research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 684-686

Crystal structure of tri­aqua­(4-cyano­benzoato-κ2O,O′)(nicotinamide-κN1)zinc 4-cyano­benzoate

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, cInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan, and dScientific and Technological Application and Research Center, Aksaray University, 68100, Aksaray, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 May 2015; accepted 20 May 2015; online 23 May 2015)

The asymmetric unit of the title salt, [Zn(C8H4NO2)(C6H6N2O)(H2O)3](C8H4NO2), contains one complex cation and one 4-cyano­benzoate (CNB) counter-anion. The ZnII atom in the cation is coordinated by one 4-cyano­benzoate ligand, one nicotinamide (NA) ligand and three water mol­ecules, the CNB anion thereby coordinating in a bidentate O,O′-mode through the carboxyl­ate group. The latter, together with one water O atom and the N atom of the NA ligand, form a distorted square-planar arrangement, while the considerably distorted octa­hedral coordination sphere of the ZnII atom is completed by the two O atoms of additional water mol­ecules in the axial positions. The dihedral angles between the planar carboxyl­ate groups and the adjacent benzene rings in the two anions are 10.25 (10) and 5.89 (14)°. Inter­molecular O—H⋯O hydrogen bonds link two of the coordinating water mol­ecules to two free CNB anions. In the crystal, further hydrogen-bonding inter­actions are present, namely N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds that link the mol­ecular components, enclosing R22(12), R33(8) and R33(9) ring motifs and forming layers parallel to (001). ππ contacts between benzene rings [centroid-to-centroid distances = 3.791 (1) and 3.882 (1) Å] may further stabilize the crystal structure.

1. Chemical context

As parts of our ongoing investigation on transition-metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]), and/or the nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]), the title compound was synthesized and its crystal structure is reported herein.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the crystal structure of the title salt, [Zn(C8H4O2N)(C6H6ON2)(H2O)3](C8H4O2N), is composed of one complex cation and one 4-cyano­benzoate (CNB) counter-anion. The ZnII atom is coordinated by one 4-cyano­benzoate (CNB) anion, one nicotinamide (NA) ligand and three water mol­ecules, the CNB anion and NA ligand coordinating in bidentate and monodentate modes, respectively (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular entities of the title salt, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Inter­molecular O—H⋯O hydrogen bonds are shown as dashed lines.

In the cation, the four coordinating atoms (O1, O2, O5 and N2) around the Zn1 atom show a distorted square-planar arrangement, while the considerably distorted octa­hedral coordination environment of ZnII is completed by two additional water O atoms (O4 and O6) in the axial positions (Table 1[link], Fig. 1[link]).

Table 1
Selected bond lengths (Å)

Zn1—O1 2.2724 (12) Zn1—O5 2.0132 (11)
Zn1—O2 2.1163 (12) Zn1—O6 2.1917 (14)
Zn1—O4 2.0917 (13) Zn1—N2 2.0545 (12)

The near equality of the C1—O1 [1.2531 (18) Å], C1—O2 [1.2591 (19) Å] and C15—O7 [1.266 (2) Å], C15—O8 [1.237 (2) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The average Zn—O bond lengths are 2.19 (11) Å for benzoate oxygen atoms and 2.10 (9) Å for water oxygen atoms; the Zn—N bond length is 2.0545 (12) Å, close to the values in related structures. The Zn1 atom lies 0.0093 (2) Å above the planar (O1/O2/C1) carboxyl­ate group, with a bite angle of 59.48 (4)°. Corresponding O—Zn—O angles are 60.03 (6)° in [Zn(C9H10NO2)(C6H6N2O)·2H2O] (Hökelek et al., 2009a[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m651-m652.]), 59.02 (8)° in [Zn(C8H8NO2)(C6H6N2O)]·H2O (Hökelek et al., 2009b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1365-m1366.]) and 57.53 (5), 56.19 (5) and 59.04 (4)° in [Zn(C8H7O3)2(C6H6N2O)] (Hökelek et al., 2010[Hökelek, T., Saka, G., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010). Acta Cryst. E66, m1135-m1136.]).

The dihedral angles between the planar carboxyl­ate groups [(O1/O2/C1) and (O7/O8/C15)] and the adjacent benzene rings [A (C2–C7) and C (C16–C21)] are 10.25 (10) and 5.89 (14)°, respectively, while the benzene rings and benzene and pyridine [B (N2/C9—13)] rings are oriented at dihedral angles of A/C = 77.84 (6), A/B = 8.97 (5) and B/C = 71.43 (5)°.

3. Supra­molecular features

In the crystal, N—H⋯Oc (c = carboxyl­ate), O—Hw⋯Oc (w = water), O—Hw⋯On (n = nicotinamide), O—Hw⋯Nn as well as C—Hn⋯Oc hydrogen bonds (Table 2[link]) link the mol­ecular components, enclosing [R_{2}^{2}](12), [R_{3}^{3}](8) and [R_{3}^{3}](9) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), forming layers parallel to (001) (Fig. 2[link]). Additional ππ contacts between the benzene rings, Cg1⋯Cg1i and Cg1⋯Cg3ii [symmetry codes: (i) 1 − x, −y, −z; (ii) 1 − x, −y, 1 − z, where Cg1 and Cg3 are the centroids of rings A and C, respectively], may further stabilize the structure, with centroid-to-centroid distances of 3.791 (1) Å and 3.882 (1) Å, respectively.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H31⋯O2i 0.82 (2) 2.13 (3) 2.914 (2) 162 (2)
N3—H32⋯O7i 0.92 (3) 2.35 (2) 3.261 (2) 171 (2)
O4—H41⋯O7ii 0.75 (2) 2.04 (2) 2.7890 (17) 173 (3)
O4—H42⋯O8 0.76 (3) 1.89 (3) 2.6547 (18) 175 (3)
O5—H51⋯O7 0.80 (2) 1.83 (2) 2.6264 (17) 171 (3)
O5—H52⋯O1iii 0.74 (2) 2.05 (2) 2.7610 (17) 164 (2)
O6—H61⋯O3iii 0.75 (3) 2.05 (3) 2.7993 (19) 170 (3)
O6—H62⋯N1iv 0.76 (3) 2.17 (3) 2.918 (3) 170 (3)
C11—H11⋯O7i 0.93 2.49 3.415 (2) 177
Symmetry codes: (i) x-1, y+1, z; (ii) x-1, y, z; (iii) x+1, y, z; (iv) -x+1, -y, -z.
[Figure 2]
Figure 2
A partial packing diagram of the title complex. Inter­molecular N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds are shown as dashed lines, enclosing [R_{2}^{2}](12), [R_{3}^{3}](8) and [R_{3}^{3}](9) ring motifs. Non-bonding H atoms have been omitted for clarity.

4. Synthesis and crystallization

The title compound was prepared by the reaction of ZnSO4·7H2O (1.44 g, 5 mmol) in H2O (30 ml) and nicotinamide (1.22 g, 50 mmol) in H2O (50 ml) with sodium 4-cyano­benzoate (1.69 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals.

5. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 3[link]. Atoms H31 and H32 (as part of the NH2 group) and H41, H42, H51, H52, H61 and H62 (as part of the water mol­ecules) were located in a difference Fourier map and were refined freely. The aromatic C-bound H atoms were positioned geometrically with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C8H4NO2)(C6H6N2O)(H2O)3](C8H4NO2)
Mr 533.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.0858 (2), 8.7031 (3), 22.2357 (6)
α, β, γ (°) 81.882 (2), 87.806 (3), 88.007 (3)
V3) 1164.55 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.11
Crystal size (mm) 0.45 × 0.36 × 0.25
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.625, 0.758
No. of measured, independent and observed [I > 2σ(I)] reflections 27167, 5839, 5450
Rint 0.034
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.05
No. of reflections 5839
No. of parameters 348
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

As parts of our ongoing investigation on transition-metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

Structural commentary top

The asymmetric unit of the crystal structure of the title salt, [Zn(C8H4O2N)(C6H6ON2)(H2O)3](C8H4O2N), is composed of one complex cation and one 4-cyano­benzoate (CNB) counter-anion. The ZnII atom is coordinated by one 4-cyano­benzoate (CNB) anion, one nicotinamide (NA) ligand and three water molecules, the CNB anion and NA ligand coordinating in bidentate and monodentate modes, respectively (Fig. 1).

In the cation, the four coordinating atoms (O1, O2, O5 and N2) around the Zn1 atom show a distorted square-planar arrangement, while the considerably distorted o­cta­hedral coordination environment of ZnII is completed by two additional water O atoms (O4 and O6) in the axial positions (Table 1, Fig. 1).

The near equality of the C1—O1 [1.2531 (18) Å], C1—O2 [1.2591 (19) Å] and C15—O7 [1.266 (2) Å], C15—O8 [1.237 (2) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The average Zn—O bond lengths are 2.19 (11) Å for benzoate oxygens atoms and 2.10 (9) Å for water oxygen atoms; the Zn—N bond length is 2.0545 (12) Å, close to the values in related structures. The Zn1 atom lies 0.0093 (2) Å above the planar (O1/O2/C1) carboxyl­ate group, with a bite angle of 59.48 (4)°. Corresponding O—Zn—O angles are 60.03 (6)° in [Zn(C9H10NO2)(C6H6N2O)·2H2O] (Hökelek et al., 2009a), 59.02 (8)° in [Zn(C8H8NO2)(C6H6N2O)]·H2O (Hökelek et al., 2009b) and 57.53 (5), 56.19 (5) and 59.04 (4)° in [Zn(C8H7O3)2(C6H6N2O)] (Hökelek et al., 2010).

The dihedral angles between the planar carboxyl­ate groups [(O1/O2/C1) and (O7/O8/C15)] and the adjacent benzene rings [A (C2–C7) and C (C16–C21)] are 10.25 (10) and 5.89 (14)°, respectively, while the benzene rings and benzene and pyridine [B (N2/C9—13)] rings are oriented at dihedral angles of A/C = 77.84 (6), A/B = 8.97 (5) and B/C = 71.43 (5)°.

Supra­molecular features top

In the crystal, N—H···Oc (c = carboxyl­ate), O—Hw···Oc (w = water), O—Hw···On (n = nicotinamide), O—Hw···Nn as well as C—Hn···Oc hydrogen bonds (Table 2) link the molecular components, enclosing R22(12), R33(8) and R33(9) ring motifs (Bernstein et al., 1995), forming layers parallel to (001) (Fig. 2). Additional ππ contacts between the benzene rings, Cg1···Cg1i and Cg1···Cg3ii [symmetry codes: (i) 1 - x, -y, -z; (ii) 1 - x, -y, 1 - z, where Cg1 and Cg3 are the centroids of rings A and C, respectively], may further stabilize the structure, with centroid-to-centroid distances of 3.791 (1) Å and 3.882 (1) Å, respectively.

Synthesis and crystallization top

The title compound was prepared by the reaction of ZnSO4·7H2O (1.44 g, 5 mmol) in H2O (30 ml) and nicotinamide (1.22 g, 50 mmol) in H2O (50 ml) with sodium 4-cyano­benzoate (1.69 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals.

Refinement top

The experimental details including the crystal data, data collection and refinement are summarized in Table 3. Atoms H31 and H32 (as part of the NH2 group) and H41, H42, H51, H52, H61 and H62 (as part of the water molecules) were located in a difference Fourier map and were refined freely. The aromatic C-bound H atoms were positioned geometrically with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Related literature top

Bernstein et al. (1995); Bigoli et al. (1972); Hökelek et al. (2009a, 2009b, 2010); Krishnamachari (1974).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular entities of the title salt, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Intermolecular O—H···O hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title complex. Intermolecular N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds are shown as dashed lines, enclosing R22(12), R33(8) and R33(9) ring motifs. Non-bonding H atoms have been omitted for clarity.
Triaqua(4-cyanobenzoato-κ2O,O')(nicotinamide-κN1)zinc 4-cyanobenzoate top
Crystal data top
[Zn(C8H4NO2)(C6H6N2O)(H2O)3](C8H4NO2)Z = 2
Mr = 533.81F(000) = 548
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0858 (2) ÅCell parameters from 9885 reflections
b = 8.7031 (3) Åθ = 2.4–28.4°
c = 22.2357 (6) ŵ = 1.11 mm1
α = 81.882 (2)°T = 296 K
β = 87.806 (3)°Prism, translucent light colourless
γ = 88.007 (3)°0.45 × 0.36 × 0.25 mm
V = 1164.55 (6) Å3
Data collection top
Bruker SMART BREEZE CCD
diffractometer
5839 independent reflections
Radiation source: fine-focus sealed tube5450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 78
Tmin = 0.625, Tmax = 0.758k = 1111
27167 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.4376P]
where P = (Fo2 + 2Fc2)/3
5839 reflections(Δ/σ)max = 0.001
348 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Zn(C8H4NO2)(C6H6N2O)(H2O)3](C8H4NO2)γ = 88.007 (3)°
Mr = 533.81V = 1164.55 (6) Å3
Triclinic, P1Z = 2
a = 6.0858 (2) ÅMo Kα radiation
b = 8.7031 (3) ŵ = 1.11 mm1
c = 22.2357 (6) ÅT = 296 K
α = 81.882 (2)°0.45 × 0.36 × 0.25 mm
β = 87.806 (3)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
5839 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
5450 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.758Rint = 0.034
27167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.35 e Å3
5839 reflectionsΔρmin = 0.33 e Å3
348 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.90164 (3)0.228852 (18)0.220630 (8)0.02931 (6)
O10.58663 (19)0.18054 (14)0.17586 (6)0.0398 (3)
O20.89148 (19)0.04418 (14)0.16835 (6)0.0386 (3)
O30.1991 (2)0.64093 (14)0.17635 (6)0.0425 (3)
O40.8145 (2)0.08998 (17)0.30208 (6)0.0456 (3)
H410.698 (4)0.078 (3)0.3136 (11)0.051 (7)*
H420.887 (4)0.079 (3)0.3298 (12)0.060 (7)*
O51.21393 (19)0.21434 (14)0.24815 (6)0.0346 (2)
H511.258 (4)0.162 (3)0.2779 (11)0.057 (7)*
H521.298 (4)0.209 (2)0.2238 (9)0.035 (5)*
O61.0470 (3)0.36922 (16)0.14029 (6)0.0442 (3)
H611.087 (4)0.447 (3)0.1457 (11)0.052 (7)*
H620.983 (4)0.379 (3)0.1113 (12)0.060 (8)*
O71.38028 (19)0.02307 (15)0.33815 (5)0.0413 (3)
O81.0769 (2)0.0341 (2)0.39584 (6)0.0620 (4)
N10.1949 (5)0.3612 (3)0.03004 (10)0.0940 (9)
N20.7668 (2)0.42834 (14)0.24805 (6)0.0315 (3)
N30.2052 (3)0.83017 (18)0.23482 (8)0.0454 (4)
H310.101 (4)0.872 (3)0.2162 (11)0.058 (7)*
H320.269 (4)0.879 (3)0.2633 (11)0.057 (6)*
N41.7600 (4)0.5182 (3)0.61042 (11)0.0876 (8)
C10.6926 (2)0.07134 (17)0.15590 (7)0.0292 (3)
C20.5848 (2)0.02630 (17)0.11607 (6)0.0294 (3)
C30.3787 (3)0.0185 (2)0.09399 (8)0.0381 (3)
H30.30760.10790.10440.046*
C40.2796 (3)0.0701 (2)0.05652 (8)0.0469 (4)
H40.14200.04050.04130.056*
C50.3867 (3)0.2038 (2)0.04169 (8)0.0470 (4)
C60.5917 (4)0.2502 (2)0.06388 (9)0.0473 (4)
H60.66180.34020.05380.057*
C70.6911 (3)0.16065 (19)0.10140 (8)0.0371 (3)
H70.82860.19050.11670.045*
C80.2809 (5)0.2932 (3)0.00172 (10)0.0665 (7)
C90.8671 (3)0.4895 (2)0.29107 (8)0.0417 (4)
H90.99260.43930.30780.050*
C100.7913 (3)0.6238 (3)0.31145 (10)0.0558 (5)
H100.86660.66540.34070.067*
C110.6017 (3)0.6963 (2)0.28798 (9)0.0491 (5)
H110.54670.78670.30170.059*
C120.4942 (2)0.63340 (16)0.24389 (7)0.0299 (3)
C130.5853 (3)0.50013 (16)0.22481 (7)0.0303 (3)
H130.51690.45850.19430.036*
C140.2868 (3)0.70160 (16)0.21562 (7)0.0317 (3)
C151.2702 (3)0.0089 (2)0.38754 (7)0.0346 (3)
C161.3816 (3)0.11192 (18)0.43897 (7)0.0318 (3)
C171.2673 (3)0.1557 (2)0.49338 (8)0.0423 (4)
H171.12540.11610.49930.051*
C181.3630 (3)0.2582 (2)0.53905 (8)0.0503 (5)
H181.28570.28760.57550.060*
C191.5746 (3)0.3167 (2)0.53011 (8)0.0446 (4)
C201.6928 (3)0.2701 (2)0.47640 (9)0.0445 (4)
H201.83580.30790.47080.053*
C211.5961 (3)0.1669 (2)0.43142 (8)0.0379 (3)
H211.67570.13400.39570.046*
C221.6768 (4)0.4285 (3)0.57586 (10)0.0600 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02640 (10)0.02670 (9)0.03590 (11)0.00369 (6)0.00771 (7)0.00734 (7)
O10.0353 (6)0.0404 (6)0.0465 (7)0.0023 (5)0.0002 (5)0.0171 (5)
O20.0304 (6)0.0382 (6)0.0498 (7)0.0022 (5)0.0125 (5)0.0126 (5)
O30.0435 (7)0.0344 (6)0.0514 (7)0.0022 (5)0.0162 (6)0.0087 (5)
O40.0294 (7)0.0607 (8)0.0418 (7)0.0051 (6)0.0061 (6)0.0118 (6)
O50.0247 (5)0.0420 (6)0.0354 (6)0.0037 (5)0.0037 (5)0.0001 (5)
O60.0579 (8)0.0391 (7)0.0365 (7)0.0094 (6)0.0098 (6)0.0044 (5)
O70.0318 (6)0.0549 (7)0.0333 (6)0.0080 (5)0.0017 (5)0.0055 (5)
O80.0332 (7)0.1071 (13)0.0398 (7)0.0214 (7)0.0021 (5)0.0051 (7)
N10.135 (2)0.0930 (17)0.0616 (13)0.0520 (16)0.0348 (14)0.0149 (12)
N20.0299 (6)0.0296 (6)0.0357 (7)0.0044 (5)0.0043 (5)0.0070 (5)
N30.0446 (9)0.0346 (7)0.0583 (10)0.0146 (6)0.0166 (8)0.0113 (7)
N40.0892 (16)0.0843 (15)0.0815 (15)0.0089 (13)0.0451 (13)0.0280 (12)
C10.0297 (7)0.0299 (7)0.0277 (7)0.0022 (5)0.0016 (5)0.0031 (5)
C20.0284 (7)0.0334 (7)0.0267 (7)0.0051 (6)0.0011 (5)0.0043 (5)
C30.0307 (8)0.0458 (9)0.0380 (8)0.0017 (7)0.0046 (6)0.0049 (7)
C40.0367 (9)0.0646 (12)0.0392 (9)0.0136 (8)0.0115 (7)0.0005 (8)
C50.0598 (12)0.0532 (10)0.0296 (8)0.0268 (9)0.0066 (8)0.0038 (7)
C60.0640 (12)0.0378 (9)0.0433 (9)0.0094 (8)0.0034 (8)0.0138 (7)
C70.0378 (9)0.0358 (8)0.0389 (8)0.0015 (6)0.0039 (7)0.0086 (6)
C80.0899 (17)0.0679 (14)0.0446 (11)0.0359 (13)0.0173 (11)0.0057 (10)
C90.0352 (9)0.0491 (9)0.0435 (9)0.0117 (7)0.0118 (7)0.0156 (7)
C100.0502 (11)0.0651 (12)0.0609 (12)0.0198 (9)0.0255 (9)0.0379 (10)
C110.0477 (10)0.0479 (10)0.0580 (11)0.0169 (8)0.0167 (9)0.0292 (9)
C120.0306 (7)0.0262 (6)0.0324 (7)0.0019 (5)0.0020 (6)0.0028 (5)
C130.0314 (7)0.0262 (6)0.0338 (7)0.0008 (5)0.0052 (6)0.0056 (5)
C140.0323 (8)0.0248 (6)0.0369 (8)0.0010 (5)0.0034 (6)0.0007 (5)
C150.0281 (7)0.0446 (8)0.0308 (7)0.0026 (6)0.0058 (6)0.0048 (6)
C160.0306 (7)0.0363 (7)0.0292 (7)0.0011 (6)0.0064 (6)0.0055 (6)
C170.0365 (9)0.0542 (10)0.0354 (8)0.0005 (7)0.0010 (7)0.0041 (7)
C180.0545 (11)0.0608 (12)0.0331 (9)0.0055 (9)0.0020 (8)0.0031 (8)
C190.0488 (10)0.0434 (9)0.0407 (9)0.0062 (8)0.0185 (8)0.0028 (7)
C200.0351 (9)0.0472 (9)0.0496 (10)0.0035 (7)0.0121 (7)0.0003 (8)
C210.0334 (8)0.0428 (8)0.0362 (8)0.0003 (7)0.0040 (6)0.0007 (7)
C220.0617 (13)0.0613 (13)0.0544 (12)0.0092 (10)0.0247 (10)0.0090 (10)
Geometric parameters (Å, º) top
Zn1—O12.2724 (12)C5—C41.388 (3)
Zn1—O22.1163 (12)C5—C61.385 (3)
Zn1—O42.0917 (13)C5—C81.444 (3)
Zn1—O52.0132 (11)C6—H60.9300
Zn1—O62.1917 (14)C7—C61.387 (2)
Zn1—N22.0545 (12)C7—H70.9300
Zn1—C12.5276 (15)C9—C101.372 (2)
O1—C11.2531 (18)C9—H90.9300
O2—C11.2591 (19)C10—H100.9300
O3—C141.230 (2)C11—C101.380 (3)
O4—H410.75 (3)C11—H110.9300
O4—H420.77 (3)C12—C111.384 (2)
O5—H510.80 (3)C12—C131.382 (2)
O5—H520.74 (2)C12—C141.498 (2)
O6—H610.75 (3)C13—H130.9300
O6—H620.76 (3)C14—N31.327 (2)
O7—C151.266 (2)C15—O81.237 (2)
N1—C81.136 (3)C15—C161.516 (2)
N2—C91.335 (2)C16—C171.384 (2)
N2—C131.3351 (19)C16—C211.387 (2)
N3—H310.82 (3)C17—C181.385 (3)
N3—H320.91 (3)C17—H170.9300
N4—C221.136 (3)C18—H180.9300
C1—C21.494 (2)C19—C181.386 (3)
C2—C31.388 (2)C19—C221.447 (3)
C2—C71.390 (2)C20—C191.388 (3)
C3—C41.380 (2)C20—H200.9300
C3—H30.9300C21—C201.381 (2)
C4—H40.9300C21—H210.9300
O2—Zn1—O159.48 (4)C5—C4—H4120.2
O4—Zn1—O192.90 (5)C4—C5—C8118.5 (2)
O5—Zn1—O1162.17 (5)C6—C5—C4121.15 (16)
O6—Zn1—O195.68 (5)C6—C5—C8120.4 (2)
N2—Zn1—O191.98 (5)C5—C6—C7119.12 (18)
O5—Zn1—O2102.69 (5)C5—C6—H6120.4
O4—Zn1—O293.77 (6)C7—C6—H6120.4
N2—Zn1—O2150.78 (5)C2—C7—H7120.1
O5—Zn1—O487.85 (6)C6—C7—C2119.86 (17)
N2—Zn1—O493.81 (6)C6—C7—H7120.1
O2—Zn1—O687.82 (5)N1—C8—C5178.7 (3)
O4—Zn1—O6170.83 (6)N2—C9—C10122.20 (16)
O5—Zn1—O682.99 (6)N2—C9—H9118.9
N2—Zn1—O689.13 (5)C10—C9—H9118.9
O5—Zn1—N2105.76 (5)C9—C10—C11119.10 (17)
O1—Zn1—C129.66 (4)C9—C10—H10120.5
O2—Zn1—C129.82 (5)C11—C10—H10120.5
O4—Zn1—C193.91 (5)C10—C11—C12119.40 (16)
O5—Zn1—C1132.51 (5)C10—C11—H11120.3
O6—Zn1—C191.96 (5)C12—C11—H11120.3
N2—Zn1—C1121.41 (5)C11—C12—C14123.93 (14)
C1—O1—Zn186.53 (9)C13—C12—C11117.67 (14)
C1—O2—Zn193.49 (9)C13—C12—C14118.40 (14)
Zn1—O4—H41123.9 (18)N2—C13—C12123.08 (14)
Zn1—O4—H42122.6 (19)N2—C13—H13118.5
H42—O4—H41107 (3)C12—C13—H13118.5
Zn1—O5—H51126.1 (17)O3—C14—N3122.30 (15)
Zn1—O5—H52114.8 (16)O3—C14—C12121.07 (14)
H52—O5—H51107 (2)N3—C14—C12116.63 (15)
Zn1—O6—H61115.0 (18)O7—C15—C16117.31 (14)
Zn1—O6—H62118 (2)O8—C15—O7124.46 (15)
H61—O6—H62110 (3)O8—C15—C16118.19 (15)
C9—N2—Zn1118.11 (11)C17—C16—C15120.11 (14)
C13—N2—Zn1123.38 (10)C17—C16—C21119.38 (15)
C9—N2—C13118.51 (13)C21—C16—C15120.49 (14)
C14—N3—H31115.4 (17)C16—C17—C18120.40 (17)
C14—N3—H32123.8 (15)C16—C17—H17119.8
H31—N3—H32120 (2)C18—C17—H17119.8
O1—C1—Zn163.82 (8)C17—C18—C19119.64 (17)
O2—C1—Zn156.69 (8)C17—C18—H18120.2
C2—C1—Zn1175.80 (11)C19—C18—H18120.2
O1—C1—O2120.51 (14)C18—C19—C20120.37 (16)
O1—C1—C2120.21 (14)C18—C19—C22121.19 (19)
O2—C1—C2119.28 (13)C20—C19—C22118.43 (19)
C3—C2—C1119.43 (14)C19—C20—H20120.3
C3—C2—C7120.58 (15)C21—C20—C19119.37 (17)
C7—C2—C1119.99 (14)C21—C20—H20120.3
C2—C3—H3120.2C16—C21—H21119.6
C4—C3—C2119.68 (17)C20—C21—C16120.76 (16)
C4—C3—H3120.2C20—C21—H21119.6
C3—C4—C5119.60 (17)N4—C22—C19178.0 (3)
C3—C4—H4120.2
O2—Zn1—O1—C10.14 (9)C9—N2—C13—C121.1 (2)
O4—Zn1—O1—C192.81 (10)O1—C1—C2—C39.5 (2)
O5—Zn1—O1—C10.8 (2)O1—C1—C2—C7170.49 (14)
O6—Zn1—O1—C183.95 (10)O2—C1—C2—C3169.34 (14)
N2—Zn1—O1—C1173.27 (9)O2—C1—C2—C710.6 (2)
O1—Zn1—O2—C10.14 (8)C1—C2—C3—C4179.15 (15)
O4—Zn1—O2—C191.28 (10)C7—C2—C3—C40.8 (2)
O5—Zn1—O2—C1179.92 (9)C1—C2—C7—C6179.31 (15)
O6—Zn1—O2—C197.77 (10)C3—C2—C7—C60.7 (2)
N2—Zn1—O2—C113.46 (16)C2—C3—C4—C50.5 (3)
O1—Zn1—N2—C9163.71 (13)C6—C5—C4—C30.1 (3)
O1—Zn1—N2—C1316.72 (13)C8—C5—C4—C3179.13 (17)
O2—Zn1—N2—C9175.39 (12)C4—C5—C6—C70.2 (3)
O2—Zn1—N2—C135.04 (19)C8—C5—C6—C7178.95 (17)
O4—Zn1—N2—C970.67 (14)C2—C7—C6—C50.1 (3)
O4—Zn1—N2—C13109.76 (13)N2—C9—C10—C111.8 (4)
O5—Zn1—N2—C918.17 (14)C12—C11—C10—C90.9 (4)
O5—Zn1—N2—C13161.40 (12)C13—C12—C11—C100.8 (3)
O6—Zn1—N2—C9100.64 (14)C14—C12—C11—C10179.55 (19)
O6—Zn1—N2—C1378.93 (13)C11—C12—C13—N21.9 (2)
C1—Zn1—N2—C9167.60 (12)C14—C12—C13—N2178.46 (14)
C1—Zn1—N2—C1312.83 (15)C11—C12—C14—O3179.62 (17)
O1—Zn1—C1—O2179.76 (15)C11—C12—C14—N30.1 (3)
O2—Zn1—C1—O1179.76 (15)C13—C12—C14—O30.0 (2)
O4—Zn1—C1—O188.99 (10)C13—C12—C14—N3179.54 (15)
O4—Zn1—C1—O290.77 (10)O7—C15—C16—C17177.65 (16)
O5—Zn1—C1—O1179.65 (9)O7—C15—C16—C210.4 (2)
O5—Zn1—C1—O20.11 (12)O8—C15—C16—C170.1 (3)
O6—Zn1—C1—O198.06 (10)O8—C15—C16—C21178.16 (18)
O6—Zn1—C1—O282.18 (10)C15—C16—C17—C18175.64 (17)
N2—Zn1—C1—O17.89 (11)C21—C16—C17—C182.4 (3)
N2—Zn1—C1—O2172.35 (9)C15—C16—C21—C20175.12 (16)
Zn1—O1—C1—O20.23 (14)C17—C16—C21—C203.0 (3)
Zn1—O1—C1—C2178.65 (12)C16—C17—C18—C190.1 (3)
Zn1—O2—C1—O10.25 (15)C20—C19—C18—C171.7 (3)
Zn1—O2—C1—C2178.64 (11)C22—C19—C18—C17177.64 (19)
Zn1—N2—C9—C10178.82 (17)C21—C20—C19—C181.2 (3)
C13—N2—C9—C100.8 (3)C21—C20—C19—C22178.15 (18)
Zn1—N2—C13—C12179.33 (11)C16—C21—C20—C191.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O2i0.82 (2)2.13 (3)2.914 (2)162 (2)
N3—H32···O7i0.92 (3)2.35 (2)3.261 (2)171 (2)
O4—H41···O7ii0.75 (2)2.04 (2)2.7890 (17)173 (3)
O4—H42···O80.76 (3)1.89 (3)2.6547 (18)175 (3)
O5—H51···O70.80 (2)1.83 (2)2.6264 (17)171 (3)
O5—H52···O1iii0.74 (2)2.05 (2)2.7610 (17)164 (2)
O6—H61···O3iii0.75 (3)2.05 (3)2.7993 (19)170 (3)
O6—H62···N1iv0.76 (3)2.17 (3)2.918 (3)170 (3)
C11—H11···O7i0.932.493.415 (2)177
Symmetry codes: (i) x1, y+1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z.
Selected bond lengths (Å) top
Zn1—O12.2724 (12)Zn1—O52.0132 (11)
Zn1—O22.1163 (12)Zn1—O62.1917 (14)
Zn1—O42.0917 (13)Zn1—N22.0545 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O2i0.82 (2)2.13 (3)2.914 (2)162 (2)
N3—H32···O7i0.92 (3)2.35 (2)3.261 (2)171 (2)
O4—H41···O7ii0.75 (2)2.04 (2)2.7890 (17)173 (3)
O4—H42···O80.76 (3)1.89 (3)2.6547 (18)175 (3)
O5—H51···O70.80 (2)1.83 (2)2.6264 (17)171 (3)
O5—H52···O1iii0.74 (2)2.05 (2)2.7610 (17)164 (2)
O6—H61···O3iii0.75 (3)2.05 (3)2.7993 (19)170 (3)
O6—H62···N1iv0.76 (3)2.17 (3)2.918 (3)170 (3)
C11—H11···O7i0.932.493.415 (2)177
Symmetry codes: (i) x1, y+1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C8H4NO2)(C6H6N2O)(H2O)3](C8H4NO2)
Mr533.81
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.0858 (2), 8.7031 (3), 22.2357 (6)
α, β, γ (°)81.882 (2), 87.806 (3), 88.007 (3)
V3)1164.55 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.45 × 0.36 × 0.25
Data collection
DiffractometerBruker SMART BREEZE CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.625, 0.758
No. of measured, independent and
observed [I > 2σ(I)] reflections
27167, 5839, 5450
Rint0.034
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.05
No. of reflections5839
No. of parameters348
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.33

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m651–m652.  CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1365–m1366.  CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Saka, G., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010). Acta Cryst. E66, m1135–m1136.  CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 684-686
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds