metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages m129-m130

Crystal structure of poly[[μ-4-(hy­dr­oxy­meth­yl)pyridine-κ2N:O][4-(hy­dr­oxy­meth­yl)pyridine-κN](μ-thio­cyanato-κ2N:S)(thio­cyanato-κN)cadmium]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: jwerner@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 May 2015; accepted 7 May 2015; online 13 May 2015)

The crystal structure of the title compound, [Cd(NCS)2(C6H7NO)2]n is made up of Cd2+ cations that are coordinated by three thio­cyanate ligands and three 4-(hy­droxy­meth­yl)pyridine ligands within distorted N4OS octa­hedra. The asymmetric unit consists of one Cd2+ cation, two thio­cyanate anions and two 4-(hy­droxy­meth­yl)pyridine ligands in general positions. Two Cd2+ cations are linked by two μ-1,3 N- and S-bonding thio­ycanate anions into dimers which are further linked into branched chains along [100] by two μ-1,6 N- and O-bonding 4-(hy­droxy­meth­yl)pyridine ligands. One additional N-bonded 4-(hy­droxy­meth­yl)pyridine ligand and one additional N-bonded thio­cyanate anion are only terminally bonded to the metal cation. Inter­chain O—H⋯S hydrogen bonds between the hy­droxy H atoms and one of the thio­cyanate S atoms connect the chains into a three-dimensional network.

1. Related literature

For similar structures with thio­cyanate anions in bridging coordination to cadmium, see: Banerjee et al. (2005[Banerjee, S., Wu, B., Lassahn, P.-G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535-544.]); Tahli et al. (2011[Tahli, A., Maclaren, J. K., Boldog, I. & Janiak, C. (2011). Inorg. Chim. Acta, 374, 506-513.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cd(NCS)2(C6H7NO)2]

  • Mr = 446.81

  • Monoclinic, P 21 /c

  • a = 10.9124 (3) Å

  • b = 20.3261 (6) Å

  • c = 7.9722 (2) Å

  • β = 105.965 (2)°

  • V = 1700.08 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 200 K

  • 0.47 × 0.33 × 0.20 mm

2.2. Data collection

  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED 32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.526, Tmax = 0.672

  • 25370 measured reflections

  • 3597 independent reflections

  • 3259 reflections with I > 2σ(I)

  • Rint = 0.063

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.058

  • S = 1.12

  • 3597 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11O⋯S1i 0.84 2.49 3.330 (2) 174
O21—H21O⋯S1ii 0.84 2.42 3.2410 (18) 164
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

CdSO4·3/8H2O was purchased from Merck and 4-(hy­droxy­methyl)­pyridine and Ba(NCS)2·3H2O were purchased from Alfa Aesar. Cd(NCS)2 was synthesized by stirring 17.5 g (57.0 mmol) Ba(NCS)2·3H2O and 14.6 g (57.0 mmol) CdSO4·3/8H2O in 300 ml water at RT for three hours. The white residue of BaSO4 was filtered off and dried at 353 K. The homogeneity of the product was checked by X-ray powder diffraction and elemental analysis. The title compound was prepared by the reaction of 34.3 mg (0.15 mmol) Cd(NCS)2 and 32.7 mg (0.30 mmol) 4-(hy­droxy­methyl)­pyridine in 1.5 ml methanol at RT. After one week suitable crystals of the title compound were obtained.

Refinement top

The carbon-bound hydrogen atoms were positioned with idealized geometry and were refined with Uiso(H) = 1.2Ueq(C) using a riding model with C—H = 0.95 Å for aromatic and C—H = 0.99 Å for methyl­ene H atoms. The oxygen-bound hydrogen atoms were located in a difference map. For the non-coordinating hydroxyl group the H atom was positioned with idealized geometry allowed to rotate but not to tip, and for the coordinating hydroxyl group its bond length was set to an ideal value of 0.84 Å. Finally, these H atoms were refined with Uiso(H) = 1.5Ueq(O) using a riding model. The pyridine ring of one of the 4-(hy­droxy­methyl)­pyridine ligands is disordered and was refined using a split model in two orientations with an occupancy ratio of 0.46:0.54.

Related literature top

For similar structures with thiocyanate anions in bridging coordination to cadmium, see: Banerjee et al. (2005); Tahli et al. (2011).

Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Part of the crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z + 1.]
[Figure 2] Fig. 2. Crystal structure of the title compound in a view approximately along [001]. Intermolecular O—H···S hydrogen bonding is shown as dashed lines; the disordered pyridine rings are omitted for clarity.
Poly[[µ-4-(hydroxymethyl)pyridine-κ2N:O][4-\ (hydroxymethyl)pyridine-κN](µ-thiocyanato-κ2N:S)\ (thiocyanato-κN)cadmium] top
Crystal data top
[Cd(NCS)2(C6H7NO)2]F(000) = 888
Mr = 446.81Dx = 1.746 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9124 (3) Åθ = 1.9–26.7°
b = 20.3261 (6) ŵ = 1.54 mm1
c = 7.9722 (2) ÅT = 200 K
β = 105.965 (2)°Block, colorless
V = 1700.08 (8) Å30.47 × 0.33 × 0.20 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
3259 reflections with I > 2σ(I)
ω scansRint = 0.063
Absorption correction: numerical
(X-SHAPE and X-RED 32; Stoe, 2008)
θmax = 26.7°, θmin = 1.9°
Tmin = 0.526, Tmax = 0.672h = 1313
25370 measured reflectionsk = 2525
3597 independent reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0217P)2 + 1.0598P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.003
3597 reflectionsΔρmax = 0.39 e Å3
245 parametersΔρmin = 0.44 e Å3
Crystal data top
[Cd(NCS)2(C6H7NO)2]V = 1700.08 (8) Å3
Mr = 446.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9124 (3) ŵ = 1.54 mm1
b = 20.3261 (6) ÅT = 200 K
c = 7.9722 (2) Å0.47 × 0.33 × 0.20 mm
β = 105.965 (2)°
Data collection top
Stoe IPDS-2
diffractometer
3597 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED 32; Stoe, 2008)
3259 reflections with I > 2σ(I)
Tmin = 0.526, Tmax = 0.672Rint = 0.063
25370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.12Δρmax = 0.39 e Å3
3597 reflectionsΔρmin = 0.44 e Å3
245 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.70099 (2)0.59480 (2)0.62587 (2)0.02720 (6)
N10.8330 (2)0.65716 (10)0.8375 (3)0.0371 (5)
C10.9127 (2)0.68944 (11)0.9253 (3)0.0274 (5)
S11.02442 (6)0.73463 (3)1.05226 (9)0.03659 (15)
N20.4160 (2)0.45729 (11)0.6240 (3)0.0390 (5)
C20.4891 (2)0.49106 (11)0.7172 (3)0.0291 (5)
S20.59224 (7)0.53855 (3)0.85273 (8)0.04034 (16)
N110.5601 (2)0.68370 (10)0.5577 (3)0.0338 (5)
C110.4387 (3)0.67718 (14)0.4676 (4)0.0477 (7)
H110.40820.63420.43180.057*
C120.3544 (3)0.72883 (15)0.4229 (4)0.0515 (8)
H120.26850.72120.35820.062*
C130.3958 (3)0.79188 (13)0.4729 (4)0.0396 (6)
C140.5211 (3)0.79861 (14)0.5691 (5)0.0587 (9)
H140.55360.84090.60900.070*
C150.5992 (3)0.74464 (13)0.6074 (5)0.0521 (8)
H150.68550.75090.67260.062*
C160.3100 (3)0.85176 (15)0.4315 (5)0.0578 (9)
H16A0.29750.86900.54180.069*
H16B0.35380.88630.38210.069*
O110.1919 (2)0.84038 (11)0.3164 (3)0.0560 (6)
H11O0.14400.82250.36950.084*
N210.8576 (2)0.51330 (10)0.6674 (3)0.0331 (5)
C210.9847 (8)0.5311 (4)0.7358 (11)0.0369 (17)0.46
H211.00440.57530.77200.044*0.46
C221.0837 (8)0.4867 (4)0.7529 (10)0.0371 (17)0.46
H221.16950.50010.80190.045*0.46
C231.0562 (2)0.42284 (12)0.6982 (3)0.0315 (5)
C240.9315 (9)0.4061 (4)0.6329 (12)0.0421 (19)0.46
H240.90900.36200.59810.050*0.46
C250.8377 (10)0.4528 (5)0.6170 (13)0.040 (2)0.46
H250.75210.43960.56530.048*0.46
C21'0.9611 (8)0.5162 (4)0.7970 (9)0.0456 (18)0.54
H21'0.96660.54940.88250.055*0.54
C22'1.0627 (8)0.4740 (4)0.8169 (9)0.0435 (17)0.54
H22'1.13710.47970.91130.052*0.54
C24'0.9438 (7)0.4180 (3)0.5626 (9)0.0372 (15)0.54
H24'0.93420.38400.47810.045*0.54
C25'0.8466 (9)0.4627 (4)0.5515 (10)0.0365 (17)0.54
H25'0.76970.45810.46060.044*0.54
C261.1645 (3)0.37527 (14)0.7161 (4)0.0394 (6)
H26A1.24450.39650.78370.047*
H26B1.14970.33640.78280.047*
O211.17960 (17)0.35385 (8)0.5527 (2)0.0352 (4)
H21O1.11850.32830.51000.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02612 (10)0.02547 (9)0.02941 (10)0.00284 (6)0.00661 (7)0.00213 (6)
N10.0362 (12)0.0363 (11)0.0353 (11)0.0040 (10)0.0041 (10)0.0081 (9)
C10.0310 (12)0.0257 (10)0.0268 (11)0.0038 (9)0.0101 (10)0.0012 (9)
S10.0352 (3)0.0342 (3)0.0357 (3)0.0051 (3)0.0018 (3)0.0052 (3)
N20.0413 (13)0.0408 (11)0.0337 (11)0.0132 (10)0.0081 (10)0.0055 (9)
C20.0319 (13)0.0285 (11)0.0298 (12)0.0006 (10)0.0135 (10)0.0028 (9)
S20.0436 (4)0.0491 (4)0.0293 (3)0.0211 (3)0.0117 (3)0.0072 (3)
N110.0285 (11)0.0324 (10)0.0381 (11)0.0011 (8)0.0052 (9)0.0008 (9)
C110.0339 (15)0.0357 (14)0.0641 (19)0.0000 (11)0.0025 (13)0.0130 (13)
C120.0317 (15)0.0474 (16)0.064 (2)0.0022 (12)0.0054 (14)0.0131 (14)
C130.0342 (14)0.0353 (13)0.0474 (15)0.0020 (11)0.0083 (12)0.0023 (11)
C140.0390 (17)0.0307 (13)0.093 (3)0.0030 (12)0.0039 (17)0.0012 (15)
C150.0320 (15)0.0327 (13)0.080 (2)0.0039 (11)0.0046 (15)0.0001 (14)
C160.0403 (17)0.0426 (16)0.082 (2)0.0062 (13)0.0033 (16)0.0040 (16)
O110.0403 (12)0.0575 (13)0.0648 (14)0.0061 (10)0.0053 (10)0.0117 (11)
N210.0369 (12)0.0297 (10)0.0348 (11)0.0041 (9)0.0132 (9)0.0021 (8)
C210.032 (4)0.033 (3)0.043 (5)0.002 (3)0.005 (3)0.012 (3)
C220.031 (3)0.048 (4)0.032 (5)0.006 (3)0.008 (3)0.009 (3)
C230.0361 (13)0.0318 (11)0.0301 (12)0.0034 (10)0.0150 (10)0.0053 (9)
C240.044 (4)0.026 (3)0.057 (6)0.002 (3)0.014 (4)0.003 (4)
C250.029 (4)0.029 (4)0.063 (7)0.004 (3)0.016 (5)0.000 (4)
C21'0.051 (5)0.050 (4)0.032 (4)0.014 (3)0.005 (3)0.009 (3)
C22'0.044 (4)0.052 (4)0.028 (4)0.012 (3)0.001 (3)0.009 (3)
C24'0.041 (3)0.031 (3)0.038 (4)0.004 (2)0.009 (3)0.005 (3)
C25'0.035 (4)0.031 (3)0.041 (4)0.001 (3)0.005 (3)0.003 (3)
C260.0435 (15)0.0432 (14)0.0353 (14)0.0099 (12)0.0170 (12)0.0054 (11)
O210.0388 (10)0.0305 (8)0.0427 (10)0.0039 (7)0.0217 (8)0.0027 (7)
Geometric parameters (Å, º) top
Cd1—N12.279 (2)N21—C251.294 (11)
Cd1—N2i2.306 (2)N21—C21'1.305 (8)
Cd1—N112.337 (2)N21—C25'1.366 (9)
Cd1—N212.337 (2)N21—C211.392 (9)
Cd1—O21ii2.4153 (17)C21—C221.385 (12)
Cd1—S22.6771 (7)C21—H210.9500
N1—C11.158 (3)C22—C231.376 (9)
C1—S11.636 (2)C22—H220.9500
N2—C21.155 (3)C23—C241.360 (9)
N2—Cd1i2.306 (2)C23—C22'1.395 (8)
C2—S21.643 (2)C23—C24'1.398 (8)
N11—C111.329 (3)C23—C261.503 (4)
N11—C151.334 (3)C24—C251.376 (14)
C11—C121.376 (4)C24—H240.9500
C11—H110.9500C25—H250.9500
C12—C131.381 (4)C21'—C22'1.376 (11)
C12—H120.9500C21'—H21'0.9500
C13—C141.379 (4)C22'—H22'0.9500
C13—C161.516 (4)C24'—C25'1.381 (12)
C14—C151.371 (4)C24'—H24'0.9500
C14—H140.9500C25'—H25'0.9500
C15—H150.9500C26—O211.426 (3)
C16—O111.380 (4)C26—H26A0.9900
C16—H16A0.9900C26—H26B0.9900
C16—H16B0.9900O21—Cd1ii2.4152 (17)
O11—H11O0.8400O21—H21O0.8400
N1—Cd1—N2i169.07 (8)C21'—N21—C25'117.8 (5)
N1—Cd1—N1189.06 (7)C25—N21—C21115.7 (6)
N2i—Cd1—N1188.96 (8)C25—N21—Cd1125.2 (5)
N1—Cd1—N2190.03 (8)C21'—N21—Cd1121.3 (4)
N2i—Cd1—N2190.36 (8)C25'—N21—Cd1120.8 (4)
N11—Cd1—N21171.60 (7)C21—N21—Cd1118.8 (4)
N1—Cd1—O21ii82.07 (7)C22—C21—N21122.3 (7)
N2i—Cd1—O21ii87.11 (7)C22—C21—H21118.8
N11—Cd1—O21ii87.47 (7)N21—C21—H21118.8
N21—Cd1—O21ii84.13 (7)C23—C22—C21119.2 (7)
N1—Cd1—S292.58 (6)C23—C22—H22120.4
N2i—Cd1—S298.31 (6)C21—C22—H22120.4
N11—Cd1—S295.85 (6)C24—C23—C22117.8 (5)
N21—Cd1—S292.54 (5)C22'—C23—C24'116.6 (5)
O21ii—Cd1—S2173.68 (5)C24—C23—C26123.6 (4)
C1—N1—Cd1168.3 (2)C22—C23—C26118.7 (4)
N1—C1—S1179.0 (2)C22'—C23—C26121.5 (4)
C2—N2—Cd1i161.6 (2)C24'—C23—C26121.9 (4)
N2—C2—S2179.0 (2)C23—C24—C25120.2 (8)
C2—S2—Cd199.07 (9)C23—C24—H24119.9
C11—N11—C15116.3 (2)C25—C24—H24119.9
C11—N11—Cd1122.87 (17)N21—C25—C24124.8 (9)
C15—N11—Cd1120.82 (17)N21—C25—H25117.6
N11—C11—C12124.0 (3)C24—C25—H25117.6
N11—C11—H11118.0N21—C21'—C22'123.9 (7)
C12—C11—H11118.0N21—C21'—H21'118.1
C11—C12—C13119.4 (3)C22'—C21'—H21'118.1
C11—C12—H12120.3C21'—C22'—C23119.8 (6)
C13—C12—H12120.3C21'—C22'—H22'120.1
C14—C13—C12116.6 (3)C23—C22'—H22'120.1
C14—C13—C16120.0 (3)C25'—C24'—C23119.9 (6)
C12—C13—C16123.3 (3)C25'—C24'—H24'120.0
C15—C14—C13120.4 (3)C23—C24'—H24'120.0
C15—C14—H14119.8N21—C25'—C24'121.9 (7)
C13—C14—H14119.8N21—C25'—H25'119.0
N11—C15—C14123.2 (3)C24'—C25'—H25'119.0
N11—C15—H15118.4O21—C26—C23113.3 (2)
C14—C15—H15118.4O21—C26—H26A108.9
O11—C16—C13114.7 (3)C23—C26—H26A108.9
O11—C16—H16A108.6O21—C26—H26B108.9
C13—C16—H16A108.6C23—C26—H26B108.9
O11—C16—H16B108.6H26A—C26—H26B107.7
C13—C16—H16B108.6C26—O21—Cd1ii128.55 (16)
H16A—C16—H16B107.6C26—O21—H21O106.3
C16—O11—H11O109.5Cd1ii—O21—H21O121.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11O···S1iii0.842.493.330 (2)174
O21—H21O···S1iv0.842.423.2410 (18)164
Symmetry codes: (iii) x1, y+3/2, z1/2; (iv) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11O···S1i0.842.493.330 (2)173.5
O21—H21O···S1ii0.842.423.2410 (18)164.4
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

We gratefully acknowledge financial support by the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBanerjee, S., Wu, B., Lassahn, P.-G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535–544.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTahli, A., Maclaren, J. K., Boldog, I. & Janiak, C. (2011). Inorg. Chim. Acta, 374, 506–513.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages m129-m130
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds