)
N3i—Ni1—N1—N227.6 (12)Ni1ii—N3—C15—C16160.26 (15)
O2—Ni1—N1—N2133.34 (15)N4—N3—C15—C14178.0 (2)
C10—N1—N2—C120.6 (2)Ni1ii—N3—C15—C1421.1 (3)
Ni1—N1—N2—C12176.69 (14)N3—C15—C16—C170.7 (3)
C15—N3—N4—C170.5 (3)C14—C15—C16—C17177.9 (3)
Ni1ii—N3—N4—C17161.73 (17)N3—C15—C16—C11174.6 (2)
Ni1—O2—C1—O12.43 (19)C14—C15—C16—C116.8 (4)
Ni1—O2—C1—C2177.19 (17)C12—C11—C16—C17103.9 (3)
Ni1—O1—C1—O22.46 (19)C10—C11—C16—C1775.2 (3)
Ni1—O1—C1—C2177.17 (17)C12—C11—C16—C1581.9 (3)
O2—C1—C2—C37.0 (3)C10—C11—C16—C1599.1 (3)
O1—C1—C2—C3172.62 (19)N3—N4—C17—C160.0 (3)
O2—C1—C2—C4iii173.1 (2)N3—N4—C17—C18178.6 (3)
O1—C1—C2—C4iii7.2 (3)C15—C16—C17—N40.4 (3)
C4iii—C2—C3—C40.2 (4)C11—C16—C17—N4174.9 (2)
C1—C2—C3—C4179.6 (2)C15—C16—C17—C18178.1 (3)
C2—C3—C4—C2iii0.2 (4)C11—C16—C17—C186.6 (5)
Ni1—O3—C5—O49.9 (4)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O1v0.84 (1)1.80 (2)2.601 (2)159 (4)
O1w—H12···O4v0.84 (1)1.90 (2)2.731 (2)173 (3)
N2—H2···O40.88 (1)1.98 (1)2.837 (2)164 (2)
N4—H4···O4vi0.87 (1)2.23 (1)3.080 (3)164 (2)
Symmetry codes: (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O1i0.84 (1)1.80 (2)2.601 (2)159 (4)
O1w—H12···O4i0.84 (1)1.90 (2)2.731 (2)173 (3)
N2—H2···O40.88 (1)1.98 (1)2.837 (2)164 (2)
N4—H4···O4ii0.87 (1)2.23 (1)3.080 (3)164 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z+1.
 

Acknowledgements

The authors acknowledge Guangdong University of Technology for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, J., Zhang, J.-X., Tan, G.-P., Yin, Y.-G., Zhang, D. & Hu, M.-H. (2007). Cryst. Growth Des. 7, 1508–1513.  Web of Science CSD CrossRef CAS Google Scholar
First citationHong, C. S., Yoon, J. H., Lim, J. H. & Ko, M. H. (2005). Eur. J. Inorg. Chem. pp. 4818–4821.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages m127-m128
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds