metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages m135-m136

Crystal structure of catena-poly[[[di­aqua­cobalt(II)]-bis­­(μ-hex-3-enedi­nitrile-κ2N:N′)] bis­­(tetra­fluorido­borate)]

aDaegu Gyeongbuk Institue of Science & Technology (DGIST), Daegu 711-873, Republic of Korea
*Correspondence e-mail: dukelee@dgist.ac.kr, st.hong@dgist.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 May 2015; accepted 19 May 2015; online 23 May 2015)

In the structure of the title salt, [Co(C6H6N2)2(H2O)2](BF4)2, the CoII atom is located on an inversion centre. The transition metal is in a slightly distorted octa­hedral coordination environment, defined by the cyano N atoms of four hex-3-enedi­nitrile ligands in equatorial positions and the O atoms of two water mol­ecules in axial positions. The bridging mode of the hex-3-enedi­nitrile ligands leads to the formation of cationic chains extending parallel to [1-10]. The BF4 counter-anion is disordered over two sets of sites [occupancy ratio = 0.512 (19):0.489 (19)]. It is located in the voids between the cationic chains and is connected to the aqua ligands of the latter through O—H⋯F hydrogen bonds. One methyl­ene H atom of the hex-3-enedi­nitrile ligand forms another and weak C—H⋯O hydrogen bond with a water O atom of a neighbouring chain, thus consolidating the three-dimensional network structure.

1. Related literature

Aliphatic di­nitriles have gained much attention not only due to their rich coordination chemistry with transition-metal ions (Storhoff & Lewis, 1977[Storhoff, B. N. & Lewis, H. C. Jr (1977). Coord. Chem. Rev. 23, 1-29.]; Heller & Sheldrick, 2004[Heller, M. & Sheldrick, W. S. (2004). Z. Anorg. Allg. Chem. 630, 1869-1874.]; Blount et al., 1969[Blount, J. F., Freeman, H. C., Hemmerich, P. & Sigwart, C. (1969). Acta Cryst. B25, 1518-1524.]), but also due to their applications as functional electrolyte additives for lithium ion batteries (Kim et al., 2011[Kim, Y. S., Kim, T. H., Lee, H. & Song, H. K. (2011). Energ. Environ. Sci. 4, 4038-4045.], 2014a[Kim, Y. S., Lee, S. H., Son, M. Y., Jung, Y. M., Song, H. K. & Lee, H. (2014a). ACS Appl. Mat. Interfaces, 6, 2039-2043.],b[Kim, Y. S., Lee, H. & Song, H. K. (2014b). ACS Appl. Mater. Interfaces, 6, 8913-8920.]). While the coordination complexes of saturated aliphatic di­nitrile ligands have been extensively studied (Storhoff & Lewis, 1977[Storhoff, B. N. & Lewis, H. C. Jr (1977). Coord. Chem. Rev. 23, 1-29.]; Heller & Sheldrick, 2004[Heller, M. & Sheldrick, W. S. (2004). Z. Anorg. Allg. Chem. 630, 1869-1874.]; Blount et al., 1969[Blount, J. F., Freeman, H. C., Hemmerich, P. & Sigwart, C. (1969). Acta Cryst. B25, 1518-1524.]), those of unsaturated di­nitrile ligands like in the title compound have hardly been reported so far.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co(C6H6N2)(H2O)2](BF4)2

  • Mr = 480.84

  • Triclinic, [P \overline 1]

  • a = 7.9839 (11) Å

  • b = 8.3434 (11) Å

  • c = 8.8441 (13) Å

  • α = 71.380 (5)°

  • β = 88.458 (5)°

  • γ = 66.184 (4)°

  • V = 507.21 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 103 K

  • 0.20 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.60, Tmax = 0.75

  • 14705 measured reflections

  • 2501 independent reflections

  • 2233 reflections with I > 2σ(I)

  • Rint = 0.038

2.3. Refinement

  • R[F2 > 3σ(F2)] = 0.033

  • wR(F2) = 0.068

  • S = 0.87

  • 2202 reflections

  • 170 parameters

  • 20 restraints

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H22⋯O1i 0.97 2.52 3.348 (3) 143 (1)
O1—H12⋯F1ii 0.83 1.89 2.72 (2) 175 (1)
O1—H11⋯F2i 0.82 1.87 2.669 (13) 163 (1)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ATOMS (Dowty, 2000[Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Experimental top

A solvent was prepared first by mixing ethyl­ene carbonate (EC) and ethyl methyl carbonate (EMC) in an 1:2 volume ratio (3.3 ml and 6.6 ml, respectively). 0.934 g of lithium tetra­fluoridoborate (LiBF4) were added to the solvent, and it was stirred for about 5 hours to dissolve the salt completely to form an 1M solution. 0.60 g (5 wt.%) of cobalt(II) tetra­fluoridoborate hexahydrate and 0.24 g (2 wt.%) hex-3-enedi­nitrile were added and dissolved in the solution. The solution was kept for 48 hours in an argon-atmosphere glove-box at room temperature, resulting in the growth of red crystals. The crystals were washed with pure EMC solvent three times in the argon-atmosphere glove-box.

Refinement top

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as rigid bodies with C—H distances constrained to 0.92–0.97 Å. Water H atoms were located from a difference map and refined with a distance of 0.82 Å. The BF4- counter anion was refined with a positional disorder model where F2, F3 and F4 atoms are split into two positions while B1 and F1 atoms are not. Such a disorder model resulted in a slightly better refinement, reducing the R1 factor values from 0.041 to 0.033.

Related literature top

Aliphatic dinitriles have gained much attention not only due to their rich coordination chemistry with transition-metal ions (Storhoff & Lewis, 1977; Heller & Sheldrick, 2004; Blount et al., 1969), but also due to their applications as functional electrolyte additives for lithium ion batteries (Kim et al., 2011, 2014a,b). While the coordination complexes of saturated aliphatic dinitrile ligands have been extensively studied (Storhoff & Lewis, 1977; Heller & Sheldrick, 2004; Blount et al., 1969), those of unsaturated dinitrile ligands like in the title compound have hardly been reported so far.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The cationic chain structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The BF4- anion is shown only with the major part of the disorder.
[Figure 2] Fig. 2. The crystal packing of the title compound with displacement ellipsoids drawn at the 50% probability level. The BF4- anion is shown only with the major part of the disorder. (Colour code: dark blue: Co, purple: N, blue: C, red: O, cyan: B, green: F, grey: H).
catena-poly[[[diaquacobalt(II)]-bis(µ-hex-3-enedinitrile-κ2N:N')] bis(tetrafluoridoborate)] top
Crystal data top
[Co(C6H6N2)(H2O)2](BF4)2Z = 1
Mr = 480.84F(000) = 241
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9839 (11) ÅCell parameters from 0 reflections
b = 8.3434 (11) Åθ = 0–0°
c = 8.8441 (13) ŵ = 0.93 mm1
α = 71.380 (5)°T = 103 K
β = 88.458 (5)°Cuboid, yellow
γ = 66.184 (4)°0.20 × 0.20 × 0.20 mm
V = 507.21 (12) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ & ω scansθmax = 28.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1010
Tmin = 0.60, Tmax = 0.75k = 1111
14705 measured reflectionsl = 1111
2501 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.068Weighting scheme based on measured s.u.'s W = 1
S = 0.87(Δ/σ)max = 0.0002
2202 reflectionsΔρmax = 0.83 e Å3
170 parametersΔρmin = 0.62 e Å3
20 restraints
Crystal data top
[Co(C6H6N2)(H2O)2](BF4)2γ = 66.184 (4)°
Mr = 480.84V = 507.21 (12) Å3
Triclinic, P1Z = 1
a = 7.9839 (11) ÅMo Kα radiation
b = 8.3434 (11) ŵ = 0.93 mm1
c = 8.8441 (13) ÅT = 103 K
α = 71.380 (5)°0.20 × 0.20 × 0.20 mm
β = 88.458 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2501 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2233 reflections with I > 2σ(I)
Tmin = 0.60, Tmax = 0.75Rint = 0.038
14705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03320 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 0.87Δρmax = 0.83 e Å3
2202 reflectionsΔρmin = 0.62 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles, and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.00001.00000.50000.0158
N10.2687 (2)0.8866 (2)0.6299 (2)0.0199
N20.1190 (2)0.9254 (2)0.3036 (2)0.0192
C10.4140 (2)0.8397 (3)0.6904 (2)0.0179
C20.6004 (3)0.7780 (3)0.7691 (3)0.0221
C30.7036 (2)0.5683 (3)0.8382 (2)0.0200
C40.6448 (3)0.4468 (3)0.8245 (2)0.0201
C50.7535 (3)0.2388 (3)0.9045 (2)0.0244
C60.8244 (2)0.1444 (2)0.7878 (2)0.0181
O10.02105 (18)1.25018 (18)0.41358 (16)0.0197
B10.7569 (3)0.7200 (3)0.2131 (3)0.0287
F10.77132 (18)0.55820 (17)0.18696 (15)0.0295
F20.8571 (16)0.6724 (15)0.3523 (13)0.05550.512 (19)
F30.8368 (13)0.8076 (13)0.0834 (11)0.06300.512 (19)
F40.5804 (9)0.8300 (10)0.2014 (15)0.05850.512 (19)
F210.9052 (8)0.6606 (13)0.3357 (11)0.02550.489 (19)
F310.7671 (17)0.8497 (11)0.0853 (10)0.05510.489 (19)
F410.5866 (9)0.7929 (11)0.2810 (16)0.05340.489 (19)
H110.04131.29540.47710.034 (4)*
H120.05541.33930.34160.043 (4)*
H210.58970.82910.85290.034 (4)*
H220.66940.82930.69190.033 (4)*
H310.81740.52530.89310.034 (4)*
H410.53010.48890.76390.035 (4)*
H510.68010.18480.96800.036 (4)*
H520.85700.21890.97010.034 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01363 (18)0.01074 (17)0.0198 (2)0.00181 (13)0.00123 (13)0.00526 (14)
N10.0166 (8)0.0169 (8)0.0222 (8)0.0025 (6)0.0014 (6)0.0070 (6)
N20.0170 (7)0.0163 (8)0.0211 (8)0.0039 (6)0.0006 (6)0.0060 (6)
C10.0173 (7)0.0138 (8)0.0201 (9)0.0033 (7)0.0015 (7)0.0067 (7)
C20.0153 (7)0.0209 (9)0.0292 (10)0.0055 (7)0.0023 (7)0.0093 (8)
C30.0139 (7)0.0221 (9)0.0194 (9)0.0018 (7)0.0025 (7)0.0081 (7)
C40.0170 (7)0.0207 (9)0.0178 (9)0.0024 (7)0.0018 (7)0.0076 (7)
C50.0266 (7)0.0216 (10)0.0182 (9)0.0031 (8)0.0026 (8)0.0074 (8)
C60.0172 (7)0.0135 (8)0.0176 (9)0.0032 (7)0.0023 (7)0.0015 (7)
O10.0223 (7)0.0126 (6)0.0219 (7)0.0052 (5)0.0021 (5)0.0056 (5)
B10.0252 (12)0.0159 (10)0.0380 (14)0.0057 (9)0.0119 (10)0.0028 (10)
F10.0363 (7)0.0211 (6)0.0283 (7)0.0096 (5)0.0101 (5)0.0067 (5)
F20.072 (4)0.036 (3)0.049 (4)0.010 (4)0.032 (4)0.017 (2)
F30.046 (3)0.047 (4)0.071 (3)0.026 (3)0.009 (3)0.022 (3)
F40.0361 (18)0.039 (3)0.088 (5)0.0039 (18)0.000 (3)0.031 (3)
F210.0208 (19)0.021 (2)0.032 (2)0.0030 (16)0.0089 (16)0.0115 (15)
F310.072 (4)0.031 (3)0.046 (2)0.028 (3)0.025 (3)0.019 (2)
F410.0304 (19)0.042 (3)0.088 (5)0.0067 (18)0.010 (3)0.034 (3)
Geometric parameters (Å, º) top
Co1—N1i2.1486 (17)C4—H410.946
Co1—N2i2.1050 (17)C5—C61.460 (6)
Co1—O1i2.0560 (15)C5—H510.946
Co1—N12.1486 (17)C5—H520.949
Co1—N22.1050 (17)O1—H110.821
Co1—O12.0560 (15)O1—H120.826
N1—C11.148 (6)B1—F11.401 (3)
N2—C6ii1.125 (5)B1—F21.341 (12)
C1—C21.474 (8)B1—F31.435 (11)
C2—C31.514 (9)B1—F41.320 (9)
C2—H210.953B1—F11.401 (3)
C2—H220.967B1—F211.440 (12)
C3—C41.315 (4)B1—F311.319 (11)
C3—H310.916B1—F411.450 (10)
C4—C51.516 (3)
N1i—Co1—N2i90.57 (6)C4—C3—H31118.7
N1i—Co1—O1i87.29 (6)C3—C4—C5122.3 (3)
N2i—Co1—O1i91.15 (6)C3—C4—H41119.7
N1i—Co1—N1179.995C5—C4—H41118.0
N2i—Co1—N189.4 (8)C4—C5—C6112.18 (14)
O1i—Co1—N192.7 (4)C4—C5—H51110.9
N1i—Co1—N289.4 (4)C6—C5—H51108.7
N2i—Co1—N2179.995C4—C5—H52108.2
O1i—Co1—N288.9 (6)C6—C5—H52107.0
N1—Co1—N290.57 (6)H51—C5—H52109.8
N1i—Co1—O192.7 (8)C5—C6—N2ii178.3 (2)
N2i—Co1—O188.9 (3)Co1—O1—H11119.4
O1i—Co1—O1179.994Co1—O1—H12121.0
N1—Co1—O187.29 (6)H11—O1—H12105.0
N2—Co1—O191.15 (6)F1—B1—F2109.0 (6)
Co1—N1—C1173.92 (16)F1—B1—F3105.3 (7)
Co1—N2—C6ii166.34 (18)F2—B1—F3109.1 (7)
N1—C1—C2179.5 (2)F1—B1—F4108.3 (6)
C1—C2—C3113.2 (2)F2—B1—F4115.9 (6)
C1—C2—H21108.5F3—B1—F4108.7 (6)
C3—C2—H21109.3F1—B1—F21105.8 (6)
C1—C2—H22108.7F1—B1—F31115.0 (6)
C3—C2—H22109.9F21—B1—F31109.8 (7)
H21—C2—H22107.0F1—B1—F41108.4 (6)
C2—C3—C4125.87 (19)F21—B1—F41106.8 (6)
C2—C3—H31115.5F31—B1—F41110.7 (8)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H22···O1iii0.972.523.348 (3)143 (1)
O1—H12···F1iv0.831.892.72 (2)175 (1)
O1—H11···F2iii0.821.872.669 (13)163 (1)
Symmetry codes: (iii) x+1, y+2, z+1; (iv) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H22···O1i0.9702.5203.348 (3)143.1 (3)
O1—H12···F1ii0.8301.8902.72 (2)174.58 (8)
O1—H11···F2i0.8201.8732.669 (13)163.0 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+1, z.
 

Footnotes

contributed equally.

Acknowledgements

This work was supported by the DGIST R&D Program of Ministry of Science, ICT and Future Planning of Korea (grant No. 15-HRLA-01).

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBlount, J. F., Freeman, H. C., Hemmerich, P. & Sigwart, C. (1969). Acta Cryst. B25, 1518–1524.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationHeller, M. & Sheldrick, W. S. (2004). Z. Anorg. Allg. Chem. 630, 1869–1874.  CSD CrossRef CAS Google Scholar
First citationKim, Y. S., Kim, T. H., Lee, H. & Song, H. K. (2011). Energ. Environ. Sci. 4, 4038–4045.  CrossRef CAS Google Scholar
First citationKim, Y. S., Lee, S. H., Son, M. Y., Jung, Y. M., Song, H. K. & Lee, H. (2014a). ACS Appl. Mat. Interfaces, 6, 2039–2043.  CrossRef CAS Google Scholar
First citationKim, Y. S., Lee, H. & Song, H. K. (2014b). ACS Appl. Mater. Interfaces, 6, 8913–8920.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStorhoff, B. N. & Lewis, H. C. Jr (1977). Coord. Chem. Rev. 23, 1–29.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages m135-m136
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds