metal-organic compounds
μ-iodido-bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]lithium}
of di-aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: hongjq@jiangnan.edu.cn
In the title binuclear complex, [Li2(C27H36N2)2I2], the unique LiI cation is coordinated by two iodide anions and one ylidene C atom from a 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene ligand in a distorted trigonal–planar geometry. The two symmetry-related iodide anions bridge two LiI cations, forming an inversion dimer in which the Li2I2 plane is nearly perpendicular to the imidazol-2-ylidene ring, with a dihedral angle of 85.5 (3)°. No hydrogen bonding is observed in the crystal.
CCDC reference: 1402139
1. Related literature
For a related lithium complex of imidazol-2-ylidenes, see: Hill et al. (2011). For related lithium complexes with Li—I bonds, see: Raston et al. (1989); Fei et al. (2003); Thatcher et al. (2012). For applications of imidazol-2-ylidenes in catalysis, see: Vougioukalakis & Grubbs (2010); Fortman & Nolan (2011); Valente et al. (2012); Riener et al. (2014); Wang et al. (2008); Mahoney et al. (2013); Kolychev et al. (2013); Biju et al. (2011); Berkessel et al. (2012); Fèvre et al. (2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1402139
10.1107/S2056989015009822/xu5851sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015009822/xu5851Isup2.hkl
A flame-dried Schlenk tube under a nitrogen atmosphere was charged with 1,3-Bis(2,6-diisopropylphenyl)imidazolinium iodide (0.516 g, 1mmol) and THF (10mL) at -78°C. To this was added a THF solution of lithium hexamethyldisilazide (0.167 g, 1 mmol). The mixture was allowed to slowly warm to room temperature and was stirred for 3 h. All volatiles were removed under vacuum. The resulting pale-yellow material was washed with cold hexane quickly, and then dried up. 0.376 g (72 %) of [Li(I)(C27H36N2)]2 was obtained. Crystals suitable for X-ray analysis were obtained by recrystallization in THF/hexane at -30 °C. Elemental analysis (%) calcd. for Li2C54H72N4I2: C 62.07, H 6.94, N 5.36. Found: C 62.45, H 6.80, N 5.48.
The H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and C–H distances of 0.93–0.96 Å.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and 30% probability displacement ellipsoids. | |
Fig. 2. The packing diagram viewed along the a axis. |
[Li2(C27H36N2)2I2] | F(000) = 1072 |
Mr = 1044.84 | Dx = 1.215 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3834 reflections |
a = 10.645 (4) Å | θ = 2.4–22.6° |
b = 14.490 (6) Å | µ = 1.14 mm−1 |
c = 19.217 (7) Å | T = 293 K |
β = 105.565 (6)° | Block, pale-yellow |
V = 2855.4 (19) Å3 | 0.30 × 0.25 × 0.20 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 5069 independent reflections |
Radiation source: fine-focus sealed tube | 2924 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.085 |
ϕ and ω scans | θmax = 25.1°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −12→12 |
Tmin = 0.727, Tmax = 0.805 | k = −16→17 |
11711 measured reflections | l = −22→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0129P)2 + 2.6P] where P = (Fo2 + 2Fc2)/3 |
5069 reflections | (Δ/σ)max = 0.002 |
288 parameters | Δρmax = 0.74 e Å−3 |
0 restraints | Δρmin = −1.23 e Å−3 |
[Li2(C27H36N2)2I2] | V = 2855.4 (19) Å3 |
Mr = 1044.84 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.645 (4) Å | µ = 1.14 mm−1 |
b = 14.490 (6) Å | T = 293 K |
c = 19.217 (7) Å | 0.30 × 0.25 × 0.20 mm |
β = 105.565 (6)° |
Bruker APEXII CCD diffractometer | 5069 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2924 reflections with I > 2σ(I) |
Tmin = 0.727, Tmax = 0.805 | Rint = 0.085 |
11711 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.74 e Å−3 |
5069 reflections | Δρmin = −1.23 e Å−3 |
288 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.5511 (8) | 0.9291 (5) | 0.9451 (4) | 0.073 (2) | |
N1 | 0.5147 (3) | 0.7930 (2) | 0.81899 (15) | 0.0471 (8) | |
N2 | 0.7164 (3) | 0.8253 (2) | 0.85073 (15) | 0.0495 (8) | |
I1 | 0.45770 (6) | 1.10068 (3) | 0.918028 (19) | 0.1292 (3) | |
C1 | 0.6043 (4) | 0.8421 (3) | 0.86912 (18) | 0.0465 (9) | |
C2 | 0.5699 (4) | 0.7470 (3) | 0.7712 (2) | 0.0613 (11) | |
H2 | 0.5272 | 0.7092 | 0.7331 | 0.074* | |
C3 | 0.6961 (5) | 0.7677 (3) | 0.7908 (2) | 0.0614 (12) | |
H3 | 0.7589 | 0.7475 | 0.7687 | 0.074* | |
C4 | 0.3808 (4) | 0.7834 (3) | 0.81913 (19) | 0.0490 (10) | |
C5 | 0.3503 (5) | 0.7218 (3) | 0.8690 (2) | 0.0620 (11) | |
C6 | 0.2220 (5) | 0.7133 (4) | 0.8677 (3) | 0.0815 (15) | |
H6 | 0.1990 | 0.6744 | 0.9008 | 0.098* | |
C7 | 0.1267 (5) | 0.7603 (4) | 0.8191 (3) | 0.0898 (17) | |
H7 | 0.0398 | 0.7519 | 0.8185 | 0.108* | |
C8 | 0.1584 (5) | 0.8200 (3) | 0.7711 (3) | 0.0780 (14) | |
H8 | 0.0924 | 0.8520 | 0.7385 | 0.094* | |
C9 | 0.2867 (4) | 0.8334 (3) | 0.7702 (2) | 0.0587 (11) | |
C10 | 0.4551 (5) | 0.6667 (4) | 0.9205 (3) | 0.0937 (17) | |
H10 | 0.5353 | 0.7035 | 0.9313 | 0.112* | |
C11 | 0.4827 (7) | 0.5777 (5) | 0.8879 (4) | 0.148 (3) | |
H11A | 0.5586 | 0.5493 | 0.9192 | 0.222* | |
H11B | 0.4980 | 0.5896 | 0.8417 | 0.222* | |
H11C | 0.4093 | 0.5371 | 0.8820 | 0.222* | |
C12 | 0.4245 (8) | 0.6461 (5) | 0.9924 (3) | 0.153 (3) | |
H12A | 0.5024 | 0.6257 | 1.0271 | 0.229* | |
H12B | 0.3594 | 0.5987 | 0.9854 | 0.229* | |
H12C | 0.3927 | 0.7010 | 1.0098 | 0.229* | |
C13 | 0.3189 (5) | 0.9005 (3) | 0.7174 (2) | 0.0703 (13) | |
H13 | 0.4135 | 0.9100 | 0.7314 | 0.084* | |
C14 | 0.2809 (7) | 0.8614 (5) | 0.6418 (3) | 0.127 (2) | |
H14A | 0.2993 | 0.9059 | 0.6089 | 0.190* | |
H14B | 0.1894 | 0.8474 | 0.6282 | 0.190* | |
H14C | 0.3298 | 0.8061 | 0.6404 | 0.190* | |
C15 | 0.2544 (6) | 0.9935 (4) | 0.7182 (3) | 0.112 (2) | |
H15A | 0.2695 | 1.0144 | 0.7671 | 0.168* | |
H15B | 0.1623 | 0.9878 | 0.6966 | 0.168* | |
H15C | 0.2904 | 1.0372 | 0.6912 | 0.168* | |
C16 | 0.8436 (4) | 0.8581 (3) | 0.8895 (2) | 0.0534 (10) | |
C17 | 0.8907 (4) | 0.9376 (3) | 0.8648 (2) | 0.0611 (11) | |
C18 | 1.0158 (5) | 0.9638 (3) | 0.9004 (3) | 0.0814 (14) | |
H18 | 1.0511 | 1.0160 | 0.8847 | 0.098* | |
C19 | 1.0898 (5) | 0.9153 (4) | 0.9582 (3) | 0.0869 (16) | |
H19 | 1.1738 | 0.9348 | 0.9816 | 0.104* | |
C20 | 1.0385 (5) | 0.8372 (4) | 0.9814 (3) | 0.0823 (15) | |
H20 | 1.0892 | 0.8043 | 1.0205 | 0.099* | |
C21 | 0.9143 (4) | 0.8066 (3) | 0.9482 (2) | 0.0645 (12) | |
C22 | 0.8123 (5) | 0.9924 (3) | 0.8010 (2) | 0.0720 (13) | |
H22 | 0.7264 | 0.9631 | 0.7854 | 0.086* | |
C23 | 0.8713 (6) | 0.9880 (5) | 0.7376 (3) | 0.135 (3) | |
H23A | 0.8821 | 0.9247 | 0.7258 | 0.202* | |
H23B | 0.9546 | 1.0182 | 0.7502 | 0.202* | |
H23C | 0.8144 | 1.0183 | 0.6967 | 0.202* | |
C24 | 0.7897 (6) | 1.0907 (3) | 0.8207 (3) | 0.1030 (18) | |
H24A | 0.8717 | 1.1226 | 0.8353 | 0.155* | |
H24B | 0.7493 | 1.0909 | 0.8598 | 0.155* | |
H24C | 0.7338 | 1.1212 | 0.7796 | 0.155* | |
C25 | 0.8619 (5) | 0.7196 (4) | 0.9735 (3) | 0.0839 (15) | |
H25 | 0.7715 | 0.7119 | 0.9446 | 0.101* | |
C26 | 0.9377 (6) | 0.6344 (4) | 0.9617 (3) | 0.112 (2) | |
H26A | 1.0273 | 0.6404 | 0.9888 | 0.168* | |
H26B | 0.9329 | 0.6286 | 0.9113 | 0.168* | |
H26C | 0.9008 | 0.5804 | 0.9775 | 0.168* | |
C27 | 0.8602 (6) | 0.7278 (5) | 1.0525 (3) | 0.134 (3) | |
H27A | 0.8199 | 0.6740 | 1.0662 | 0.200* | |
H27B | 0.8117 | 0.7817 | 1.0585 | 0.200* | |
H27C | 0.9480 | 0.7329 | 1.0825 | 0.200* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.100 (6) | 0.067 (5) | 0.061 (4) | 0.008 (5) | 0.038 (4) | −0.015 (4) |
N1 | 0.048 (2) | 0.0510 (19) | 0.0438 (17) | 0.0020 (16) | 0.0147 (16) | −0.0048 (15) |
N2 | 0.049 (2) | 0.053 (2) | 0.0468 (17) | 0.0063 (17) | 0.0124 (16) | −0.0039 (15) |
I1 | 0.2440 (6) | 0.0875 (3) | 0.0756 (2) | 0.0609 (3) | 0.0765 (3) | 0.0164 (2) |
C1 | 0.050 (3) | 0.047 (2) | 0.043 (2) | 0.008 (2) | 0.0126 (19) | 0.0010 (17) |
C2 | 0.064 (3) | 0.067 (3) | 0.055 (2) | −0.001 (2) | 0.021 (2) | −0.019 (2) |
C3 | 0.063 (3) | 0.068 (3) | 0.059 (3) | 0.006 (2) | 0.027 (2) | −0.017 (2) |
C4 | 0.047 (3) | 0.051 (2) | 0.052 (2) | 0.000 (2) | 0.020 (2) | −0.0083 (18) |
C5 | 0.069 (3) | 0.060 (3) | 0.064 (3) | 0.000 (2) | 0.030 (2) | −0.002 (2) |
C6 | 0.090 (4) | 0.077 (4) | 0.096 (4) | −0.014 (3) | 0.057 (3) | −0.003 (3) |
C7 | 0.071 (4) | 0.081 (4) | 0.137 (5) | −0.004 (3) | 0.063 (4) | −0.012 (4) |
C8 | 0.056 (3) | 0.071 (3) | 0.112 (4) | 0.012 (3) | 0.030 (3) | 0.009 (3) |
C9 | 0.051 (3) | 0.056 (3) | 0.070 (3) | 0.003 (2) | 0.018 (2) | −0.006 (2) |
C10 | 0.098 (4) | 0.098 (4) | 0.087 (3) | −0.014 (4) | 0.028 (3) | 0.038 (3) |
C11 | 0.175 (7) | 0.142 (7) | 0.142 (6) | 0.093 (6) | 0.067 (5) | 0.052 (5) |
C12 | 0.254 (9) | 0.122 (5) | 0.081 (4) | −0.016 (6) | 0.044 (5) | 0.028 (4) |
C13 | 0.058 (3) | 0.069 (3) | 0.081 (3) | 0.006 (2) | 0.012 (2) | 0.019 (2) |
C14 | 0.186 (7) | 0.124 (5) | 0.081 (4) | −0.022 (5) | 0.055 (4) | 0.001 (4) |
C15 | 0.134 (5) | 0.077 (4) | 0.128 (5) | 0.016 (4) | 0.040 (4) | 0.030 (4) |
C16 | 0.046 (3) | 0.059 (3) | 0.054 (2) | 0.008 (2) | 0.011 (2) | −0.009 (2) |
C17 | 0.053 (3) | 0.054 (3) | 0.075 (3) | 0.005 (2) | 0.014 (2) | −0.008 (2) |
C18 | 0.073 (4) | 0.064 (3) | 0.105 (4) | −0.004 (3) | 0.021 (3) | −0.009 (3) |
C19 | 0.059 (3) | 0.087 (4) | 0.105 (4) | −0.004 (3) | 0.005 (3) | −0.027 (3) |
C20 | 0.066 (4) | 0.099 (4) | 0.069 (3) | 0.015 (3) | −0.004 (3) | −0.008 (3) |
C21 | 0.057 (3) | 0.070 (3) | 0.062 (3) | 0.009 (3) | 0.007 (2) | −0.004 (2) |
C22 | 0.076 (3) | 0.058 (3) | 0.084 (3) | 0.011 (3) | 0.025 (3) | 0.009 (2) |
C23 | 0.160 (6) | 0.153 (6) | 0.105 (4) | 0.076 (5) | 0.060 (4) | 0.036 (4) |
C24 | 0.128 (5) | 0.072 (4) | 0.111 (4) | 0.036 (4) | 0.035 (4) | 0.014 (3) |
C25 | 0.071 (3) | 0.091 (4) | 0.081 (3) | 0.008 (3) | 0.006 (3) | 0.028 (3) |
C26 | 0.132 (5) | 0.079 (4) | 0.123 (5) | 0.003 (4) | 0.030 (4) | 0.004 (3) |
C27 | 0.163 (6) | 0.138 (6) | 0.122 (5) | 0.034 (5) | 0.076 (5) | 0.044 (4) |
Li1—C1 | 2.120 (7) | C13—H13 | 0.9800 |
Li1—I1 | 2.676 (8) | C14—H14A | 0.9600 |
Li1—I1i | 2.691 (7) | C14—H14B | 0.9600 |
Li1—Li1i | 3.328 (13) | C14—H14C | 0.9600 |
N1—C1 | 1.360 (4) | C15—H15A | 0.9600 |
N1—C2 | 1.386 (5) | C15—H15B | 0.9600 |
N1—C4 | 1.433 (5) | C15—H15C | 0.9600 |
N2—C1 | 1.354 (4) | C16—C17 | 1.389 (6) |
N2—C3 | 1.391 (5) | C16—C21 | 1.393 (6) |
N2—C16 | 1.440 (5) | C17—C18 | 1.377 (6) |
I1—Li1i | 2.691 (7) | C17—C22 | 1.510 (6) |
C2—C3 | 1.328 (5) | C18—C19 | 1.371 (6) |
C2—H2 | 0.9300 | C18—H18 | 0.9300 |
C3—H3 | 0.9300 | C19—C20 | 1.382 (7) |
C4—C9 | 1.382 (5) | C19—H19 | 0.9300 |
C4—C5 | 1.410 (5) | C20—C21 | 1.378 (6) |
C5—C6 | 1.365 (6) | C20—H20 | 0.9300 |
C5—C10 | 1.507 (6) | C21—C25 | 1.512 (6) |
C6—C7 | 1.363 (6) | C22—C24 | 1.509 (6) |
C6—H6 | 0.9300 | C22—C23 | 1.514 (7) |
C7—C8 | 1.371 (7) | C22—H22 | 0.9800 |
C7—H7 | 0.9300 | C23—H23A | 0.9600 |
C8—C9 | 1.384 (6) | C23—H23B | 0.9600 |
C8—H8 | 0.9300 | C23—H23C | 0.9600 |
C9—C13 | 1.510 (6) | C24—H24A | 0.9600 |
C10—C11 | 1.497 (8) | C24—H24B | 0.9600 |
C10—C12 | 1.531 (7) | C24—H24C | 0.9600 |
C10—H10 | 0.9800 | C25—C26 | 1.525 (7) |
C11—H11A | 0.9600 | C25—C27 | 1.527 (7) |
C11—H11B | 0.9600 | C25—H25 | 0.9800 |
C11—H11C | 0.9600 | C26—H26A | 0.9600 |
C12—H12A | 0.9600 | C26—H26B | 0.9600 |
C12—H12B | 0.9600 | C26—H26C | 0.9600 |
C12—H12C | 0.9600 | C27—H27A | 0.9600 |
C13—C14 | 1.509 (7) | C27—H27B | 0.9600 |
C13—C15 | 1.514 (7) | C27—H27C | 0.9600 |
C1—Li1—I1 | 124.9 (3) | C13—C14—H14B | 109.5 |
C1—Li1—I1i | 131.6 (4) | H14A—C14—H14B | 109.5 |
I1—Li1—I1i | 103.4 (2) | C13—C14—H14C | 109.5 |
C1—Li1—Li1i | 175.8 (5) | H14A—C14—H14C | 109.5 |
I1—Li1—Li1i | 51.9 (2) | H14B—C14—H14C | 109.5 |
I1i—Li1—Li1i | 51.48 (18) | C13—C15—H15A | 109.5 |
C1—N1—C2 | 112.3 (3) | C13—C15—H15B | 109.5 |
C1—N1—C4 | 123.9 (3) | H15A—C15—H15B | 109.5 |
C2—N1—C4 | 123.6 (3) | C13—C15—H15C | 109.5 |
C1—N2—C3 | 111.8 (3) | H15A—C15—H15C | 109.5 |
C1—N2—C16 | 125.3 (3) | H15B—C15—H15C | 109.5 |
C3—N2—C16 | 122.8 (3) | C17—C16—C21 | 123.7 (4) |
Li1—I1—Li1i | 76.6 (2) | C17—C16—N2 | 118.2 (4) |
N2—C1—N1 | 102.8 (3) | C21—C16—N2 | 118.1 (4) |
N2—C1—Li1 | 134.7 (4) | C18—C17—C16 | 116.6 (4) |
N1—C1—Li1 | 122.2 (3) | C18—C17—C22 | 120.5 (4) |
C3—C2—N1 | 106.2 (4) | C16—C17—C22 | 122.8 (4) |
C3—C2—H2 | 126.9 | C19—C18—C17 | 122.0 (5) |
N1—C2—H2 | 126.9 | C19—C18—H18 | 119.0 |
C2—C3—N2 | 106.9 (4) | C17—C18—H18 | 119.0 |
C2—C3—H3 | 126.5 | C18—C19—C20 | 119.4 (5) |
N2—C3—H3 | 126.5 | C18—C19—H19 | 120.3 |
C9—C4—C5 | 122.5 (4) | C20—C19—H19 | 120.3 |
C9—C4—N1 | 119.2 (3) | C21—C20—C19 | 121.8 (5) |
C5—C4—N1 | 118.3 (4) | C21—C20—H20 | 119.1 |
C6—C5—C4 | 117.2 (4) | C19—C20—H20 | 119.1 |
C6—C5—C10 | 121.7 (4) | C20—C21—C16 | 116.5 (5) |
C4—C5—C10 | 121.1 (4) | C20—C21—C25 | 120.7 (4) |
C7—C6—C5 | 121.6 (5) | C16—C21—C25 | 122.8 (4) |
C7—C6—H6 | 119.2 | C24—C22—C17 | 112.6 (4) |
C5—C6—H6 | 119.2 | C24—C22—C23 | 111.7 (5) |
C6—C7—C8 | 120.3 (5) | C17—C22—C23 | 111.9 (4) |
C6—C7—H7 | 119.8 | C24—C22—H22 | 106.7 |
C8—C7—H7 | 119.8 | C17—C22—H22 | 106.7 |
C7—C8—C9 | 121.3 (5) | C23—C22—H22 | 106.7 |
C7—C8—H8 | 119.4 | C22—C23—H23A | 109.5 |
C9—C8—H8 | 119.4 | C22—C23—H23B | 109.5 |
C4—C9—C8 | 117.1 (4) | H23A—C23—H23B | 109.5 |
C4—C9—C13 | 122.8 (4) | C22—C23—H23C | 109.5 |
C8—C9—C13 | 120.1 (4) | H23A—C23—H23C | 109.5 |
C11—C10—C5 | 112.0 (5) | H23B—C23—H23C | 109.5 |
C11—C10—C12 | 108.8 (5) | C22—C24—H24A | 109.5 |
C5—C10—C12 | 113.4 (5) | C22—C24—H24B | 109.5 |
C11—C10—H10 | 107.4 | H24A—C24—H24B | 109.5 |
C5—C10—H10 | 107.4 | C22—C24—H24C | 109.5 |
C12—C10—H10 | 107.4 | H24A—C24—H24C | 109.5 |
C10—C11—H11A | 109.5 | H24B—C24—H24C | 109.5 |
C10—C11—H11B | 109.5 | C21—C25—C26 | 111.8 (4) |
H11A—C11—H11B | 109.5 | C21—C25—C27 | 111.0 (5) |
C10—C11—H11C | 109.5 | C26—C25—C27 | 111.1 (5) |
H11A—C11—H11C | 109.5 | C21—C25—H25 | 107.6 |
H11B—C11—H11C | 109.5 | C26—C25—H25 | 107.6 |
C10—C12—H12A | 109.5 | C27—C25—H25 | 107.6 |
C10—C12—H12B | 109.5 | C25—C26—H26A | 109.5 |
H12A—C12—H12B | 109.5 | C25—C26—H26B | 109.5 |
C10—C12—H12C | 109.5 | H26A—C26—H26B | 109.5 |
H12A—C12—H12C | 109.5 | C25—C26—H26C | 109.5 |
H12B—C12—H12C | 109.5 | H26A—C26—H26C | 109.5 |
C14—C13—C9 | 110.7 (4) | H26B—C26—H26C | 109.5 |
C14—C13—C15 | 109.8 (4) | C25—C27—H27A | 109.5 |
C9—C13—C15 | 112.4 (4) | C25—C27—H27B | 109.5 |
C14—C13—H13 | 107.9 | H27A—C27—H27B | 109.5 |
C9—C13—H13 | 107.9 | C25—C27—H27C | 109.5 |
C15—C13—H13 | 107.9 | H27A—C27—H27C | 109.5 |
C13—C14—H14A | 109.5 | H27B—C27—H27C | 109.5 |
Symmetry code: (i) −x+1, −y+2, −z+2. |
Li1—C1 | 2.120 (7) | Li1—I1i | 2.691 (7) |
Li1—I1 | 2.676 (8) |
Symmetry code: (i) −x+1, −y+2, −z+2. |
Acknowledgements
The diffraction data was collected at Fudan University, China.
References
Berkessel, A., Elfert, S., Yatham, V. R., Neudörfl, J.-M., Schlörer, N. E. & Teles, J. H. (2012). Angew. Chem. Int. Ed. 51, 12370–12374. CSD CrossRef CAS Google Scholar
Biju, A. T., Kuhl, N. & Glorius, F. (2011). Acc. Chem. Res. 44, 1182–1195. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fei, Z., Scopelliti, R. & Dyson, P. J. (2003). Inorg. Chem. 42, 2125–2130. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fèvre, M., Pinaud, J., Gnanou, Y., Vignolle, J. & Taton, D. (2013). Chem. Soc. Rev. 42, 2142–2172. PubMed Google Scholar
Fortman, G. C. & Nolan, S. P. (2011). Chem. Soc. Rev. 40, 5151–5169. CrossRef CAS PubMed Google Scholar
Hill, M. S., Kociok-Köhn, G. & MacDougall, D. J. (2011). Inorg. Chem. 50, 5234–5241. CSD CrossRef CAS PubMed Google Scholar
Kolychev, E. L., Theuergarten, E. & Tamm, M. (2013). Top. Curr. Chem. 334, 121–155. PubMed Google Scholar
Mahoney, J. K., Martin, D., Moore, C. E., Rheingold, A. L. & Bertrand, G. (2013). J. Am. Chem. Soc. 135, 18766–18769. CSD CrossRef CAS PubMed Google Scholar
Raston, C. L., Whitaker, C. R. & White, A. H. (1989). Inorg. Chem. 28, 163–165. CSD CrossRef CAS Google Scholar
Riener, K., Haslinger, S., Raba, A., Högerl, M. P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2014). Chem. Rev. 114, 5215–5272. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thatcher, R. J., Johnson, D. G., Slattery, J. M. & Douthwaite, R. E. (2012). Chem. Eur. J. 18, 4329–4336. CSD CrossRef CAS PubMed Google Scholar
Valente, C., Çalimsiz, S., Hoi, K. H., Mallik, D., Sayah, M. & Organ, M. G. (2012). Angew. Chem. Int. Ed. 51, 3314–3332. CrossRef CAS Google Scholar
Vougioukalakis, G. C. & Grubbs, R. H. (2010). Chem. Rev. 110, 1746–1787. Web of Science CrossRef CAS PubMed Google Scholar
Wang, Y., Xie, Y., Wei, P., King, R. B., Schaefer, H. F. III, von, R., Schleyer, P. & Robinson, G. H. (2008). Science, 321, 1069–1071. CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Imidazol-2-ylidenes (NHCs), are excellent σ-donors and readily coordinate to transition metals and p-block elements. This feature has led to the most important application of NHCs as ancillary ligands in homogeneous transition-metal catalysis (Vougioukalakis et al., 2010; Fortman et al., 2011; Valente et al., 2012; Riener et al., 2014) and p-block elements (Wang et al., 2008; Mahoney et al., 2013; Kolychev et al., 2013). NHCs have enabled the preparation and characterization of previously unknown species featuring p-block species in unconventional forms, such as in the zero-oxidation state or as radicals. As organocatalysts, NHCs can also promote a wide range of different organic transformations, with most processes involving an initial attack of the NHC onto a carbonyl group (Biju et al., 2011; Berkessel et al., 2012; Fèvre et al., 2013).
Single-crystal X-ray diffraction analyses the title compound reveals that Li is tri-coordinate. As shown in Fig. 1, the moiety of the dimer contains one Li atom, a NHC ligand and one iodine atom. The dative Li← C bond distance is 2.120 (7) Å, whic is slightly shorter than those of NHC species [M(IPr)2]+[M'{N(SiMe3)2}3]- (M = Li, Na, K; M' = Mg, Ca, Sr, Ba). (Hill et al., 2011) The Li—I bond distances are in the range of 2.676 (8)–2.691 (7) Å, which are remarkably shorter than the values in lithium complexes (2.767 (16)–2.932 (6) Å) with µ-bridging iodine constructions. (Raston et al., 1989; Fei et al., 2003; Thatcher et al., 2012). Fig. 2 shows the molecular packing of the title compound, viewed along the a axis.