research communications
μ-N-[3-(dimethylamino)propyl]-N′-2-(oxidophenyl)oxamidato}(1,10-phenanthroline-5,6-dione)dicopper(II) perchlorate hemihydrate
of aqua{aKey Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
*Correspondence e-mail: wuzy@ouc.edu.cn
The title compound, [Cu2(C13H16N3O3)(C12H6N2O2)(H2O)]ClO4·0.5H2O, consists of a cis-oxamide-bridged binuclear CuII complex cation, a perchlorate anion and half a solvent water molecule. One CuII cation is N,N′,N",O-chelated by an N-[3-(dimethylamino)propyl]-N′-(2-hydroxyphenyl)oxamide trianion in a distorted square-planar geometry, whereas the other CuII cation is O,O′-chelated by the oxamide moiety of the anion and N,N′-chelated by a 1,10-phenanthroline-5,6-dione molecule, and a water molecule further coordinates the second CuII cation, completing a distorted square-pyramidal coordination geometry. In the crystal, classical O—H⋯O hydrogen bonds, weak C—H⋯O hydrogen-bonding interactions and π–π stacking interactions link the complex cations, anions and solvent water molecules into a three-dimensional supramolecular architecture. In the crystal, the dimethylaminopropyl unit of the oxamide anion is disordered over two positions with an occupancy ratio of 0.561 (11):0.439 (11); the solvent water molecule is also disordered over two positions, the occupancy ratio being 0.207 (10):0.293 (10).
Keywords: crystal structure; binuclear copper(II) complex; oxamide complex; 1,10-phenanthroline-5,6-dione; hydrogen bonding; π–π stacking.
CCDC reference: 1401557
1. Chemical context
It is known that oxamide ligands could be good candidates for forming polynuclear complexes because of their versatile coordinating abilities (Ojima & Nonoyama, 1988; Ruiz et al., 1999). Therefore, many oxamide complexes and their properties have been investigated extensively (Messori et al., 2003; Wang et al., 2013; Li et al., 2011).
1,10-Phenanthroline-5,6-dione (Phdo) is a multifaceted ligand since the structure and electronic properties thereof incorporate the features of the diimine and quinone functionalities (Girgis et al., 1975; Calderazzo et al., 2002). Consequently, as part of our systematic study of asymmetrical bis-substituent oxamide complexes and the influence of structures on the DNA-binding properties thereof (Li et al., 2012; Zhang et al., 2013), we selected N-[3-(dimethylamino)propyl]-N′-2-(oxidophenyl)oxamide (H3Dmapox) as a bridging ligand and Phdo as a terminal ligand to synthesize the title binuclear copper(II) complex, [Cu2(Dmapox)(Phdo)H2O]+ClO4−·0.5H2O. Its and supramolecular structure are reported here.
2. Structural commentary
The title compound consists of a binuclear CuII complex cation, a perchlorate anion and half of a solvent water molecule (Fig. 1). Two copper(II) ions are bridged by a cis-oxamido group. The Cu1 atom, located at the inner site of the oxamide ligand, has a distorted square-planar geometry and is displaced from the coordination plane by 0.0454 (15) Å, which is consistent with structures reported previously (Gao & Wang, 2010; Lu et al., 2011). The two exo-oxygen atoms of the oxamide ligand and two nitrogen atoms of the Phdo molecule chelate the Cu2 atom, forming the basal coordination plane [the maximum deviation being 0.0384 (14) Å for N4], and a water molecule (O4) occupies the apical position, completing a distorted square-pyramidal coordination geometry with a τ value of 0.06 (Addison et al., 1984). The Cu—O distance of 2.213 (3) Å in the apical direction is longer than those in the basal plane by 0.261 (4) and 0.266 (4) Å (Table 1). The Cu2 atom is displaced by 0.1610 (15) Å from the basal plane towards the apex.
|
The hexadentate oxamide anion, Dmapox3−, bridges the two copper(II) cations with three planar five-membered chelate rings and one six-membered ring, the latter being disordered over two positions. The puckering parameters of the first component (containing atoms C10A and C11A) are Q = 0.554 (8) Å, θ = 47.6 (6)° and φ = 206.0 (7)°, and those of the other are Q = 0.565 (11) Å, θ = 123.4 (8)° and φ = 38.8 (9)°; both suggest an approximate half-chair conformation.
3. Supramolecular features
Besides classical O—H⋯O hydrogen bonds, weak C—H⋯O hydrogen bonds and aromatic stacking interactions are important to the supramolecular structure. As illustrated in Fig. 2, two symmetry-related binuclear cations link each other, forming a dimer by hydrogen bonds between the coordinating water molecules and phenolic oxygen atoms (Table 2). Then the dimers are assembled by perchlorate anions, generating a wave-like layer parallel to (100). Subsequently, an offset π–π stacking interaction occurs between the middle aromatic ring of the Phdo ligand of a binuclear unit and the benzene ring of the other unit at −x, 1 − y, −z [symmetry code (iv)], and vice versa (Fig. 3). The separations of the overlapped atoms from their opposite rings are 3.191 (4) (C2iv), 3.211 (4) (C3iv) and 3.252 (4) Å (C19iv).
4. Database survey
Several CuII complexes of 1,10-phenanthroline-5,6-dione have been reported previously, for example, Chetana et al. (2009); Galet et al. (2005); Saravani et al. (2007); Wang et al. (2013); Yamada et al. (2002) and Xu et al. (2006).
5. Synthesis and crystallization
N-[3-(Dimethylamino)propyl]-N′-2-(oxidophenyl)oxamide (H3Dmapox; Zhang et al., 2013) and 1,10-phenanthroline-5,6-dione (Phdo; Dickeson & Summers, 1970) were prepared by published procedures. The title compound was obtained as follows: A solution of Cu(ClO4)2·6H2O (0.0371 g, 0.1 mmol) in methanol (5 ml) was added dropwise to a solution of H3Dmapox (0.0133 g, 0.05 mmol) and piperidine (0.0128 g, 0.15 mmol) in methanol (5 ml). The solution was stirred continuously for 0.5 h. Then a solution of Phdo (0.011 g, 0.05 mmol) in methanol (5 ml) was added dropwise, and the mixture was stirred continuously at 313 K for 6 h and then filtered. Dark-blue crystals of the title compound suitable for X-ray analysis were obtained from the filtrate by slow evaporation at room temperature for 7 d. Yield: 0.026 g (71.62%). Analysis calculated for Cu2C25H25ClN5O10.5: C 41.44, H 3.48, N 9.67%; found: C 42.57, H 3.15, N 9.19%.
6. Refinement
Crystal data, data collection, and . Disorder occurs for four carbon atoms of the 3-(dimethylamino)propyl group [C10A–C13A, with occupancies of 0.561 (11); C10B–C13B, 0.439 (11)], three oxygen atoms of the perchlorate ion [O9A–O11A, 0.646 (8); O9B–O11B, 0.354 (8)] and the solvent water molecule (O7A, 0.207 (10); O7B, 0.293 (10)]. The occupancies were refined freely except for the sum of atoms O7A and O7B which was fixed at 0.5. Some restraints on distances (DFIX) and anisotropic displacement parameters (SIMU) were applied to the disordered atoms to avoid unreasonable geometries. The hydrogen atoms of the water molecules were found in a difference Fourier map and then refined as riding. Other H atoms were placed in calculated positions, with C—H = 0.96 (methyl), 0.97 (methylene) and 0.93 Å (aromatic), and refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 for methyl groups.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1401557
10.1107/S2056989015009391/xu5850sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015009391/xu5850Isup2.hkl
It is known that oxamide ligands could be good candidates for forming polynuclear complexes because of their versatile coordinating abilities (Ojima & Nonoyama, 1988; Ruiz et al., 1999). Therefore, many oxamide complexes and their properties have been investigated extensively (Messori et al., 2003; Wang et al., 2013; Li et al., 2011). 1,10-Phenanthroline-5,6-dione (Phdo) is a multifaceted ligand since the structure and electronic properties thereof incorporate the features of the diimine and quinone functionalities (Girgis et al., 1975; Calderazzo et al., 2002). Consequently, as part of our systematic study of asymmetrical bis-substituent oxamide complexes and the influence of structures on the DNA-binding properties thereof (Li et al., 2012; Zhang et al., 2013), we selected N-[3-(dimethylamino)propyl]-N'-2-(oxidophenyl)oxamide (H3Dmapox) as a bridging ligand and Phdo as a terminal ligand to synthesize the title binuclear copper(II) complex, [Cu2(Dmapox)(Phdo)H2O]+ClO4-.0.5H2O. Its
and supramolecular structure are reported here.The title compound consists of a binuclear CuII complex cation, a perchlorate anion and half of a solvent water molecule (Fig. 1). Two copper(II) ions are bridged by a cis-oxamido group. The Cu1 atom, located at the inner site of the oxamide ligand, has a distorted square-planar geometry and is displaced from the coordination plane by 0.0454 (15) Å, which is consistent with structures reported previously (Gao & Wang, 2010; Lu et al., 2011). The two exo-oxygen atoms of oxamide ligand and two nitrogen atoms of the Phdo molecule chelate the Cu2 atom to form the basal coordination plane [the maximum deviation being 0.0384 (14) Å for N4], and a water molecule (O4) occupies the apical position to complete the distorted square-pyramidal coordination geometry with τ value of 0.06 (Addison et al., 1984). The Cu—O distance of 2.213 (3) Å in the apical direction is longer than those in the basal plane by 0.261 (4) and 0.266 (4) Å (Table 1). The Cu2 atom is displaces by 0.1610 (15) Å off the basal plane towards the apex.
The hexadentate oxamide anion, Dmapox3-, bridges the two copper(II) cations with three planar five-membered chelate rings and one six-membered, the latter is disordered over two parts. The puckering parameters of one part (containing atoms C10A and C11A) are Q = 0.554 (8) Å, θ = 47.6 (6)° and ϕ = 206.0 (7)°, and those of the other part are Q = 0.565 (11) Å, θ = 123.4 (8)° and ϕ = 38.8 (9)°; both suggest an approximate half-chair conformation.
Besides classical O—H···O hydrogen bonds, weak C—H···O hydrogen bonds and aromatic stacking interactions are important to the supramolecular structure. As illustrated in Fig. 2, two symmetry-related binuclear cations link each other, forming a dimer by hydrogen bonds between the coordinating water molecules and phenolic oxygen atoms (Table 2). Then the dimers are assembled by perchlorate anions, generating a wave-like layer parallel to (100). Subsequently, an offset π–π stacking interaction occurs between the middle aromatic ring of the Phdo ligand of a binuclear unit and the benzene ring of the other unit at -x, 1 - y, -z [symmetry code (iv)], and vice versa (Fig. 3). The separations of the overlapped atoms to their opposite rings are 3.191 (4) (C2iv), 3.211 (4) (C3iv) and 3.252 (4) Å (C19iv).
Several CuII complexes of 1,10-phenanthroline-5,6-dione have been reported previously, for example, Chetana et al. (2009); Galet et al. (2005); Saravani et al. (2007); Wang et al. (2013); Yamada et al. (2002) and Xu et al. (2006).
N-[3-(Dimethylamino)propyl]-N'-2-(oxidophenyl)oxamide (H3Dmapox; Zhang et al., 2013) and 1,10-phenanthroline-5,6-dione (Phdo; Dickeson & Summers, 1970) were prepared by published procedures. The title compound was obtained as follows: A solution of Cu(ClO4)2.6H2O (0.0371 g, 0.1 mmol) in methanol (5 ml) was added dropwise to a solution of H3Dmapox (0.0133 g, 0.05 mmol) and piperidine (0.0128 g, 0.15 mmol) in methanol (5 ml). The solution was stirred continuously for 0.5 h. Then a solution of Phdo (0.011 g, 0.05 mmol) in methanol (5 ml) was added dropwise, and the mixture was stirred continuously at 313 K for 6 h and then filtered. Dark-blue crystals of the title compound suitable for X-ray analysis were obtained from the filtrate by slow evaporation at room temperature for 7 d. Yield: 0.026 g (71.62%). Analysis calculated for Cu2C25H25ClN5O10.5: C 41.44, H 3.48, N 9.67%; found: C 42.57, H 3.15, N 9.19%.
Disorder occurs for four carbon atoms of the 3-(dimethylamino)propyl group [C10A–C13A, with occupancies of 0.561 (11); C10B–C13B, 0.439 (11)], three oxygen atoms of perchlorate ion [O9A–O11A, 0.646 (8); O9B–O11B, 0.354 (8)], and the solvent water molecule (O7A, 0.207 (10); O7B, 0.293 (10)]. Their occupancies were refined freely except for the sum of atoms O7A and O7B which was fixed to 0.5. Some restraints on distances (DFIX) and anisotropic displacement parameters (SIMU) were applied to these disordered atoms to avoid unreasonable geometries. The hydrogen atoms of the water molecules were found in a difference Fourier map and then refined as riding. Other H atoms were placed in calculated positions, with C—H = 0.96 (methyl), 0.97 (methylene) and 0.93 Å (aromatic), and refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 for methyl groups.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. For clarity, disordered atoms are represented in a different style and the H atoms on disordered carbon atoms have been omitted. Dashed lines indicate hydrogen bonds. | |
Fig. 2. The two-dimensional wave-like hydrogen-bonding network constructed by classical O—H···O and weak C—H···O interactions [symmetry codes: (i) 1 - x, 1 - y, -z; (ii) x, 1/2 - y, z - 1/2; (iii) x, 1/2 - y, z + 1/2]. | |
Fig. 3. A perspective view of the π–π stacking interactions viewed perpendicular to the middle ring of the Phdo ligand. H atoms have been omitted for clarity [symmetry code: (iv) -x, 1 - y, -z]. |
[Cu2(C13H16N3O3)(C12H6N2O2)(H2O)]ClO4·0.5H2O | F(000) = 1476 |
Mr = 726.03 | Dx = 1.699 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.7430 (6) Å | Cell parameters from 9065 reflections |
b = 17.3066 (9) Å | θ = 3.2–27.4° |
c = 14.1086 (8) Å | µ = 1.66 mm−1 |
β = 98.154 (1)° | T = 296 K |
V = 2838.3 (3) Å3 | Prism, dark blue |
Z = 4 | 0.30 × 0.12 × 0.06 mm |
Bruker APEX area-detector diffractometer | 6432 independent reflections |
Radiation source: fine-focus sealed tube | 4831 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ϕ and ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −14→15 |
Tmin = 0.636, Tmax = 0.907 | k = −22→22 |
21066 measured reflections | l = −15→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0369P)2 + 7.4021P] where P = (Fo2 + 2Fc2)/3 |
6432 reflections | (Δ/σ)max < 0.001 |
478 parameters | Δρmax = 0.76 e Å−3 |
31 restraints | Δρmin = −0.47 e Å−3 |
[Cu2(C13H16N3O3)(C12H6N2O2)(H2O)]ClO4·0.5H2O | V = 2838.3 (3) Å3 |
Mr = 726.03 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.7430 (6) Å | µ = 1.66 mm−1 |
b = 17.3066 (9) Å | T = 296 K |
c = 14.1086 (8) Å | 0.30 × 0.12 × 0.06 mm |
β = 98.154 (1)° |
Bruker APEX area-detector diffractometer | 6432 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 4831 reflections with I > 2σ(I) |
Tmin = 0.636, Tmax = 0.907 | Rint = 0.054 |
21066 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 31 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.76 e Å−3 |
6432 reflections | Δρmin = −0.47 e Å−3 |
478 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.48982 (4) | 0.62884 (2) | 0.02261 (3) | 0.01855 (12) | |
Cu2 | 0.15568 (4) | 0.46352 (3) | 0.12248 (3) | 0.01949 (12) | |
O1 | 0.5443 (2) | 0.62076 (14) | −0.10126 (18) | 0.0201 (5) | |
O2 | 0.2204 (2) | 0.48428 (14) | 0.00502 (19) | 0.0202 (5) | |
O3 | 0.2675 (2) | 0.53779 (14) | 0.18328 (19) | 0.0216 (6) | |
O4 | 0.2568 (2) | 0.35877 (15) | 0.1685 (2) | 0.0260 (6) | |
H4A | 0.3245 | 0.3523 | 0.1580 | 0.07 (2)* | |
H4B | 0.2148 | 0.3146 | 0.1550 | 0.052 (16)* | |
O5 | −0.3086 (2) | 0.27160 (16) | 0.1260 (2) | 0.0326 (7) | |
O6 | −0.2449 (3) | 0.30625 (18) | 0.3165 (2) | 0.0376 (8) | |
N1 | 0.3763 (2) | 0.55502 (16) | −0.0332 (2) | 0.0174 (6) | |
N2 | 0.4133 (3) | 0.61345 (17) | 0.1376 (2) | 0.0191 (6) | |
N3 | 0.5927 (3) | 0.71698 (18) | 0.0732 (2) | 0.0255 (7) | |
N4 | 0.0213 (2) | 0.40632 (17) | 0.0548 (2) | 0.0176 (6) | |
N5 | 0.0705 (3) | 0.45017 (19) | 0.2338 (2) | 0.0254 (7) | |
C1 | 0.4728 (3) | 0.5781 (2) | −0.1637 (3) | 0.0193 (8) | |
C2 | 0.3778 (3) | 0.54062 (19) | −0.1310 (3) | 0.0176 (7) | |
C3 | 0.2998 (3) | 0.4979 (2) | −0.1929 (3) | 0.0214 (8) | |
H3 | 0.2375 | 0.4744 | −0.1706 | 0.026* | |
C4 | 0.3151 (4) | 0.4902 (2) | −0.2881 (3) | 0.0270 (9) | |
H4 | 0.2625 | 0.4623 | −0.3303 | 0.032* | |
C5 | 0.4095 (4) | 0.5246 (2) | −0.3199 (3) | 0.0286 (9) | |
H5 | 0.4205 | 0.5186 | −0.3835 | 0.034* | |
C6 | 0.4876 (3) | 0.5676 (2) | −0.2587 (3) | 0.0249 (9) | |
H6 | 0.5506 | 0.5897 | −0.2815 | 0.030* | |
C7 | 0.3069 (3) | 0.52992 (19) | 0.0233 (3) | 0.0170 (7) | |
C8 | 0.3321 (3) | 0.56215 (19) | 0.1238 (3) | 0.0178 (7) | |
C9 | 0.4368 (3) | 0.6507 (2) | 0.2314 (3) | 0.0253 (9) | |
H9A | 0.4864 | 0.6178 | 0.2751 | 0.030* | 0.561 (11) |
H9B | 0.3653 | 0.6579 | 0.2573 | 0.030* | 0.561 (11) |
H9C | 0.3716 | 0.6824 | 0.2419 | 0.030* | 0.439 (11) |
H9D | 0.4476 | 0.6116 | 0.2811 | 0.030* | 0.439 (11) |
C10A | 0.4950 (7) | 0.7291 (5) | 0.2231 (6) | 0.0207 (19) | 0.561 (11) |
H10A | 0.4427 | 0.7629 | 0.1829 | 0.025* | 0.561 (11) |
H10B | 0.5105 | 0.7525 | 0.2861 | 0.025* | 0.561 (11) |
C11A | 0.6069 (6) | 0.7230 (5) | 0.1811 (4) | 0.0213 (19) | 0.561 (11) |
H11A | 0.6536 | 0.7680 | 0.2007 | 0.026* | 0.561 (11) |
H11B | 0.6485 | 0.6778 | 0.2082 | 0.026* | 0.561 (11) |
C12A | 0.5468 (14) | 0.7891 (6) | 0.0286 (10) | 0.046 (4) | 0.561 (11) |
H12A | 0.5380 | 0.7839 | −0.0398 | 0.069* | 0.561 (11) |
H12B | 0.5990 | 0.8306 | 0.0483 | 0.069* | 0.561 (11) |
H12C | 0.4734 | 0.7999 | 0.0482 | 0.069* | 0.561 (11) |
C13A | 0.7114 (8) | 0.7022 (15) | 0.0540 (12) | 0.043 (5) | 0.561 (11) |
H13A | 0.7615 | 0.7421 | 0.0830 | 0.065* | 0.561 (11) |
H13B | 0.7128 | 0.7020 | −0.0139 | 0.065* | 0.561 (11) |
H13C | 0.7370 | 0.6530 | 0.0803 | 0.065* | 0.561 (11) |
C10B | 0.5434 (12) | 0.6994 (6) | 0.2379 (7) | 0.032 (3) | 0.439 (11) |
H10C | 0.6093 | 0.6651 | 0.2436 | 0.038* | 0.439 (11) |
H10D | 0.5493 | 0.7294 | 0.2965 | 0.038* | 0.439 (11) |
C11B | 0.5519 (11) | 0.7548 (5) | 0.1554 (8) | 0.036 (3) | 0.439 (11) |
H11C | 0.4768 | 0.7773 | 0.1348 | 0.043* | 0.439 (11) |
H11D | 0.6041 | 0.7965 | 0.1778 | 0.043* | 0.439 (11) |
C12B | 0.5760 (13) | 0.7781 (7) | −0.0015 (9) | 0.038 (4) | 0.439 (11) |
H12D | 0.6208 | 0.8228 | 0.0204 | 0.057* | 0.439 (11) |
H12E | 0.4962 | 0.7920 | −0.0139 | 0.057* | 0.439 (11) |
H12F | 0.6005 | 0.7591 | −0.0593 | 0.057* | 0.439 (11) |
C13B | 0.7162 (10) | 0.6988 (17) | 0.0870 (15) | 0.035 (5) | 0.439 (11) |
H13D | 0.7595 | 0.7447 | 0.1058 | 0.053* | 0.439 (11) |
H13E | 0.7375 | 0.6796 | 0.0281 | 0.053* | 0.439 (11) |
H13F | 0.7323 | 0.6603 | 0.1360 | 0.053* | 0.439 (11) |
C14 | 0.0027 (3) | 0.3843 (2) | −0.0364 (3) | 0.0206 (8) | |
H14 | 0.0530 | 0.4014 | −0.0773 | 0.025* | |
C15 | −0.0881 (3) | 0.3370 (2) | −0.0734 (3) | 0.0231 (8) | |
H15 | −0.0984 | 0.3228 | −0.1376 | 0.028* | |
C16 | −0.1632 (3) | 0.3114 (2) | −0.0128 (3) | 0.0227 (8) | |
H16 | −0.2245 | 0.2792 | −0.0355 | 0.027* | |
C17 | −0.1456 (3) | 0.3344 (2) | 0.0822 (3) | 0.0183 (7) | |
C18 | −0.2225 (3) | 0.3083 (2) | 0.1514 (3) | 0.0234 (8) | |
C19 | −0.1890 (3) | 0.3309 (2) | 0.2573 (3) | 0.0287 (9) | |
C20 | −0.0860 (3) | 0.3801 (2) | 0.2846 (3) | 0.0251 (8) | |
C21 | −0.0471 (4) | 0.4002 (3) | 0.3791 (3) | 0.0375 (11) | |
H21 | −0.0859 | 0.3833 | 0.4283 | 0.045* | |
C22 | 0.0503 (4) | 0.4458 (3) | 0.3987 (3) | 0.0455 (13) | |
H22 | 0.0783 | 0.4595 | 0.4614 | 0.055* | |
C23 | 0.1057 (4) | 0.4706 (3) | 0.3236 (3) | 0.0387 (11) | |
H23 | 0.1695 | 0.5027 | 0.3368 | 0.046* | |
C24 | −0.0232 (3) | 0.4052 (2) | 0.2139 (3) | 0.0210 (8) | |
C25 | −0.0521 (3) | 0.3817 (2) | 0.1138 (3) | 0.0170 (7) | |
Cl1 | 0.04798 (9) | 0.17375 (5) | 0.17883 (7) | 0.0275 (2) | |
O8 | 0.0854 (3) | 0.1132 (2) | 0.2436 (3) | 0.0567 (10) | |
O9A | 0.0082 (6) | 0.2341 (3) | 0.2331 (4) | 0.054 (2) | 0.646 (8) |
O10A | −0.0380 (7) | 0.1519 (4) | 0.1034 (4) | 0.060 (2) | 0.646 (8) |
O11A | 0.1412 (6) | 0.2040 (4) | 0.1353 (5) | 0.073 (2) | 0.646 (8) |
O9B | 0.0505 (16) | 0.1419 (9) | 0.0878 (5) | 0.112 (6) | 0.354 (8) |
O10B | 0.1088 (10) | 0.2417 (4) | 0.1984 (12) | 0.094 (6) | 0.354 (8) |
O11B | −0.0679 (5) | 0.1910 (5) | 0.1922 (7) | 0.037 (3) | 0.354 (8) |
O7A | 0.3514 (15) | 0.5296 (11) | 0.4141 (15) | 0.056 (7) | 0.207 (10) |
H7A | 0.3589 | 0.5251 | 0.3546 | 0.084* | 0.207 (10) |
H7B | 0.4122 | 0.5110 | 0.4473 | 0.084* | 0.207 (10) |
O7B | 0.282 (2) | 0.5932 (11) | 0.4515 (15) | 0.146 (13) | 0.293 (10) |
H7C | 0.2845 | 0.5848 | 0.5119 | 0.219* | 0.293 (10) |
H7D | 0.2685 | 0.6416 | 0.4416 | 0.219* | 0.293 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0132 (2) | 0.0162 (2) | 0.0274 (3) | −0.00272 (17) | 0.00678 (18) | −0.00401 (18) |
Cu2 | 0.0134 (2) | 0.0205 (2) | 0.0258 (3) | −0.00197 (18) | 0.00698 (18) | −0.00077 (19) |
O1 | 0.0139 (12) | 0.0220 (13) | 0.0252 (14) | −0.0045 (10) | 0.0057 (11) | −0.0014 (11) |
O2 | 0.0151 (12) | 0.0197 (12) | 0.0263 (14) | −0.0049 (10) | 0.0053 (11) | −0.0003 (11) |
O3 | 0.0186 (13) | 0.0209 (12) | 0.0270 (15) | −0.0024 (11) | 0.0091 (11) | −0.0006 (11) |
O4 | 0.0175 (14) | 0.0236 (14) | 0.0387 (17) | 0.0015 (11) | 0.0103 (12) | 0.0083 (12) |
O5 | 0.0260 (16) | 0.0291 (15) | 0.0463 (19) | −0.0087 (13) | 0.0173 (14) | 0.0000 (14) |
O6 | 0.0327 (17) | 0.0443 (18) | 0.0399 (18) | −0.0003 (14) | 0.0185 (15) | 0.0153 (15) |
N1 | 0.0135 (14) | 0.0147 (14) | 0.0245 (17) | 0.0001 (12) | 0.0041 (13) | −0.0010 (12) |
N2 | 0.0159 (15) | 0.0180 (15) | 0.0235 (17) | 0.0007 (12) | 0.0028 (13) | −0.0013 (13) |
N3 | 0.0198 (17) | 0.0250 (16) | 0.0334 (19) | −0.0058 (14) | 0.0091 (15) | −0.0092 (15) |
N4 | 0.0117 (14) | 0.0198 (15) | 0.0220 (17) | 0.0017 (12) | 0.0046 (12) | 0.0032 (13) |
N5 | 0.0196 (16) | 0.0308 (17) | 0.0268 (19) | 0.0016 (14) | 0.0061 (14) | −0.0042 (15) |
C1 | 0.0145 (17) | 0.0147 (16) | 0.029 (2) | 0.0046 (14) | 0.0047 (15) | 0.0007 (15) |
C2 | 0.0123 (16) | 0.0141 (16) | 0.026 (2) | 0.0015 (14) | 0.0026 (15) | −0.0002 (15) |
C3 | 0.0178 (18) | 0.0181 (17) | 0.028 (2) | −0.0005 (15) | 0.0038 (16) | −0.0008 (15) |
C4 | 0.024 (2) | 0.0250 (19) | 0.031 (2) | −0.0017 (17) | 0.0011 (17) | −0.0070 (17) |
C5 | 0.030 (2) | 0.030 (2) | 0.028 (2) | −0.0003 (18) | 0.0109 (18) | −0.0026 (18) |
C6 | 0.0203 (19) | 0.0229 (18) | 0.033 (2) | 0.0003 (16) | 0.0096 (17) | 0.0025 (17) |
C7 | 0.0112 (16) | 0.0127 (15) | 0.027 (2) | 0.0016 (13) | 0.0026 (14) | 0.0017 (14) |
C8 | 0.0140 (17) | 0.0151 (16) | 0.025 (2) | 0.0023 (14) | 0.0053 (15) | 0.0000 (14) |
C9 | 0.024 (2) | 0.0260 (19) | 0.027 (2) | −0.0045 (16) | 0.0062 (17) | −0.0065 (16) |
C10A | 0.020 (4) | 0.020 (4) | 0.023 (4) | −0.002 (3) | 0.005 (3) | −0.010 (3) |
C11A | 0.018 (4) | 0.018 (4) | 0.030 (4) | 0.000 (3) | 0.007 (3) | −0.009 (3) |
C12A | 0.067 (10) | 0.018 (5) | 0.050 (7) | −0.001 (5) | 0.001 (6) | 0.000 (5) |
C13A | 0.021 (5) | 0.060 (8) | 0.052 (11) | −0.024 (5) | 0.013 (5) | −0.036 (9) |
C10B | 0.033 (7) | 0.031 (6) | 0.031 (6) | −0.002 (5) | 0.004 (5) | −0.006 (5) |
C11B | 0.035 (7) | 0.014 (5) | 0.063 (8) | −0.002 (5) | 0.019 (6) | −0.016 (5) |
C12B | 0.019 (7) | 0.012 (5) | 0.075 (12) | 0.002 (4) | −0.022 (7) | −0.015 (6) |
C13B | 0.028 (6) | 0.036 (6) | 0.039 (12) | 0.001 (5) | −0.006 (5) | −0.017 (9) |
C14 | 0.0168 (18) | 0.0226 (18) | 0.024 (2) | 0.0008 (15) | 0.0068 (15) | 0.0026 (15) |
C15 | 0.023 (2) | 0.0248 (19) | 0.022 (2) | 0.0029 (16) | 0.0036 (16) | 0.0012 (16) |
C16 | 0.0124 (17) | 0.0209 (18) | 0.034 (2) | 0.0026 (15) | 0.0019 (16) | 0.0039 (16) |
C17 | 0.0129 (17) | 0.0174 (16) | 0.025 (2) | 0.0002 (14) | 0.0043 (15) | 0.0030 (15) |
C18 | 0.0176 (19) | 0.0184 (17) | 0.037 (2) | 0.0048 (15) | 0.0111 (17) | 0.0071 (16) |
C19 | 0.025 (2) | 0.030 (2) | 0.034 (2) | 0.0055 (17) | 0.0153 (18) | 0.0113 (18) |
C20 | 0.0212 (19) | 0.029 (2) | 0.026 (2) | 0.0060 (17) | 0.0095 (16) | 0.0049 (17) |
C21 | 0.031 (2) | 0.059 (3) | 0.025 (2) | 0.008 (2) | 0.0125 (19) | 0.002 (2) |
C22 | 0.032 (3) | 0.079 (4) | 0.026 (2) | −0.001 (3) | 0.008 (2) | −0.013 (2) |
C23 | 0.027 (2) | 0.058 (3) | 0.032 (3) | −0.004 (2) | 0.0057 (19) | −0.013 (2) |
C24 | 0.0140 (17) | 0.0241 (18) | 0.026 (2) | 0.0037 (15) | 0.0046 (15) | 0.0021 (16) |
C25 | 0.0116 (16) | 0.0181 (17) | 0.0220 (19) | 0.0047 (14) | 0.0049 (14) | 0.0021 (14) |
Cl1 | 0.0283 (5) | 0.0253 (5) | 0.0290 (5) | 0.0042 (4) | 0.0048 (4) | 0.0013 (4) |
O8 | 0.050 (2) | 0.053 (2) | 0.067 (3) | 0.0233 (19) | 0.0091 (19) | 0.026 (2) |
O9A | 0.087 (6) | 0.042 (3) | 0.035 (3) | 0.027 (4) | 0.018 (3) | −0.001 (3) |
O10A | 0.075 (5) | 0.063 (4) | 0.037 (4) | −0.009 (4) | −0.015 (3) | 0.002 (3) |
O11A | 0.089 (5) | 0.066 (4) | 0.076 (5) | −0.040 (4) | 0.056 (4) | −0.018 (4) |
O9B | 0.111 (13) | 0.175 (15) | 0.048 (8) | 0.063 (11) | 0.006 (8) | −0.056 (9) |
O10B | 0.049 (7) | 0.038 (6) | 0.196 (16) | −0.019 (6) | 0.024 (9) | 0.008 (9) |
O11B | 0.016 (4) | 0.043 (6) | 0.051 (6) | 0.009 (4) | 0.001 (4) | 0.016 (5) |
O7A | 0.043 (11) | 0.056 (13) | 0.073 (14) | 0.001 (9) | 0.022 (9) | 0.000 (10) |
O7B | 0.27 (3) | 0.065 (13) | 0.096 (16) | −0.036 (17) | −0.008 (18) | 0.009 (11) |
Cu1—O1 | 1.950 (3) | C10A—H10B | 0.9700 |
Cu1—N1 | 1.932 (3) | C11A—H11A | 0.9700 |
Cu1—N2 | 1.982 (3) | C11A—H11B | 0.9700 |
Cu1—N3 | 2.013 (3) | C12A—H12A | 0.9600 |
Cu2—O2 | 1.952 (3) | C12A—H12B | 0.9600 |
Cu2—O3 | 1.947 (3) | C12A—H12C | 0.9600 |
Cu2—O4 | 2.213 (3) | C13A—H13A | 0.9600 |
Cu2—N4 | 1.989 (3) | C13A—H13B | 0.9600 |
Cu2—N5 | 1.991 (3) | C13A—H13C | 0.9600 |
O1—C1 | 1.347 (4) | C10B—C11B | 1.522 (9) |
O2—C7 | 1.284 (4) | C10B—H10C | 0.9700 |
O3—C8 | 1.280 (4) | C10B—H10D | 0.9700 |
O4—H4A | 0.8374 | C11B—H11C | 0.9700 |
O4—H4B | 0.9146 | C11B—H11D | 0.9700 |
O5—C18 | 1.205 (5) | C12B—H12D | 0.9600 |
O6—C19 | 1.211 (5) | C12B—H12E | 0.9600 |
N1—C7 | 1.293 (4) | C12B—H12F | 0.9600 |
N1—C2 | 1.405 (5) | C13B—H13D | 0.9600 |
N2—C8 | 1.297 (4) | C13B—H13E | 0.9600 |
N2—C9 | 1.463 (5) | C13B—H13F | 0.9600 |
N3—C12A | 1.465 (8) | C14—C15 | 1.385 (5) |
N3—C13B | 1.470 (9) | C14—H14 | 0.9300 |
N3—C11B | 1.470 (10) | C15—C16 | 1.386 (5) |
N3—C13A | 1.480 (8) | C15—H15 | 0.9300 |
N3—C12B | 1.487 (9) | C16—C17 | 1.386 (5) |
N3—C11A | 1.511 (6) | C16—H16 | 0.9300 |
N4—C14 | 1.331 (5) | C17—C25 | 1.390 (5) |
N4—C25 | 1.349 (4) | C17—C18 | 1.491 (5) |
N5—C23 | 1.324 (5) | C18—C19 | 1.541 (6) |
N5—C24 | 1.345 (5) | C19—C20 | 1.484 (6) |
C1—C6 | 1.388 (5) | C20—C21 | 1.391 (6) |
C1—C2 | 1.423 (5) | C20—C24 | 1.391 (5) |
C2—C3 | 1.386 (5) | C21—C22 | 1.384 (7) |
C3—C4 | 1.387 (6) | C21—H21 | 0.9300 |
C3—H3 | 0.9300 | C22—C23 | 1.388 (6) |
C4—C5 | 1.388 (5) | C22—H22 | 0.9300 |
C4—H4 | 0.9300 | C23—H23 | 0.9300 |
C5—C6 | 1.385 (6) | C24—C25 | 1.463 (5) |
C5—H5 | 0.9300 | Cl1—O10B | 1.383 (5) |
C6—H6 | 0.9300 | Cl1—O9B | 1.401 (5) |
C7—C8 | 1.513 (5) | Cl1—O10A | 1.411 (6) |
C9—C10B | 1.501 (11) | Cl1—O9A | 1.413 (5) |
C9—C10A | 1.532 (8) | Cl1—O8 | 1.419 (3) |
C9—H9A | 0.9700 | Cl1—O11A | 1.429 (4) |
C9—H9B | 0.9700 | Cl1—O11B | 1.432 (5) |
C9—H9C | 0.9700 | O7A—H7A | 0.8596 |
C9—H9D | 0.9700 | O7A—H7B | 0.8602 |
C10A—C11A | 1.519 (7) | O7B—H7C | 0.8602 |
C10A—H10A | 0.9700 | O7B—H7D | 0.8603 |
O1—Cu1—N1 | 83.25 (11) | H10A—C10A—H10B | 107.8 |
O1—Cu1—N2 | 165.77 (11) | N3—C11A—C10A | 114.8 (6) |
O1—Cu1—N3 | 96.65 (11) | N3—C11A—H11A | 108.6 |
N1—Cu1—N2 | 83.00 (13) | C10A—C11A—H11A | 108.6 |
N1—Cu1—N3 | 172.12 (13) | N3—C11A—H11B | 108.6 |
N2—Cu1—N3 | 97.48 (13) | C10A—C11A—H11B | 108.6 |
O2—Cu2—O3 | 86.16 (10) | H11A—C11A—H11B | 107.6 |
O2—Cu2—N4 | 93.58 (11) | N3—C12A—H12A | 109.5 |
O2—Cu2—N5 | 172.09 (12) | N3—C12A—H12B | 109.5 |
O3—Cu2—N4 | 168.40 (11) | N3—C12A—H12C | 109.5 |
O3—Cu2—N5 | 96.42 (12) | N3—C13A—H13A | 109.5 |
N4—Cu2—N5 | 82.38 (13) | N3—C13A—H13B | 109.5 |
O4—Cu2—O2 | 98.20 (10) | N3—C13A—H13C | 109.5 |
O4—Cu2—O3 | 96.39 (11) | C9—C10B—C11B | 116.9 (9) |
O4—Cu2—N4 | 95.12 (11) | C9—C10B—H10C | 108.1 |
O4—Cu2—N5 | 88.97 (12) | C11B—C10B—H10C | 108.1 |
C1—O1—Cu1 | 111.8 (2) | C9—C10B—H10D | 108.1 |
C7—O2—Cu2 | 109.6 (2) | C11B—C10B—H10D | 108.1 |
C8—O3—Cu2 | 110.7 (2) | H10C—C10B—H10D | 107.3 |
Cu2—O4—H4A | 122.8 | N3—C11B—C10B | 112.7 (9) |
Cu2—O4—H4B | 111.8 | N3—C11B—H11C | 109.0 |
H4A—O4—H4B | 110.4 | C10B—C11B—H11C | 109.0 |
C7—N1—C2 | 130.0 (3) | N3—C11B—H11D | 109.0 |
C7—N1—Cu1 | 115.4 (3) | C10B—C11B—H11D | 109.0 |
C2—N1—Cu1 | 114.4 (2) | H11C—C11B—H11D | 107.8 |
C8—N2—C9 | 118.6 (3) | N3—C12B—H12D | 109.5 |
C8—N2—Cu1 | 112.2 (2) | N3—C12B—H12E | 109.5 |
C9—N2—Cu1 | 129.2 (2) | H12D—C12B—H12E | 109.5 |
C13B—N3—C11B | 114.7 (10) | N3—C12B—H12F | 109.5 |
C12A—N3—C13A | 111.5 (11) | H12D—C12B—H12F | 109.5 |
C13B—N3—C12B | 105.8 (12) | H12E—C12B—H12F | 109.5 |
C11B—N3—C12B | 102.6 (7) | N3—C13B—H13D | 109.5 |
C12A—N3—C11A | 110.8 (6) | N3—C13B—H13E | 109.5 |
C13A—N3—C11A | 103.0 (7) | H13D—C13B—H13E | 109.5 |
C12A—N3—Cu1 | 109.1 (7) | N3—C13B—H13F | 109.5 |
C13B—N3—Cu1 | 114.6 (12) | H13D—C13B—H13F | 109.5 |
C11B—N3—Cu1 | 111.8 (4) | H13E—C13B—H13F | 109.5 |
C13A—N3—Cu1 | 109.7 (9) | N4—C14—C15 | 123.0 (3) |
C12B—N3—Cu1 | 106.0 (6) | N4—C14—H14 | 118.5 |
C11A—N3—Cu1 | 112.6 (3) | C15—C14—H14 | 118.5 |
C14—N4—C25 | 118.3 (3) | C14—C15—C16 | 118.7 (4) |
C14—N4—Cu2 | 128.1 (2) | C14—C15—H15 | 120.6 |
C25—N4—Cu2 | 113.2 (2) | C16—C15—H15 | 120.6 |
C23—N5—C24 | 119.3 (4) | C17—C16—C15 | 118.9 (4) |
C23—N5—Cu2 | 126.9 (3) | C17—C16—H16 | 120.6 |
C24—N5—Cu2 | 113.0 (3) | C15—C16—H16 | 120.6 |
O1—C1—C6 | 123.5 (3) | C16—C17—C25 | 118.8 (3) |
O1—C1—C2 | 118.8 (3) | C16—C17—C18 | 121.7 (3) |
C6—C1—C2 | 117.6 (3) | C25—C17—C18 | 119.5 (3) |
C3—C2—N1 | 127.9 (3) | O5—C18—C17 | 121.8 (4) |
C3—C2—C1 | 121.2 (3) | O5—C18—C19 | 120.6 (3) |
N1—C2—C1 | 110.9 (3) | C17—C18—C19 | 117.6 (3) |
C2—C3—C4 | 119.8 (3) | O6—C19—C20 | 121.7 (4) |
C2—C3—H3 | 120.1 | O6—C19—C18 | 119.4 (4) |
C4—C3—H3 | 120.1 | C20—C19—C18 | 118.9 (3) |
C3—C4—C5 | 119.4 (4) | C21—C20—C24 | 118.3 (4) |
C3—C4—H4 | 120.3 | C21—C20—C19 | 122.5 (4) |
C5—C4—H4 | 120.3 | C24—C20—C19 | 119.2 (4) |
C6—C5—C4 | 121.2 (4) | C22—C21—C20 | 118.9 (4) |
C6—C5—H5 | 119.4 | C22—C21—H21 | 120.5 |
C4—C5—H5 | 119.4 | C20—C21—H21 | 120.5 |
C5—C6—C1 | 120.7 (4) | C21—C22—C23 | 119.2 (4) |
C5—C6—H6 | 119.7 | C21—C22—H22 | 120.4 |
C1—C6—H6 | 119.7 | C23—C22—H22 | 120.4 |
O2—C7—N1 | 129.3 (4) | N5—C23—C22 | 122.1 (4) |
O2—C7—C8 | 117.3 (3) | N5—C23—H23 | 119.0 |
N1—C7—C8 | 113.4 (3) | C22—C23—H23 | 119.0 |
O3—C8—N2 | 128.1 (3) | N5—C24—C20 | 122.1 (4) |
O3—C8—C7 | 116.0 (3) | N5—C24—C25 | 115.7 (3) |
N2—C8—C7 | 115.8 (3) | C20—C24—C25 | 122.1 (3) |
N2—C9—C10B | 110.6 (5) | N4—C25—C17 | 122.2 (3) |
N2—C9—C10A | 110.5 (4) | N4—C25—C24 | 115.2 (3) |
N2—C9—H9A | 109.6 | C17—C25—C24 | 122.5 (3) |
C10A—C9—H9A | 109.6 | O10B—Cl1—O9B | 116.1 (10) |
N2—C9—H9B | 109.6 | O10A—Cl1—O9A | 110.6 (4) |
C10A—C9—H9B | 109.6 | O10B—Cl1—O8 | 113.3 (6) |
H9A—C9—H9B | 108.1 | O9B—Cl1—O8 | 104.8 (5) |
N2—C9—H9C | 109.6 | O10A—Cl1—O8 | 114.2 (3) |
C10B—C9—H9C | 109.9 | O9A—Cl1—O8 | 107.0 (3) |
N2—C9—H9D | 109.6 | O10A—Cl1—O11A | 106.5 (4) |
C10B—C9—H9D | 109.0 | O9A—Cl1—O11A | 107.2 (4) |
H9C—C9—H9D | 108.1 | O8—Cl1—O11A | 111.2 (4) |
C11A—C10A—C9 | 112.8 (6) | O10B—Cl1—O11B | 105.7 (7) |
C11A—C10A—H10A | 109.0 | O9B—Cl1—O11B | 110.3 (8) |
C9—C10A—H10A | 109.0 | O8—Cl1—O11B | 106.4 (4) |
C11A—C10A—H10B | 109.0 | H7A—O7A—H7B | 107.8 |
C9—C10A—H10B | 109.0 | H7C—O7B—H7D | 107.8 |
N1—Cu1—O1—C1 | 7.0 (2) | Cu2—O3—C8—N2 | 177.6 (3) |
N2—Cu1—O1—C1 | 22.0 (6) | Cu2—O3—C8—C7 | 0.8 (4) |
N3—Cu1—O1—C1 | −165.1 (2) | C9—N2—C8—O3 | −0.8 (6) |
O3—Cu2—O2—C7 | 4.6 (2) | Cu1—N2—C8—O3 | 178.8 (3) |
N4—Cu2—O2—C7 | 173.0 (2) | C9—N2—C8—C7 | 176.0 (3) |
O4—Cu2—O2—C7 | −91.3 (2) | Cu1—N2—C8—C7 | −4.4 (4) |
O2—Cu2—O3—C8 | −2.9 (2) | O2—C7—C8—O3 | 3.3 (5) |
N4—Cu2—O3—C8 | −92.0 (6) | N1—C7—C8—O3 | −178.5 (3) |
N5—Cu2—O3—C8 | −175.4 (2) | O2—C7—C8—N2 | −174.0 (3) |
O4—Cu2—O3—C8 | 94.9 (2) | N1—C7—C8—N2 | 4.3 (4) |
O1—Cu1—N1—C7 | 176.1 (3) | C8—N2—C9—C10B | 172.0 (6) |
N2—Cu1—N1—C7 | −0.2 (3) | Cu1—N2—C9—C10B | −7.5 (7) |
O1—Cu1—N1—C2 | −7.7 (2) | C8—N2—C9—C10A | −156.4 (5) |
N2—Cu1—N1—C2 | 176.0 (2) | Cu1—N2—C9—C10A | 24.1 (6) |
N1—Cu1—N2—C8 | 2.7 (2) | N2—C9—C10A—C11A | −58.1 (8) |
O1—Cu1—N2—C8 | −12.3 (6) | C12A—N3—C11A—C10A | 67.3 (10) |
N3—Cu1—N2—C8 | 174.8 (2) | C13A—N3—C11A—C10A | −173.3 (12) |
N1—Cu1—N2—C9 | −177.8 (3) | Cu1—N3—C11A—C10A | −55.2 (7) |
O1—Cu1—N2—C9 | 167.2 (4) | C9—C10A—C11A—N3 | 80.9 (9) |
N3—Cu1—N2—C9 | −5.7 (3) | N2—C9—C10B—C11B | 48.9 (12) |
O1—Cu1—N3—C12A | 76.8 (6) | C13B—N3—C11B—C10B | −74.4 (16) |
N2—Cu1—N3—C12A | −105.0 (6) | C12B—N3—C11B—C10B | 171.4 (11) |
O1—Cu1—N3—C13B | −64.5 (10) | Cu1—N3—C11B—C10B | 58.2 (11) |
N2—Cu1—N3—C13B | 113.8 (10) | C9—C10B—C11B—N3 | −82.3 (14) |
O1—Cu1—N3—C11B | 162.9 (5) | C25—N4—C14—C15 | −0.3 (5) |
N2—Cu1—N3—C11B | −18.9 (6) | Cu2—N4—C14—C15 | 172.5 (3) |
O1—Cu1—N3—C13A | −45.6 (9) | N4—C14—C15—C16 | 0.0 (6) |
N2—Cu1—N3—C13A | 132.6 (9) | C14—C15—C16—C17 | 0.6 (5) |
O1—Cu1—N3—C12B | 51.8 (6) | C15—C16—C17—C25 | −0.8 (5) |
N2—Cu1—N3—C12B | −129.9 (6) | C15—C16—C17—C18 | −179.4 (3) |
O1—Cu1—N3—C11A | −159.7 (4) | C16—C17—C18—O5 | −6.4 (6) |
N2—Cu1—N3—C11A | 18.6 (4) | C25—C17—C18—O5 | 175.0 (3) |
O3—Cu2—N4—C14 | 96.8 (6) | C16—C17—C18—C19 | 174.4 (3) |
O2—Cu2—N4—C14 | 8.5 (3) | C25—C17—C18—C19 | −4.2 (5) |
N5—Cu2—N4—C14 | −178.4 (3) | O5—C18—C19—O6 | 5.9 (6) |
O4—Cu2—N4—C14 | −90.1 (3) | C17—C18—C19—O6 | −174.9 (3) |
O3—Cu2—N4—C25 | −90.1 (6) | O5—C18—C19—C20 | −176.5 (3) |
O2—Cu2—N4—C25 | −178.5 (2) | C17—C18—C19—C20 | 2.7 (5) |
N5—Cu2—N4—C25 | −5.3 (2) | O6—C19—C20—C21 | 0.5 (6) |
O4—Cu2—N4—C25 | 83.0 (2) | C18—C19—C20—C21 | −177.1 (4) |
O3—Cu2—N5—C23 | −15.8 (4) | O6—C19—C20—C24 | 178.4 (4) |
N4—Cu2—N5—C23 | 175.8 (4) | C18—C19—C20—C24 | 0.8 (5) |
O4—Cu2—N5—C23 | 80.5 (4) | C24—C20—C21—C22 | 1.6 (6) |
O3—Cu2—N5—C24 | 174.7 (3) | C19—C20—C21—C22 | 179.5 (4) |
N4—Cu2—N5—C24 | 6.4 (3) | C20—C21—C22—C23 | 0.6 (7) |
O4—Cu2—N5—C24 | −88.9 (3) | C24—N5—C23—C22 | 1.4 (7) |
Cu1—O1—C1—C6 | 175.6 (3) | Cu2—N5—C23—C22 | −167.4 (4) |
Cu1—O1—C1—C2 | −5.4 (4) | C21—C22—C23—N5 | −2.2 (8) |
C7—N1—C2—C3 | 3.4 (6) | C23—N5—C24—C20 | 0.9 (6) |
Cu1—N1—C2—C3 | −172.1 (3) | Cu2—N5—C24—C20 | 171.2 (3) |
C7—N1—C2—C1 | −177.8 (3) | C23—N5—C24—C25 | −176.6 (4) |
Cu1—N1—C2—C1 | 6.6 (4) | Cu2—N5—C24—C25 | −6.3 (4) |
O1—C1—C2—C3 | 178.2 (3) | C21—C20—C24—N5 | −2.4 (6) |
C6—C1—C2—C3 | −2.8 (5) | C19—C20—C24—N5 | 179.6 (3) |
O1—C1—C2—N1 | −0.7 (4) | C21—C20—C24—C25 | 175.0 (4) |
C6—C1—C2—N1 | 178.3 (3) | C19—C20—C24—C25 | −3.0 (5) |
N1—C2—C3—C4 | 179.7 (3) | C14—N4—C25—C17 | 0.0 (5) |
C1—C2—C3—C4 | 1.0 (5) | Cu2—N4—C25—C17 | −173.8 (3) |
C2—C3—C4—C5 | 1.0 (6) | C14—N4—C25—C24 | 177.2 (3) |
C3—C4—C5—C6 | −1.2 (6) | Cu2—N4—C25—C24 | 3.4 (4) |
C4—C5—C6—C1 | −0.6 (6) | C16—C17—C25—N4 | 0.5 (5) |
O1—C1—C6—C5 | −178.5 (3) | C18—C17—C25—N4 | 179.1 (3) |
C2—C1—C6—C5 | 2.6 (5) | C16—C17—C25—C24 | −176.4 (3) |
Cu2—O2—C7—N1 | 176.7 (3) | C18—C17—C25—C24 | 2.2 (5) |
Cu2—O2—C7—C8 | −5.4 (4) | N5—C24—C25—N4 | 2.0 (5) |
C2—N1—C7—O2 | 0.5 (6) | C20—C24—C25—N4 | −175.6 (3) |
Cu1—N1—C7—O2 | 176.1 (3) | N5—C24—C25—C17 | 179.2 (3) |
C2—N1—C7—C8 | −177.5 (3) | C20—C24—C25—C17 | 1.6 (5) |
Cu1—N1—C7—C8 | −1.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O1i | 0.84 | 1.89 | 2.666 (3) | 153 |
O4—H4B···O10B | 0.91 | 1.93 | 2.740 (8) | 146 |
O4—H4B···O11A | 0.91 | 2.10 | 3.009 (7) | 171 |
O7A—H7A···O3 | 0.86 | 2.51 | 3.27 (2) | 147 |
O7B—H7D···O5ii | 0.86 | 2.51 | 3.305 (18) | 153 |
C3—H3···O8iii | 0.93 | 2.52 | 3.193 (5) | 130 |
C15—H15···O9Aiii | 0.93 | 2.55 | 3.335 (7) | 142 |
C15—H15···O11Biii | 0.93 | 2.49 | 3.384 (10) | 162 |
C16—H16···O6iii | 0.93 | 2.54 | 3.195 (5) | 128 |
C10A—H10A···O6ii | 0.97 | 2.44 | 3.202 (9) | 135 |
C11A—H11A···O4iv | 0.97 | 2.54 | 3.409 (7) | 150 |
C13A—H13B···O4i | 0.96 | 2.49 | 3.382 (16) | 154 |
C21—H21···O10Av | 0.93 | 2.53 | 3.277 (8) | 138 |
C23—H23···O7A | 0.93 | 2.30 | 3.154 (19) | 152 |
C23—H23···O7B | 0.93 | 2.49 | 3.31 (2) | 147 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, y+1/2, −z+1/2; (iii) x, −y+1/2, z−1/2; (iv) −x+1, y+1/2, −z+1/2; (v) x, −y+1/2, z+1/2. |
Cu1—O1 | 1.950 (3) | Cu2—O3 | 1.947 (3) |
Cu1—N1 | 1.932 (3) | Cu2—O4 | 2.213 (3) |
Cu1—N2 | 1.982 (3) | Cu2—N4 | 1.989 (3) |
Cu1—N3 | 2.013 (3) | Cu2—N5 | 1.991 (3) |
Cu2—O2 | 1.952 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O1i | 0.84 | 1.89 | 2.666 (3) | 153.2 |
O4—H4B···O10B | 0.91 | 1.93 | 2.740 (8) | 146.3 |
O4—H4B···O11A | 0.91 | 2.10 | 3.009 (7) | 170.9 |
O7A—H7A···O3 | 0.86 | 2.51 | 3.27 (2) | 147.4 |
O7B—H7D···O5ii | 0.86 | 2.51 | 3.305 (18) | 153.4 |
C3—H3···O8iii | 0.93 | 2.52 | 3.193 (5) | 129.7 |
C15—H15···O9Aiii | 0.93 | 2.55 | 3.335 (7) | 142.1 |
C15—H15···O11Biii | 0.93 | 2.49 | 3.384 (10) | 161.6 |
C16—H16···O6iii | 0.93 | 2.54 | 3.195 (5) | 127.6 |
C10A—H10A···O6ii | 0.97 | 2.44 | 3.202 (9) | 135.0 |
C11A—H11A···O4iv | 0.97 | 2.54 | 3.409 (7) | 149.8 |
C13A—H13B···O4i | 0.96 | 2.49 | 3.382 (16) | 154.1 |
C21—H21···O10Av | 0.93 | 2.53 | 3.277 (8) | 137.8 |
C23—H23···O7A | 0.93 | 2.30 | 3.154 (19) | 151.9 |
C23—H23···O7B | 0.93 | 2.49 | 3.31 (2) | 147.4 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, y+1/2, −z+1/2; (iii) x, −y+1/2, z−1/2; (iv) −x+1, y+1/2, −z+1/2; (v) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C13H16N3O3)(C12H6N2O2)(H2O)]ClO4·0.5H2O |
Mr | 726.03 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 11.7430 (6), 17.3066 (9), 14.1086 (8) |
β (°) | 98.154 (1) |
V (Å3) | 2838.3 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.66 |
Crystal size (mm) | 0.30 × 0.12 × 0.06 |
Data collection | |
Diffractometer | Bruker APEX area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.636, 0.907 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21066, 6432, 4831 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.114, 1.05 |
No. of reflections | 6432 |
No. of parameters | 478 |
No. of restraints | 31 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.76, −0.47 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012).
Acknowledgements
This project was supported by the Fundamental Research Funds for the Central Universities, China (grant No. 201213020) and the Program for Science and Technology of Shandong Province, China (grant No. 2012GHY11525).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calderazzo, F., Pampaloni, G. & Passarelli, V. (2002). Inorg. Chim. Acta, 330, 136–142. Web of Science CrossRef CAS Google Scholar
Chetana, P. R., Rao, R., Roy, M. & Patra, A. K. (2009). Inorg. Chim. Acta, 362, 4692–4698. CSD CrossRef CAS Google Scholar
Dickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023–1027. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Galet, A., Muñoz, M. C., Agustí, G., Martínez, V., Gaspar, A. B. & Real, J. A. (2005). Z. Anorg. Allg. Chem. 631, 1985–1987. CSD CrossRef CAS Google Scholar
Gao, Z. & Wang, Y. (2010). Acta Cryst. E66, m1249–m1250. Web of Science CSD CrossRef IUCr Journals Google Scholar
Girgis, A. Y., Sohn, Y. S. & Balch, A. L. (1975). Inorg. Chem. 14, 2327–2331. CrossRef CAS Google Scholar
Li, X.-W., Li, X., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2012). J. Organomet. Chem. 700, 48–57. CSD CrossRef CAS Google Scholar
Li, X.-W., Zheng, Y.-J., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2011). Eur. J. Med. Chem. 46, 3851–3857. CSD CrossRef CAS PubMed Google Scholar
Lu, H.-H., Li, Y.-T., Wu, Z.-Y., Zheng, K. & Yan, C.-W. (2011). J. Coord. Chem. 64, 1360–1374. CSD CrossRef CAS Google Scholar
Messori, L., Shaw, J., Camalli, M., Mura, P. & Marcon, G. (2003). Inorg. Chem. 42, 6166–6168. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ojima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85–111. CrossRef CAS Web of Science Google Scholar
Ruiz, R., Faus, J., Lloret, F., Julve, M. & Journaux, Y. (1999). Coord. Chem. Rev. 193–195, 1069–1117. Web of Science CrossRef CAS Google Scholar
Saravani, H., Rezvani, A. R., Mansouri, G., Rad, A. R. S., Khavasi, H. R. & Hadadzadeh, H. (2007). Inorg. Chim. Acta, 360, 2829–2834. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X.-L., Gao, Q., Tian, A.-X., Zhao, D. & Liu, X.-J. (2013). J. Coord. Chem. 66, 358–366. CSD CrossRef CAS Google Scholar
Xu, G.-J., Kou, Y.-Y., Feng, L., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H. & Cheng, P. (2006). Appl. Organomet. Chem. 20, 351–356. CrossRef CAS Google Scholar
Yamada, Y., Sakurai, H., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2002). Polyhedron, 21, 2143–2147. Web of Science CSD CrossRef CAS Google Scholar
Zhang, W.-J., Wang, F., Li, Y.-T. & Wu, Z.-Y. (2013). Transition Met. Chem. 38, 69–78. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.