organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [1,1′-biphen­yl]-2,2′-dicarbo­nitrile

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 May 2015; accepted 19 May 2015; online 30 May 2015)

The complete mol­ecule of the title compound, C14H8N2, is generated by a twofold rotation axis located at the midpoint of the biphenyl C—C bond. The dihedral angle between the symmetry-related phenyl rings is 46.16 (3)°. In the crystal, mol­ecules are linked by slipped parallel ππ inter­actions [centroid–centroid distance = 3.9451 (7) Å, normal distance = 3.6293 (5) Å, slippage 1.547 Å], forming columns along the b-axis direction.

1. Related literature

The title compound has been used as a reactant for phthalocyanine synthesis (Shimizu et al., 2011[Shimizu, S., Zhu, H. & Kobayashi, N. (2011). Chem. Commun. 47, 3072-3074.], 2014[Shimizu, S., Nakano, S., Kojima, A. & Kobayashi, N. (2014). Angew. Chem. Int. Ed. 53, 2408-2412.]). Related crystal structures were reported by Furukawa et al. (2008[Furukawa, H., Kim, J., Ockwig, N. W., O'Keeffe, M. & Yaghi, O. M. (2008). J. Am. Chem. Soc. 130, 11650-11661.]) and Paek et al. (1989[Paek, K., Knobler, C. B., Maverick, E. F. & Cram, D. J. (1989). J. Am. Chem. Soc. 111, 8662-8671.]). For synthetic details, see: Wu et al. (2007[Wu, L.-L., Yang, C.-H., Sun, I.-W., Chu, S.-Y., Kao, P.-C. & Huang, H.-H. (2007). Organometallics, 26, 2017-2023.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H8N2

  • Mr = 204.22

  • Monoclinic, C 2/c

  • a = 15.7839 (9) Å

  • b = 3.9451 (2) Å

  • c = 16.6079 (9) Å

  • β = 101.630 (3)°

  • V = 1012.93 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.43 × 0.12 × 0.06 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.995

  • 4708 measured reflections

  • 1157 independent reflections

  • 988 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.09

  • 1157 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

The title compound has been used as a reactant for phthalocyanine synthesis (Shimizu et al., 2011, 2014). Related crystal structures were reported by Furukawa et al. (2008) and Paek et al. (1989). For synthetic details, see: Wu et al. (2007).

Experimental top

The title compound was prepared by Suzuki coupling reaction of 2-bromobenzonitrile and 2-cyanophenyl boronic acid in acetonitrile (Wu et al., 2007). Slow evaporation of a solution in acetone/ethyl acetate gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. Symmetry-related atoms (not labelled) are generated by symmetry code x+1, y, -z+1/2.
[Figure 2] Fig. 2. Crystal packing viewed along the b axis. The intermolecular ππ interactions between the phenyl ring systems [Cg1···Cg1i, 3.9451 (7) Å; Cg1 is the centroid of the C2···C7 ring; symmetry code (i): x, y - 1, z] are shown as dashed lines. They link molecules into columns along [010].
[1,1'-Biphenyl]-2,2'-dicarbonitrile top
Crystal data top
C14H8N2F(000) = 424
Mr = 204.22Dx = 1.339 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.7839 (9) ÅCell parameters from 1375 reflections
b = 3.9451 (2) Åθ = 3.3–27.5°
c = 16.6079 (9) ŵ = 0.08 mm1
β = 101.630 (3)°T = 173 K
V = 1012.93 (9) Å3Block, colourless
Z = 40.43 × 0.12 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1157 independent reflections
Radiation source: fine-focus sealed tube988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.6°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2020
Tmin = 0.966, Tmax = 0.995k = 51
4708 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.5212P]
where P = (Fo2 + 2Fc2)/3
1157 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H8N2V = 1012.93 (9) Å3
Mr = 204.22Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.7839 (9) ŵ = 0.08 mm1
b = 3.9451 (2) ÅT = 173 K
c = 16.6079 (9) Å0.43 × 0.12 × 0.06 mm
β = 101.630 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1157 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
988 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.995Rint = 0.030
4708 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
1157 reflectionsΔρmin = 0.24 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.58879 (7)0.3650 (3)0.08819 (7)0.0323 (3)
C10.53155 (8)0.2522 (3)0.11172 (7)0.0233 (3)
C20.45640 (7)0.1152 (3)0.13725 (7)0.0206 (3)
C30.37963 (8)0.1099 (3)0.07828 (7)0.0244 (3)
H30.37910.18940.02420.029*
C40.30457 (8)0.0108 (3)0.09854 (8)0.0273 (3)
H40.25220.01390.05860.033*
C50.30609 (8)0.1274 (3)0.17741 (8)0.0257 (3)
H50.25450.21170.19140.031*
C60.38225 (8)0.1224 (3)0.23640 (7)0.0231 (3)
H60.38190.20370.29020.028*
C70.45930 (7)0.0004 (3)0.21832 (7)0.0196 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0275 (6)0.0450 (7)0.0253 (6)0.0066 (5)0.0075 (4)0.0013 (5)
C10.0244 (6)0.0277 (7)0.0176 (6)0.0017 (5)0.0034 (4)0.0014 (5)
C20.0208 (6)0.0225 (6)0.0194 (6)0.0003 (4)0.0059 (4)0.0015 (4)
C30.0258 (6)0.0290 (7)0.0180 (6)0.0002 (5)0.0037 (5)0.0003 (4)
C40.0214 (6)0.0331 (7)0.0255 (7)0.0011 (5)0.0000 (5)0.0016 (5)
C50.0206 (6)0.0286 (6)0.0286 (7)0.0028 (5)0.0069 (5)0.0006 (5)
C60.0245 (6)0.0239 (6)0.0216 (6)0.0017 (5)0.0068 (5)0.0020 (4)
C70.0205 (6)0.0187 (6)0.0199 (6)0.0012 (4)0.0044 (5)0.0013 (4)
Geometric parameters (Å, º) top
N1—C11.1443 (16)C4—H40.9500
C1—C21.4427 (16)C5—C61.3893 (17)
C2—C31.3963 (16)C5—H50.9500
C2—C71.4135 (16)C6—C71.3957 (16)
C3—C41.3800 (17)C6—H60.9500
C3—H30.9500C7—C7i1.488 (2)
C4—C51.3839 (18)
N1—C1—C2176.92 (12)C4—C5—C6120.68 (11)
C3—C2—C7121.34 (11)C4—C5—H5119.7
C3—C2—C1116.62 (10)C6—C5—H5119.7
C7—C2—C1122.02 (10)C5—C6—C7121.38 (11)
C4—C3—C2120.04 (11)C5—C6—H6119.3
C4—C3—H3120.0C7—C6—H6119.3
C2—C3—H3120.0C6—C7—C2116.99 (11)
C3—C4—C5119.57 (11)C6—C7—C7i120.90 (12)
C3—C4—H4120.2C2—C7—C7i122.09 (12)
C5—C4—H4120.2
C7—C2—C3—C40.18 (18)C5—C6—C7—C7i179.21 (9)
C1—C2—C3—C4178.65 (11)C3—C2—C7—C60.51 (17)
C2—C3—C4—C50.26 (19)C1—C2—C7—C6178.91 (11)
C3—C4—C5—C60.34 (19)C3—C2—C7—C7i179.27 (9)
C4—C5—C6—C70.02 (19)C1—C2—C7—C7i2.34 (15)
C5—C6—C7—C20.44 (17)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H8N2
Mr204.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)15.7839 (9), 3.9451 (2), 16.6079 (9)
β (°) 101.630 (3)
V3)1012.93 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.43 × 0.12 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.966, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
4708, 1157, 988
Rint0.030
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.09
No. of reflections1157
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2010).

 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFurukawa, H., Kim, J., Ockwig, N. W., O'Keeffe, M. & Yaghi, O. M. (2008). J. Am. Chem. Soc. 130, 11650–11661.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPaek, K., Knobler, C. B., Maverick, E. F. & Cram, D. J. (1989). J. Am. Chem. Soc. 111, 8662–8671.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimizu, S., Nakano, S., Kojima, A. & Kobayashi, N. (2014). Angew. Chem. Int. Ed. 53, 2408–2412.  CAS Google Scholar
First citationShimizu, S., Zhu, H. & Kobayashi, N. (2011). Chem. Commun. 47, 3072–3074.  CAS Google Scholar
First citationWu, L.-L., Yang, C.-H., Sun, I.-W., Chu, S.-Y., Kao, P.-C. & Huang, H.-H. (2007). Organometallics, 26, 2017–2023.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds