metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages m137-m138

Crystal structure of di-μ-iodido-bis­­{[1,3-bis­­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­­idene]lithium}

aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: hongjq@jiangnan.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 9 May 2015; accepted 21 May 2015; online 28 May 2015)

In the title binuclear complex, [Li2(C27H36N2)2I2], the unique LiI cation is coordinated by two iodide anions and one yl­idene C atom from a 1,3-bis­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­idene ligand in a distorted trigonal–planar geometry. The two symmetry-related iodide anions bridge two LiI cations, forming an inversion dimer in which the Li2I2 plane is nearly perpendicular to the imidazol-2-yl­idene ring, with a dihedral angle of 85.5 (3)°. No hydrogen bonding is observed in the crystal.

1. Related literature

For a related lithium complex of imidazol-2-ylidenes, see: Hill et al. (2011[Hill, M. S., Kociok-Köhn, G. & MacDougall, D. J. (2011). Inorg. Chem. 50, 5234-5241.]). For related lithium complexes with Li—I bonds, see: Raston et al. (1989[Raston, C. L., Whitaker, C. R. & White, A. H. (1989). Inorg. Chem. 28, 163-165.]); Fei et al. (2003[Fei, Z., Scopelliti, R. & Dyson, P. J. (2003). Inorg. Chem. 42, 2125-2130.]); Thatcher et al. (2012[Thatcher, R. J., Johnson, D. G., Slattery, J. M. & Douthwaite, R. E. (2012). Chem. Eur. J. 18, 4329-4336.]). For applications of imidazol-2-ylidenes in catalysis, see: Vougioukalakis & Grubbs (2010[Vougioukalakis, G. C. & Grubbs, R. H. (2010). Chem. Rev. 110, 1746-1787.]); Fortman & Nolan (2011[Fortman, G. C. & Nolan, S. P. (2011). Chem. Soc. Rev. 40, 5151-5169.]); Valente et al. (2012[Valente, C., Çalimsiz, S., Hoi, K. H., Mallik, D., Sayah, M. & Organ, M. G. (2012). Angew. Chem. Int. Ed. 51, 3314-3332.]); Riener et al. (2014[Riener, K., Haslinger, S., Raba, A., Högerl, M. P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2014). Chem. Rev. 114, 5215-5272.]); Wang et al. (2008[Wang, Y., Xie, Y., Wei, P., King, R. B., Schaefer, H. F. III, von, R., Schleyer, P. & Robinson, G. H. (2008). Science, 321, 1069-1071.]); Mahoney et al. (2013[Mahoney, J. K., Martin, D., Moore, C. E., Rheingold, A. L. & Bertrand, G. (2013). J. Am. Chem. Soc. 135, 18766-18769.]); Kolychev et al. (2013[Kolychev, E. L., Theuergarten, E. & Tamm, M. (2013). Top. Curr. Chem. 334, 121-155.]); Biju et al. (2011[Biju, A. T., Kuhl, N. & Glorius, F. (2011). Acc. Chem. Res. 44, 1182-1195.]); Berkessel et al. (2012[Berkessel, A., Elfert, S., Yatham, V. R., Neudörfl, J.-M., Schlörer, N. E. & Teles, J. H. (2012). Angew. Chem. Int. Ed. 51, 12370-12374.]); Fèvre et al. (2013[Fèvre, M., Pinaud, J., Gnanou, Y., Vignolle, J. & Taton, D. (2013). Chem. Soc. Rev. 42, 2142-2172.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Li2(C27H36N2)2I2]

  • Mr = 1044.84

  • Monoclinic, P 21 /c

  • a = 10.645 (4) Å

  • b = 14.490 (6) Å

  • c = 19.217 (7) Å

  • β = 105.565 (6)°

  • V = 2855.4 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.727, Tmax = 0.805

  • 11711 measured reflections

  • 5069 independent reflections

  • 2924 reflections with I > 2σ(I)

  • Rint = 0.085

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.112

  • S = 1.00

  • 5069 reflections

  • 288 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −1.23 e Å−3

Table 1
Selected bond lengths (Å)

Li1—C1 2.120 (7)
Li1—I1 2.676 (8)
Li1—I1i 2.691 (7)
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazol-2-ylidenes (NHCs), are excellent σ-donors and readily coordinate to transition metals and p-block elements. This feature has led to the most important application of NHCs as ancillary ligands in homogeneous transition-metal catalysis (Vougioukalakis et al., 2010; Fortman et al., 2011; Valente et al., 2012; Riener et al., 2014) and p-block elements (Wang et al., 2008; Mahoney et al., 2013; Kolychev et al., 2013). NHCs have enabled the preparation and characterization of previously unknown species featuring p-block species in unconventional forms, such as in the zero-oxidation state or as radicals. As organocatalysts, NHCs can also promote a wide range of different organic transformations, with most processes involving an initial attack of the NHC onto a carbonyl group (Biju et al., 2011; Berkessel et al., 2012; Fèvre et al., 2013).

Single-crystal X-ray diffraction analyses the title compound reveals that Li is tri-coordinate. As shown in Fig. 1, the moiety of the dimer contains one Li atom, a NHC ligand and one iodine atom. The dative Li C bond distance is 2.120 (7) Å, whic is slightly shorter than those of NHC species [M(IPr)2]+[M'{N(SiMe3)2}3]- (M = Li, Na, K; M' = Mg, Ca, Sr, Ba). (Hill et al., 2011) The Li—I bond distances are in the range of 2.676 (8)–2.691 (7) Å, which are remarkably shorter than the values in lithium complexes (2.767 (16)–2.932 (6) Å) with µ-bridging iodine constructions. (Raston et al., 1989; Fei et al., 2003; Thatcher et al., 2012). Fig. 2 shows the molecular packing of the title compound, viewed along the a axis.

Related literature top

For a related lithium complex of imidazol-2-ylidenes, see: Hill et al. (2011). For related lithium complexes with Li—I bonds, see: Raston et al. (1989); Fei et al. (2003); Thatcher et al. (2012). For applications of imidazol-2-ylidenes in catalysis, see: Vougioukalakis & Grubbs (2010); Fortman et al. (2011); Valente et al. (2012); Riener et al. (2014); Wang et al. (2008); Mahoney et al. (2013); Kolychev et al. (2013), Biju et al. (2011); Berkessel et al. (2012); Fèvre et al. (2013).

Experimental top

A flame-dried Schlenk tube under a nitrogen atmosphere was charged with 1,3-Bis(2,6-diisopropylphenyl)imidazolinium iodide (0.516 g, 1mmol) and THF (10mL) at -78°C. To this was added a THF solution of lithium hexamethyldisilazide (0.167 g, 1 mmol). The mixture was allowed to slowly warm to room temperature and was stirred for 3 h. All volatiles were removed under vacuum. The resulting pale-yellow material was washed with cold hexane quickly, and then dried up. 0.376 g (72 %) of [Li(I)(C27H36N2)]2 was obtained. Crystals suitable for X-ray analysis were obtained by recrystallization in THF/hexane at -30 °C. Elemental analysis (%) calcd. for Li2C54H72N4I2: C 62.07, H 6.94, N 5.36. Found: C 62.45, H 6.80, N 5.48.

Refinement top

The H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and C–H distances of 0.93–0.96 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram viewed along the a axis.
Di-µ-iodido-bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]lithium} top
Crystal data top
[Li2(C27H36N2)2I2]F(000) = 1072
Mr = 1044.84Dx = 1.215 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3834 reflections
a = 10.645 (4) Åθ = 2.4–22.6°
b = 14.490 (6) ŵ = 1.14 mm1
c = 19.217 (7) ÅT = 293 K
β = 105.565 (6)°Block, pale-yellow
V = 2855.4 (19) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
5069 independent reflections
Radiation source: fine-focus sealed tube2924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.727, Tmax = 0.805k = 1617
11711 measured reflectionsl = 2214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0129P)2 + 2.6P]
where P = (Fo2 + 2Fc2)/3
5069 reflections(Δ/σ)max = 0.002
288 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 1.23 e Å3
Crystal data top
[Li2(C27H36N2)2I2]V = 2855.4 (19) Å3
Mr = 1044.84Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.645 (4) ŵ = 1.14 mm1
b = 14.490 (6) ÅT = 293 K
c = 19.217 (7) Å0.30 × 0.25 × 0.20 mm
β = 105.565 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
5069 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2924 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 0.805Rint = 0.085
11711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.00Δρmax = 0.74 e Å3
5069 reflectionsΔρmin = 1.23 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.5511 (8)0.9291 (5)0.9451 (4)0.073 (2)
N10.5147 (3)0.7930 (2)0.81899 (15)0.0471 (8)
N20.7164 (3)0.8253 (2)0.85073 (15)0.0495 (8)
I10.45770 (6)1.10068 (3)0.918028 (19)0.1292 (3)
C10.6043 (4)0.8421 (3)0.86912 (18)0.0465 (9)
C20.5699 (4)0.7470 (3)0.7712 (2)0.0613 (11)
H20.52720.70920.73310.074*
C30.6961 (5)0.7677 (3)0.7908 (2)0.0614 (12)
H30.75890.74750.76870.074*
C40.3808 (4)0.7834 (3)0.81913 (19)0.0490 (10)
C50.3503 (5)0.7218 (3)0.8690 (2)0.0620 (11)
C60.2220 (5)0.7133 (4)0.8677 (3)0.0815 (15)
H60.19900.67440.90080.098*
C70.1267 (5)0.7603 (4)0.8191 (3)0.0898 (17)
H70.03980.75190.81850.108*
C80.1584 (5)0.8200 (3)0.7711 (3)0.0780 (14)
H80.09240.85200.73850.094*
C90.2867 (4)0.8334 (3)0.7702 (2)0.0587 (11)
C100.4551 (5)0.6667 (4)0.9205 (3)0.0937 (17)
H100.53530.70350.93130.112*
C110.4827 (7)0.5777 (5)0.8879 (4)0.148 (3)
H11A0.55860.54930.91920.222*
H11B0.49800.58960.84170.222*
H11C0.40930.53710.88200.222*
C120.4245 (8)0.6461 (5)0.9924 (3)0.153 (3)
H12A0.50240.62571.02710.229*
H12B0.35940.59870.98540.229*
H12C0.39270.70101.00980.229*
C130.3189 (5)0.9005 (3)0.7174 (2)0.0703 (13)
H130.41350.91000.73140.084*
C140.2809 (7)0.8614 (5)0.6418 (3)0.127 (2)
H14A0.29930.90590.60890.190*
H14B0.18940.84740.62820.190*
H14C0.32980.80610.64040.190*
C150.2544 (6)0.9935 (4)0.7182 (3)0.112 (2)
H15A0.26951.01440.76710.168*
H15B0.16230.98780.69660.168*
H15C0.29041.03720.69120.168*
C160.8436 (4)0.8581 (3)0.8895 (2)0.0534 (10)
C170.8907 (4)0.9376 (3)0.8648 (2)0.0611 (11)
C181.0158 (5)0.9638 (3)0.9004 (3)0.0814 (14)
H181.05111.01600.88470.098*
C191.0898 (5)0.9153 (4)0.9582 (3)0.0869 (16)
H191.17380.93480.98160.104*
C201.0385 (5)0.8372 (4)0.9814 (3)0.0823 (15)
H201.08920.80431.02050.099*
C210.9143 (4)0.8066 (3)0.9482 (2)0.0645 (12)
C220.8123 (5)0.9924 (3)0.8010 (2)0.0720 (13)
H220.72640.96310.78540.086*
C230.8713 (6)0.9880 (5)0.7376 (3)0.135 (3)
H23A0.88210.92470.72580.202*
H23B0.95461.01820.75020.202*
H23C0.81441.01830.69670.202*
C240.7897 (6)1.0907 (3)0.8207 (3)0.1030 (18)
H24A0.87171.12260.83530.155*
H24B0.74931.09090.85980.155*
H24C0.73381.12120.77960.155*
C250.8619 (5)0.7196 (4)0.9735 (3)0.0839 (15)
H250.77150.71190.94460.101*
C260.9377 (6)0.6344 (4)0.9617 (3)0.112 (2)
H26A1.02730.64040.98880.168*
H26B0.93290.62860.91130.168*
H26C0.90080.58040.97750.168*
C270.8602 (6)0.7278 (5)1.0525 (3)0.134 (3)
H27A0.81990.67401.06620.200*
H27B0.81170.78171.05850.200*
H27C0.94800.73291.08250.200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.100 (6)0.067 (5)0.061 (4)0.008 (5)0.038 (4)0.015 (4)
N10.048 (2)0.0510 (19)0.0438 (17)0.0020 (16)0.0147 (16)0.0048 (15)
N20.049 (2)0.053 (2)0.0468 (17)0.0063 (17)0.0124 (16)0.0039 (15)
I10.2440 (6)0.0875 (3)0.0756 (2)0.0609 (3)0.0765 (3)0.0164 (2)
C10.050 (3)0.047 (2)0.043 (2)0.008 (2)0.0126 (19)0.0010 (17)
C20.064 (3)0.067 (3)0.055 (2)0.001 (2)0.021 (2)0.019 (2)
C30.063 (3)0.068 (3)0.059 (3)0.006 (2)0.027 (2)0.017 (2)
C40.047 (3)0.051 (2)0.052 (2)0.000 (2)0.020 (2)0.0083 (18)
C50.069 (3)0.060 (3)0.064 (3)0.000 (2)0.030 (2)0.002 (2)
C60.090 (4)0.077 (4)0.096 (4)0.014 (3)0.057 (3)0.003 (3)
C70.071 (4)0.081 (4)0.137 (5)0.004 (3)0.063 (4)0.012 (4)
C80.056 (3)0.071 (3)0.112 (4)0.012 (3)0.030 (3)0.009 (3)
C90.051 (3)0.056 (3)0.070 (3)0.003 (2)0.018 (2)0.006 (2)
C100.098 (4)0.098 (4)0.087 (3)0.014 (4)0.028 (3)0.038 (3)
C110.175 (7)0.142 (7)0.142 (6)0.093 (6)0.067 (5)0.052 (5)
C120.254 (9)0.122 (5)0.081 (4)0.016 (6)0.044 (5)0.028 (4)
C130.058 (3)0.069 (3)0.081 (3)0.006 (2)0.012 (2)0.019 (2)
C140.186 (7)0.124 (5)0.081 (4)0.022 (5)0.055 (4)0.001 (4)
C150.134 (5)0.077 (4)0.128 (5)0.016 (4)0.040 (4)0.030 (4)
C160.046 (3)0.059 (3)0.054 (2)0.008 (2)0.011 (2)0.009 (2)
C170.053 (3)0.054 (3)0.075 (3)0.005 (2)0.014 (2)0.008 (2)
C180.073 (4)0.064 (3)0.105 (4)0.004 (3)0.021 (3)0.009 (3)
C190.059 (3)0.087 (4)0.105 (4)0.004 (3)0.005 (3)0.027 (3)
C200.066 (4)0.099 (4)0.069 (3)0.015 (3)0.004 (3)0.008 (3)
C210.057 (3)0.070 (3)0.062 (3)0.009 (3)0.007 (2)0.004 (2)
C220.076 (3)0.058 (3)0.084 (3)0.011 (3)0.025 (3)0.009 (2)
C230.160 (6)0.153 (6)0.105 (4)0.076 (5)0.060 (4)0.036 (4)
C240.128 (5)0.072 (4)0.111 (4)0.036 (4)0.035 (4)0.014 (3)
C250.071 (3)0.091 (4)0.081 (3)0.008 (3)0.006 (3)0.028 (3)
C260.132 (5)0.079 (4)0.123 (5)0.003 (4)0.030 (4)0.004 (3)
C270.163 (6)0.138 (6)0.122 (5)0.034 (5)0.076 (5)0.044 (4)
Geometric parameters (Å, º) top
Li1—C12.120 (7)C13—H130.9800
Li1—I12.676 (8)C14—H14A0.9600
Li1—I1i2.691 (7)C14—H14B0.9600
Li1—Li1i3.328 (13)C14—H14C0.9600
N1—C11.360 (4)C15—H15A0.9600
N1—C21.386 (5)C15—H15B0.9600
N1—C41.433 (5)C15—H15C0.9600
N2—C11.354 (4)C16—C171.389 (6)
N2—C31.391 (5)C16—C211.393 (6)
N2—C161.440 (5)C17—C181.377 (6)
I1—Li1i2.691 (7)C17—C221.510 (6)
C2—C31.328 (5)C18—C191.371 (6)
C2—H20.9300C18—H180.9300
C3—H30.9300C19—C201.382 (7)
C4—C91.382 (5)C19—H190.9300
C4—C51.410 (5)C20—C211.378 (6)
C5—C61.365 (6)C20—H200.9300
C5—C101.507 (6)C21—C251.512 (6)
C6—C71.363 (6)C22—C241.509 (6)
C6—H60.9300C22—C231.514 (7)
C7—C81.371 (7)C22—H220.9800
C7—H70.9300C23—H23A0.9600
C8—C91.384 (6)C23—H23B0.9600
C8—H80.9300C23—H23C0.9600
C9—C131.510 (6)C24—H24A0.9600
C10—C111.497 (8)C24—H24B0.9600
C10—C121.531 (7)C24—H24C0.9600
C10—H100.9800C25—C261.525 (7)
C11—H11A0.9600C25—C271.527 (7)
C11—H11B0.9600C25—H250.9800
C11—H11C0.9600C26—H26A0.9600
C12—H12A0.9600C26—H26B0.9600
C12—H12B0.9600C26—H26C0.9600
C12—H12C0.9600C27—H27A0.9600
C13—C141.509 (7)C27—H27B0.9600
C13—C151.514 (7)C27—H27C0.9600
C1—Li1—I1124.9 (3)C13—C14—H14B109.5
C1—Li1—I1i131.6 (4)H14A—C14—H14B109.5
I1—Li1—I1i103.4 (2)C13—C14—H14C109.5
C1—Li1—Li1i175.8 (5)H14A—C14—H14C109.5
I1—Li1—Li1i51.9 (2)H14B—C14—H14C109.5
I1i—Li1—Li1i51.48 (18)C13—C15—H15A109.5
C1—N1—C2112.3 (3)C13—C15—H15B109.5
C1—N1—C4123.9 (3)H15A—C15—H15B109.5
C2—N1—C4123.6 (3)C13—C15—H15C109.5
C1—N2—C3111.8 (3)H15A—C15—H15C109.5
C1—N2—C16125.3 (3)H15B—C15—H15C109.5
C3—N2—C16122.8 (3)C17—C16—C21123.7 (4)
Li1—I1—Li1i76.6 (2)C17—C16—N2118.2 (4)
N2—C1—N1102.8 (3)C21—C16—N2118.1 (4)
N2—C1—Li1134.7 (4)C18—C17—C16116.6 (4)
N1—C1—Li1122.2 (3)C18—C17—C22120.5 (4)
C3—C2—N1106.2 (4)C16—C17—C22122.8 (4)
C3—C2—H2126.9C19—C18—C17122.0 (5)
N1—C2—H2126.9C19—C18—H18119.0
C2—C3—N2106.9 (4)C17—C18—H18119.0
C2—C3—H3126.5C18—C19—C20119.4 (5)
N2—C3—H3126.5C18—C19—H19120.3
C9—C4—C5122.5 (4)C20—C19—H19120.3
C9—C4—N1119.2 (3)C21—C20—C19121.8 (5)
C5—C4—N1118.3 (4)C21—C20—H20119.1
C6—C5—C4117.2 (4)C19—C20—H20119.1
C6—C5—C10121.7 (4)C20—C21—C16116.5 (5)
C4—C5—C10121.1 (4)C20—C21—C25120.7 (4)
C7—C6—C5121.6 (5)C16—C21—C25122.8 (4)
C7—C6—H6119.2C24—C22—C17112.6 (4)
C5—C6—H6119.2C24—C22—C23111.7 (5)
C6—C7—C8120.3 (5)C17—C22—C23111.9 (4)
C6—C7—H7119.8C24—C22—H22106.7
C8—C7—H7119.8C17—C22—H22106.7
C7—C8—C9121.3 (5)C23—C22—H22106.7
C7—C8—H8119.4C22—C23—H23A109.5
C9—C8—H8119.4C22—C23—H23B109.5
C4—C9—C8117.1 (4)H23A—C23—H23B109.5
C4—C9—C13122.8 (4)C22—C23—H23C109.5
C8—C9—C13120.1 (4)H23A—C23—H23C109.5
C11—C10—C5112.0 (5)H23B—C23—H23C109.5
C11—C10—C12108.8 (5)C22—C24—H24A109.5
C5—C10—C12113.4 (5)C22—C24—H24B109.5
C11—C10—H10107.4H24A—C24—H24B109.5
C5—C10—H10107.4C22—C24—H24C109.5
C12—C10—H10107.4H24A—C24—H24C109.5
C10—C11—H11A109.5H24B—C24—H24C109.5
C10—C11—H11B109.5C21—C25—C26111.8 (4)
H11A—C11—H11B109.5C21—C25—C27111.0 (5)
C10—C11—H11C109.5C26—C25—C27111.1 (5)
H11A—C11—H11C109.5C21—C25—H25107.6
H11B—C11—H11C109.5C26—C25—H25107.6
C10—C12—H12A109.5C27—C25—H25107.6
C10—C12—H12B109.5C25—C26—H26A109.5
H12A—C12—H12B109.5C25—C26—H26B109.5
C10—C12—H12C109.5H26A—C26—H26B109.5
H12A—C12—H12C109.5C25—C26—H26C109.5
H12B—C12—H12C109.5H26A—C26—H26C109.5
C14—C13—C9110.7 (4)H26B—C26—H26C109.5
C14—C13—C15109.8 (4)C25—C27—H27A109.5
C9—C13—C15112.4 (4)C25—C27—H27B109.5
C14—C13—H13107.9H27A—C27—H27B109.5
C9—C13—H13107.9C25—C27—H27C109.5
C15—C13—H13107.9H27A—C27—H27C109.5
C13—C14—H14A109.5H27B—C27—H27C109.5
Symmetry code: (i) x+1, y+2, z+2.
Selected bond lengths (Å) top
Li1—C12.120 (7)Li1—I1i2.691 (7)
Li1—I12.676 (8)
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

The diffraction data was collected at Fudan University, China.

References

First citationBerkessel, A., Elfert, S., Yatham, V. R., Neudörfl, J.-M., Schlörer, N. E. & Teles, J. H. (2012). Angew. Chem. Int. Ed. 51, 12370–12374.  CSD CrossRef CAS Google Scholar
First citationBiju, A. T., Kuhl, N. & Glorius, F. (2011). Acc. Chem. Res. 44, 1182–1195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFei, Z., Scopelliti, R. & Dyson, P. J. (2003). Inorg. Chem. 42, 2125–2130.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFèvre, M., Pinaud, J., Gnanou, Y., Vignolle, J. & Taton, D. (2013). Chem. Soc. Rev. 42, 2142–2172.  PubMed Google Scholar
First citationFortman, G. C. & Nolan, S. P. (2011). Chem. Soc. Rev. 40, 5151–5169.  CrossRef CAS PubMed Google Scholar
First citationHill, M. S., Kociok-Köhn, G. & MacDougall, D. J. (2011). Inorg. Chem. 50, 5234–5241.  CSD CrossRef CAS PubMed Google Scholar
First citationKolychev, E. L., Theuergarten, E. & Tamm, M. (2013). Top. Curr. Chem. 334, 121–155.  PubMed Google Scholar
First citationMahoney, J. K., Martin, D., Moore, C. E., Rheingold, A. L. & Bertrand, G. (2013). J. Am. Chem. Soc. 135, 18766–18769.  CSD CrossRef CAS PubMed Google Scholar
First citationRaston, C. L., Whitaker, C. R. & White, A. H. (1989). Inorg. Chem. 28, 163–165.  CSD CrossRef CAS Google Scholar
First citationRiener, K., Haslinger, S., Raba, A., Högerl, M. P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2014). Chem. Rev. 114, 5215–5272.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThatcher, R. J., Johnson, D. G., Slattery, J. M. & Douthwaite, R. E. (2012). Chem. Eur. J. 18, 4329–4336.  CSD CrossRef CAS PubMed Google Scholar
First citationValente, C., Çalimsiz, S., Hoi, K. H., Mallik, D., Sayah, M. & Organ, M. G. (2012). Angew. Chem. Int. Ed. 51, 3314–3332.  CrossRef CAS Google Scholar
First citationVougioukalakis, G. C. & Grubbs, R. H. (2010). Chem. Rev. 110, 1746–1787.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, Y., Xie, Y., Wei, P., King, R. B., Schaefer, H. F. III, von, R., Schleyer, P. & Robinson, G. H. (2008). Science, 321, 1069–1071.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages m137-m138
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds