metal-organic compounds
H-1,2,4-triazol-1-ium)cobalt(II) bis[bis(pyridine-2,6-dicarboxylato)cobaltate(II)] dihydrate
of tetraaquabis(3,5-diamino-4aH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75720, Pakistan, bDepartment of Chemistry, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State, Nigeria, cDepartment of Chemistry, Federal University of Petroleum Recourses Effurun, Delta State, Nigeria, dDepartment of Chemistry, Karakoram International University, Gilgit, Baltistan, Pakistan, eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and fDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia
*Correspondence e-mail: hfun.c@ksu.edu.sa
The 2H6N5)2(H2O)4][Co(C7H3NO4)2]2·2H2O, features 1.5 CoII ions (one anionic complex and one half cationic complex) and one water molecule. In the cationic complex, the CoII atom is located on an inversion centre and is coordinated by two triazolium cations and four water molecules, adopting an octahedral geometry where the N atoms of the two triazolium cations occupy the axial positions and the O atoms of the four water molecules the equatorial positions. The two triazole ligands are parallel offset (with a distance of 1.38 Å between their planes). In the anionic complex, the CoII ion is six-coordinated by two N and four O atoms of the two pyridine-2,6-dicarboxylate anions, exhibiting a slightly distorted octahedral coordination geometry in which the mean plane of the two pyridine-2,6-dicarboxylate anions are almost perpendicular to each other, making a dihedral angle of 85.87 (2)°. In the crystal, molecules are linked into a three-dimensional network via C—H⋯O, C—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds.
of the title compound, [Co(CKeywords: crystal structure; pyridine-2,6-dicarboxylate; triazolium; CoII complex; hydrogen bonding.
CCDC reference: 1402526
1. Related literature
For the different coordination modes of transition metal–dipicolinate complexes, see: Håkansson et al. (1993); Okabe & Oya (2000); Aghajani et al. (2009). For crystal structures of related complexes, see: Yousuf et al. (2011a,b); Aghabozorg et al. (2009); Ramos Silva et al. (2008); Wang et al. (2004); MacDonald et al. (2004). For studies on proton transfer from carboxylic acids to both heterocyclic and substituted amine N atoms, see: Aghabozorg et al. (2008); Moghimi et al. (2002, 2005, 2007); Pasdar et al. (2011); Tabatabaee et al. (2009).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1402526
10.1107/S2056989015010014/zl2619sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015010014/zl2619Isup2.hkl
Among different multidentate species, compounds bearing carboxylate functions are widely studied ligands for producing stable transition metals coordination polymers and supramolecular architectures, mostly because of the versatile ligating abilities of the -COO moieties and also due to the enhanced affinity of these metal ions towards such O donors. There have been a number of successful attempts at utilizing proton transfer from carboxylic acids to both heterocyclic and substituted amine nitrogens (Moghimi et al., 2002; Moghimi et al., 2005; Moghimi et al., 2007; Aghabozorg et al., 2008; Aghabozorg et al., 2009; Tabatabaee et al., 2009, Pasdar et al., 2011, Yousuf et al., 2011b). Dicarboxylic acids possess a good potential to be used as proton donors in the synthesis of proton transfer compounds. In continuation of our work, we report herein the trinuclear complex of CoII with pyridine-2,6-dicarboxylic acid as proton donor and 3,5-diamino-1,2,4-triazole as proton acceptor.
The
consits of half whole repeating unit of the title compound (Fig. 1) and is composed of 1.5 CoII ions (one anionic complex and one half cationic complex) and one water molecule. In the cationic complex, the CoII atom (Co2) is located on an inversion centre and is coordinated by two triazolium cations and four water molecules, adopting an octahedral geometry where the N atoms of the two triazolium cations (N3 & N3A) occupy the axial positions (Co–N = 2.2016 (7) Å) and the O atoms of the four water molecules (O2W, O2WA, O3W & O3WA) occupy the equatorial positions (Co–O = 2.0590 (7) - 2.1080 (7) Å). Atoms with suffix A were generated by the -x, -y, -z. The two triazole ligands are parallel offset (with a distance of 1.377 Å between the exact parallel planes). The angle between the Co–N bond and the centroid of the triazole plane is 158.56°. The bond distances are comparable with those reported for similar complexes (Aghabozorg et al., 2008; Prasad & Rajasekharan, 2007; Colak et al., 2009). In the anionic complex, the CoII ion (Co1) is six-coordinated by two N (Co–N = 2.0273 (9) - 2.0308 (9) Å) and four O (Co–O = 2.1471 (7) - 2.2223 (7) Å) atoms of the two pyridine-2,6-dicarboxylate anions, exhibiting a slightly distorted octahedral coordination geometry where the mean plane of the two pyridine-2,6-dicarboxylate anions (maximum deviation = 0.0851 (9) Å at C7) are almost perpendicular to each other with a dihedral angle of 85.87 (2)°.In the crystal packing (Fig. 2), the molecules are linked into a three dimensional network via intermolecular C—H···O, C—H···N, O—H···O and N—H···O hydrogen bonds (Table 1).
An aqueous solution (10 ml) containing 0.5mmol (0.0496 g) of 3,5-diamino-1,2,4-triazole was added to a hot and stirring aqueous solution (20 ml) containing 1mmol (0.167 g) of pyridine-2,6-dicarboxylic acid and 1mmol (0.238 g) of CoCl2.6H2O. The resulting pink solution was stirred for 30 min and allowed to stand at room temperature. Crystals formed after 3 days but single crystals suitable for X-ray analysis were separated after one month.
N- and O- bound H atoms were located from the difference Fourier map and were refined freely [N—H = 0.79 (2) to 0.92 (2) Å; O—H = 0.79 (2) to 0.86 (2) Å]. The remaining H atoms were calculated geometrically and were refined using a riding model with Uiso = 1.2 Ueq(C), with the bond lengths of C–H being 0.95 Å.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. Atoms with suffix A were generated by the symmetry operation -x, -y, -z. | |
Fig. 2. Crystal packing of the title compound, showing the three-dimensional network. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. |
[Co(C2H6N5)2(H2O)4][Co(C7H3NO4)2]2·2H2O | F(000) = 1166 |
Mr = 1145.54 | Dx = 1.833 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1499 (2) Å | Cell parameters from 9904 reflections |
b = 10.8807 (2) Å | θ = 2.4–35.0° |
c = 26.6877 (6) Å | µ = 1.29 mm−1 |
β = 90.649 (1)° | T = 100 K |
V = 2076.06 (8) Å3 | Block, purple |
Z = 2 | 0.43 × 0.28 × 0.28 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 9081 independent reflections |
Radiation source: fine-focus sealed tube | 8203 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ϕ and ω scans | θmax = 35.1°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −9→11 |
Tmin = 0.607, Tmax = 0.718 | k = −17→17 |
35534 measured reflections | l = −42→41 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.024 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0314P)2 + 1.0292P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
9081 reflections | Δρmax = 0.56 e Å−3 |
370 parameters | Δρmin = −0.31 e Å−3 |
[Co(C2H6N5)2(H2O)4][Co(C7H3NO4)2]2·2H2O | V = 2076.06 (8) Å3 |
Mr = 1145.54 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.1499 (2) Å | µ = 1.29 mm−1 |
b = 10.8807 (2) Å | T = 100 K |
c = 26.6877 (6) Å | 0.43 × 0.28 × 0.28 mm |
β = 90.649 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 9081 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 8203 reflections with I > 2σ(I) |
Tmin = 0.607, Tmax = 0.718 | Rint = 0.021 |
35534 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.56 e Å−3 |
9081 reflections | Δρmin = −0.31 e Å−3 |
370 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.55162 (2) | 0.25891 (2) | 0.13399 (2) | 0.00894 (3) | |
Co2 | 0.0000 | 0.0000 | 0.0000 | 0.00821 (4) | |
O1 | 0.82104 (10) | 0.26153 (6) | 0.09788 (3) | 0.01282 (12) | |
O2 | 0.27767 (10) | 0.33471 (6) | 0.14695 (3) | 0.01253 (12) | |
O3 | 0.65732 (11) | 0.31798 (7) | 0.20566 (3) | 0.01412 (12) | |
O4 | 0.46908 (10) | 0.11281 (6) | 0.07992 (2) | 0.01164 (11) | |
O5 | 0.98594 (10) | 0.35876 (7) | 0.03895 (3) | 0.01370 (12) | |
O6 | 0.11089 (10) | 0.50933 (6) | 0.13722 (3) | 0.01255 (12) | |
O7 | 0.79218 (12) | 0.24719 (7) | 0.27668 (3) | 0.01834 (14) | |
O8 | 0.44182 (11) | −0.09334 (7) | 0.07506 (3) | 0.01482 (13) | |
N1 | 0.54987 (11) | 0.41617 (7) | 0.09324 (3) | 0.00998 (12) | |
N2 | 0.59941 (11) | 0.09926 (7) | 0.17147 (3) | 0.00943 (12) | |
N3 | −0.00429 (11) | −0.02963 (7) | 0.08158 (3) | 0.01012 (12) | |
N4 | 0.03927 (11) | 0.07247 (7) | 0.11156 (3) | 0.01056 (12) | |
N5 | 0.08642 (11) | −0.08746 (7) | 0.15824 (3) | 0.01057 (12) | |
N6 | 0.13643 (13) | 0.11292 (8) | 0.19445 (3) | 0.01373 (14) | |
N7 | −0.00180 (14) | −0.24234 (8) | 0.09908 (3) | 0.01487 (15) | |
C1 | 0.85009 (12) | 0.34939 (8) | 0.06704 (3) | 0.01023 (14) | |
C2 | 0.69856 (12) | 0.44549 (8) | 0.06584 (3) | 0.01026 (14) | |
C3 | 0.70679 (14) | 0.55422 (9) | 0.03875 (4) | 0.01333 (15) | |
H3A | 0.8119 | 0.5733 | 0.0187 | 0.016* | |
C4 | 0.55548 (15) | 0.63436 (9) | 0.04196 (4) | 0.01642 (17) | |
H4A | 0.5576 | 0.7105 | 0.0246 | 0.020* | |
C5 | 0.40079 (14) | 0.60293 (9) | 0.07070 (4) | 0.01499 (16) | |
H5A | 0.2967 | 0.6568 | 0.0730 | 0.018* | |
C6 | 0.40236 (13) | 0.49099 (8) | 0.09586 (3) | 0.01047 (14) | |
C7 | 0.24820 (12) | 0.44216 (8) | 0.12908 (3) | 0.00996 (13) | |
C8 | 0.71223 (13) | 0.23375 (9) | 0.23540 (3) | 0.01208 (15) | |
C9 | 0.67492 (13) | 0.10389 (8) | 0.21746 (3) | 0.01040 (14) | |
C10 | 0.71742 (14) | −0.00249 (9) | 0.24395 (3) | 0.01303 (15) | |
H10A | 0.7708 | 0.0016 | 0.2767 | 0.016* | |
C11 | 0.67989 (14) | −0.11541 (9) | 0.22139 (4) | 0.01395 (15) | |
H11A | 0.7070 | −0.1896 | 0.2388 | 0.017* | |
C12 | 0.60241 (13) | −0.11954 (8) | 0.17318 (3) | 0.01207 (15) | |
H12A | 0.5762 | −0.1957 | 0.1572 | 0.014* | |
C13 | 0.56501 (12) | −0.00872 (8) | 0.14938 (3) | 0.00955 (13) | |
C14 | 0.48503 (12) | 0.00302 (8) | 0.09707 (3) | 0.00989 (14) | |
C15 | 0.09005 (12) | 0.03737 (8) | 0.15732 (3) | 0.01009 (14) | |
C16 | 0.02562 (12) | −0.12445 (8) | 0.11143 (3) | 0.00985 (13) | |
O1W | 0.81160 (12) | 0.54803 (8) | 0.20623 (3) | 0.01822 (14) | |
O2W | 0.16935 (10) | 0.15580 (6) | 0.01259 (3) | 0.01110 (11) | |
O3W | −0.23235 (10) | 0.11122 (7) | 0.00395 (3) | 0.01179 (11) | |
H1N4 | −0.017 (2) | 0.1420 (17) | 0.1043 (6) | 0.024 (4)* | |
H1N5 | 0.124 (3) | −0.1360 (19) | 0.1831 (7) | 0.037 (5)* | |
H1N6 | 0.147 (2) | 0.1885 (17) | 0.1873 (7) | 0.026 (4)* | |
H2N6 | 0.151 (3) | 0.0852 (17) | 0.2268 (7) | 0.030 (5)* | |
H1N7 | −0.047 (3) | −0.2572 (17) | 0.0707 (8) | 0.030 (5)* | |
H2N7 | 0.024 (2) | −0.2988 (17) | 0.1167 (6) | 0.023 (4)* | |
H1W1 | 0.753 (3) | 0.482 (2) | 0.2054 (8) | 0.043 (6)* | |
H2W1 | 0.899 (3) | 0.5365 (19) | 0.1887 (8) | 0.038 (5)* | |
H1W2 | 0.113 (3) | 0.2197 (18) | 0.0235 (7) | 0.030 (5)* | |
H2W2 | 0.261 (3) | 0.1440 (18) | 0.0306 (7) | 0.032 (5)* | |
H1W3 | −0.295 (3) | 0.1150 (18) | 0.0282 (7) | 0.035 (5)* | |
H2W3 | −0.308 (3) | 0.1054 (18) | −0.0198 (7) | 0.033 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01044 (5) | 0.00761 (5) | 0.00876 (5) | 0.00044 (4) | 0.00033 (4) | 0.00075 (4) |
Co2 | 0.00864 (7) | 0.00831 (7) | 0.00767 (7) | 0.00067 (5) | −0.00032 (5) | 0.00030 (5) |
O1 | 0.0124 (3) | 0.0111 (3) | 0.0150 (3) | 0.0025 (2) | 0.0028 (2) | 0.0036 (2) |
O2 | 0.0126 (3) | 0.0105 (3) | 0.0145 (3) | 0.0007 (2) | 0.0027 (2) | 0.0029 (2) |
O3 | 0.0188 (3) | 0.0109 (3) | 0.0126 (3) | −0.0005 (2) | −0.0018 (2) | −0.0012 (2) |
O4 | 0.0143 (3) | 0.0100 (3) | 0.0106 (3) | 0.0002 (2) | −0.0021 (2) | 0.0011 (2) |
O5 | 0.0120 (3) | 0.0122 (3) | 0.0170 (3) | 0.0011 (2) | 0.0051 (2) | 0.0012 (2) |
O6 | 0.0118 (3) | 0.0128 (3) | 0.0132 (3) | 0.0027 (2) | 0.0025 (2) | 0.0001 (2) |
O7 | 0.0262 (4) | 0.0160 (3) | 0.0126 (3) | −0.0015 (3) | −0.0069 (3) | −0.0036 (2) |
O8 | 0.0184 (3) | 0.0113 (3) | 0.0146 (3) | 0.0006 (2) | −0.0057 (2) | −0.0035 (2) |
N1 | 0.0101 (3) | 0.0093 (3) | 0.0105 (3) | 0.0005 (2) | 0.0017 (2) | 0.0006 (2) |
N2 | 0.0102 (3) | 0.0097 (3) | 0.0084 (3) | −0.0006 (2) | −0.0005 (2) | −0.0002 (2) |
N3 | 0.0127 (3) | 0.0083 (3) | 0.0093 (3) | 0.0014 (2) | −0.0004 (2) | 0.0004 (2) |
N4 | 0.0143 (3) | 0.0086 (3) | 0.0088 (3) | 0.0013 (2) | −0.0007 (2) | 0.0005 (2) |
N5 | 0.0129 (3) | 0.0102 (3) | 0.0086 (3) | 0.0006 (2) | −0.0010 (2) | 0.0019 (2) |
N6 | 0.0190 (4) | 0.0125 (3) | 0.0097 (3) | −0.0029 (3) | −0.0009 (3) | −0.0002 (2) |
N7 | 0.0210 (4) | 0.0088 (3) | 0.0147 (3) | 0.0004 (3) | −0.0025 (3) | 0.0008 (3) |
C1 | 0.0099 (3) | 0.0093 (3) | 0.0116 (3) | 0.0001 (3) | 0.0004 (3) | −0.0006 (3) |
C2 | 0.0103 (3) | 0.0090 (3) | 0.0115 (3) | 0.0007 (3) | 0.0017 (3) | 0.0006 (3) |
C3 | 0.0135 (4) | 0.0095 (3) | 0.0170 (4) | 0.0003 (3) | 0.0046 (3) | 0.0027 (3) |
C4 | 0.0166 (4) | 0.0112 (4) | 0.0216 (4) | 0.0031 (3) | 0.0070 (3) | 0.0059 (3) |
C5 | 0.0146 (4) | 0.0107 (4) | 0.0198 (4) | 0.0032 (3) | 0.0058 (3) | 0.0040 (3) |
C6 | 0.0107 (3) | 0.0097 (3) | 0.0111 (3) | 0.0014 (3) | 0.0018 (3) | 0.0006 (3) |
C7 | 0.0104 (3) | 0.0104 (3) | 0.0091 (3) | −0.0003 (3) | 0.0007 (3) | −0.0002 (3) |
C8 | 0.0133 (4) | 0.0122 (4) | 0.0108 (3) | −0.0013 (3) | 0.0000 (3) | −0.0027 (3) |
C9 | 0.0116 (3) | 0.0115 (3) | 0.0081 (3) | −0.0011 (3) | −0.0007 (3) | −0.0006 (3) |
C10 | 0.0155 (4) | 0.0137 (4) | 0.0099 (3) | −0.0011 (3) | −0.0022 (3) | 0.0015 (3) |
C11 | 0.0172 (4) | 0.0117 (4) | 0.0129 (4) | −0.0004 (3) | −0.0024 (3) | 0.0037 (3) |
C12 | 0.0143 (4) | 0.0094 (3) | 0.0125 (3) | −0.0012 (3) | −0.0022 (3) | 0.0011 (3) |
C13 | 0.0101 (3) | 0.0094 (3) | 0.0091 (3) | −0.0010 (3) | −0.0009 (3) | 0.0000 (3) |
C14 | 0.0097 (3) | 0.0100 (3) | 0.0100 (3) | 0.0002 (3) | −0.0008 (3) | −0.0006 (3) |
C15 | 0.0103 (3) | 0.0110 (3) | 0.0090 (3) | 0.0005 (3) | 0.0008 (3) | 0.0012 (3) |
C16 | 0.0101 (3) | 0.0098 (3) | 0.0097 (3) | 0.0010 (3) | 0.0006 (3) | 0.0010 (3) |
O1W | 0.0221 (4) | 0.0180 (3) | 0.0146 (3) | −0.0055 (3) | 0.0041 (3) | −0.0028 (3) |
O2W | 0.0109 (3) | 0.0105 (3) | 0.0118 (3) | 0.0005 (2) | −0.0007 (2) | 0.0000 (2) |
O3W | 0.0110 (3) | 0.0155 (3) | 0.0088 (3) | 0.0026 (2) | −0.0005 (2) | −0.0011 (2) |
Co1—N1 | 2.0275 (8) | N6—C15 | 1.3269 (12) |
Co1—N2 | 2.0315 (8) | N6—H1N6 | 0.848 (19) |
Co1—O3 | 2.1471 (7) | N6—H2N6 | 0.921 (18) |
Co1—O2 | 2.1567 (7) | N7—C16 | 1.3383 (12) |
Co1—O1 | 2.1640 (7) | N7—H1N7 | 0.84 (2) |
Co1—O4 | 2.2223 (7) | N7—H2N7 | 0.795 (18) |
Co2—O3W | 2.0590 (7) | C1—C2 | 1.5058 (13) |
Co2—O3Wi | 2.0590 (7) | C2—C3 | 1.3880 (13) |
Co2—O2Wi | 2.1080 (7) | C3—C4 | 1.3929 (14) |
Co2—O2W | 2.1080 (7) | C3—H3A | 0.9500 |
Co2—N3i | 2.2015 (7) | C4—C5 | 1.3957 (13) |
Co2—N3 | 2.2016 (7) | C4—H4A | 0.9500 |
O1—C1 | 1.2800 (11) | C5—C6 | 1.3908 (13) |
O2—C7 | 1.2792 (11) | C5—H5A | 0.9500 |
O3—C8 | 1.2715 (12) | C6—C7 | 1.5183 (12) |
O4—C14 | 1.2840 (11) | C8—C9 | 1.5146 (13) |
O5—C1 | 1.2378 (11) | C9—C10 | 1.3881 (13) |
O6—C7 | 1.2451 (11) | C10—C11 | 1.3928 (14) |
O7—C8 | 1.2440 (11) | C10—H10A | 0.9500 |
O8—C14 | 1.2392 (11) | C11—C12 | 1.3959 (13) |
N1—C6 | 1.3347 (12) | C11—H11A | 0.9500 |
N1—C2 | 1.3358 (11) | C12—C13 | 1.3873 (12) |
N2—C13 | 1.3361 (11) | C12—H12A | 0.9500 |
N2—C9 | 1.3363 (11) | C13—C14 | 1.5080 (12) |
N3—C16 | 1.3194 (11) | O1W—H1W1 | 0.83 (2) |
N3—N4 | 1.4020 (11) | O1W—H2W1 | 0.79 (2) |
N4—C15 | 1.3261 (11) | O2W—H1W2 | 0.86 (2) |
N4—H1N4 | 0.877 (18) | O2W—H2W2 | 0.817 (19) |
N5—C15 | 1.3587 (12) | O3W—H1W3 | 0.79 (2) |
N5—C16 | 1.3781 (12) | O3W—H2W3 | 0.830 (19) |
N5—H1N5 | 0.89 (2) | ||
N1—Co1—N2 | 170.32 (3) | O5—C1—O1 | 125.80 (9) |
N1—Co1—O3 | 103.02 (3) | O5—C1—C2 | 119.95 (8) |
N2—Co1—O3 | 76.22 (3) | O1—C1—C2 | 114.23 (8) |
N1—Co1—O2 | 76.30 (3) | N1—C2—C3 | 121.83 (8) |
N2—Co1—O2 | 113.33 (3) | N1—C2—C1 | 113.54 (8) |
O3—Co1—O2 | 93.09 (3) | C3—C2—C1 | 124.62 (8) |
N1—Co1—O1 | 75.53 (3) | C2—C3—C4 | 117.64 (8) |
N2—Co1—O1 | 94.87 (3) | C2—C3—H3A | 121.2 |
O3—Co1—O1 | 94.97 (3) | C4—C3—H3A | 121.2 |
O2—Co1—O1 | 151.77 (3) | C3—C4—C5 | 120.09 (9) |
N1—Co1—O4 | 104.80 (3) | C3—C4—H4A | 120.0 |
N2—Co1—O4 | 75.52 (3) | C5—C4—H4A | 120.0 |
O3—Co1—O4 | 151.74 (3) | C6—C5—C4 | 118.54 (9) |
O2—Co1—O4 | 98.20 (3) | C6—C5—H5A | 120.7 |
O1—Co1—O4 | 87.21 (3) | C4—C5—H5A | 120.7 |
O3W—Co2—O3Wi | 180.0 | N1—C6—C5 | 120.72 (8) |
O3W—Co2—O2Wi | 91.06 (3) | N1—C6—C7 | 113.36 (8) |
O3Wi—Co2—O2Wi | 88.94 (3) | C5—C6—C7 | 125.90 (8) |
O3W—Co2—O2W | 88.94 (3) | O6—C7—O2 | 126.75 (8) |
O3Wi—Co2—O2W | 91.06 (3) | O6—C7—C6 | 118.39 (8) |
O2Wi—Co2—O2W | 180.0 | O2—C7—C6 | 114.83 (8) |
O3W—Co2—N3i | 89.13 (3) | O7—C8—O3 | 127.12 (9) |
O3Wi—Co2—N3i | 90.87 (3) | O7—C8—C9 | 117.84 (8) |
O2Wi—Co2—N3i | 88.54 (3) | O3—C8—C9 | 115.04 (8) |
O2W—Co2—N3i | 91.46 (3) | N2—C9—C10 | 121.34 (8) |
O3W—Co2—N3 | 90.87 (3) | N2—C9—C8 | 113.16 (8) |
O3Wi—Co2—N3 | 89.13 (3) | C10—C9—C8 | 125.47 (8) |
O2Wi—Co2—N3 | 91.46 (3) | C9—C10—C11 | 118.39 (8) |
O2W—Co2—N3 | 88.54 (3) | C9—C10—H10A | 120.8 |
N3i—Co2—N3 | 180.0 | C11—C10—H10A | 120.8 |
C1—O1—Co1 | 116.61 (6) | C10—C11—C12 | 119.95 (8) |
C7—O2—Co1 | 115.83 (6) | C10—C11—H11A | 120.0 |
C8—O3—Co1 | 116.32 (6) | C12—C11—H11A | 120.0 |
C14—O4—Co1 | 114.34 (6) | C13—C12—C11 | 117.80 (8) |
C6—N1—C2 | 121.15 (8) | C13—C12—H12A | 121.1 |
C6—N1—Co1 | 119.12 (6) | C11—C12—H12A | 121.1 |
C2—N1—Co1 | 119.68 (6) | N2—C13—C12 | 121.93 (8) |
C13—N2—C9 | 120.58 (8) | N2—C13—C14 | 113.57 (7) |
C13—N2—Co1 | 120.38 (6) | C12—C13—C14 | 124.50 (8) |
C9—N2—Co1 | 118.95 (6) | O8—C14—O4 | 126.69 (8) |
C16—N3—N4 | 103.98 (7) | O8—C14—C13 | 117.20 (8) |
C16—N3—Co2 | 135.05 (6) | O4—C14—C13 | 116.11 (8) |
N4—N3—Co2 | 116.28 (5) | N4—C15—N6 | 124.95 (9) |
C15—N4—N3 | 110.73 (7) | N4—C15—N5 | 107.43 (8) |
C15—N4—H1N4 | 124.9 (11) | N6—C15—N5 | 127.62 (8) |
N3—N4—H1N4 | 117.3 (11) | N3—C16—N7 | 125.34 (8) |
C15—N5—C16 | 106.34 (7) | N3—C16—N5 | 111.49 (8) |
C15—N5—H1N5 | 127.1 (13) | N7—C16—N5 | 123.16 (8) |
C16—N5—H1N5 | 126.4 (13) | H1W1—O1W—H2W1 | 104 (2) |
C15—N6—H1N6 | 117.0 (12) | Co2—O2W—H1W2 | 115.8 (13) |
C15—N6—H2N6 | 121.6 (12) | Co2—O2W—H2W2 | 115.0 (14) |
H1N6—N6—H2N6 | 121.3 (17) | H1W2—O2W—H2W2 | 107.6 (18) |
C16—N7—H1N7 | 117.6 (13) | Co2—O3W—H1W3 | 122.4 (14) |
C16—N7—H2N7 | 124.3 (13) | Co2—O3W—H2W3 | 115.8 (13) |
H1N7—N7—H2N7 | 118.2 (18) | H1W3—O3W—H2W3 | 104.9 (18) |
C16—N3—N4—C15 | −0.82 (10) | C13—N2—C9—C8 | 177.27 (8) |
Co2—N3—N4—C15 | −160.26 (6) | Co1—N2—C9—C8 | 0.78 (10) |
Co1—O1—C1—O5 | −171.62 (7) | O7—C8—C9—N2 | −176.02 (9) |
Co1—O1—C1—C2 | 7.05 (10) | O3—C8—C9—N2 | 3.74 (12) |
C6—N1—C2—C3 | −0.26 (14) | O7—C8—C9—C10 | 2.07 (14) |
Co1—N1—C2—C3 | −177.65 (7) | O3—C8—C9—C10 | −178.16 (9) |
C6—N1—C2—C1 | −179.43 (8) | N2—C9—C10—C11 | 0.15 (14) |
Co1—N1—C2—C1 | 3.18 (10) | C8—C9—C10—C11 | −177.80 (9) |
O5—C1—C2—N1 | 172.01 (8) | C9—C10—C11—C12 | 0.38 (14) |
O1—C1—C2—N1 | −6.75 (12) | C10—C11—C12—C13 | −0.15 (14) |
O5—C1—C2—C3 | −7.13 (14) | C9—N2—C13—C12 | 1.16 (13) |
O1—C1—C2—C3 | 174.11 (9) | Co1—N2—C13—C12 | 177.60 (7) |
N1—C2—C3—C4 | 1.55 (15) | C9—N2—C13—C14 | −178.31 (8) |
C1—C2—C3—C4 | −179.38 (9) | Co1—N2—C13—C14 | −1.88 (10) |
C2—C3—C4—C5 | −1.50 (16) | C11—C12—C13—N2 | −0.62 (14) |
C3—C4—C5—C6 | 0.24 (16) | C11—C12—C13—C14 | 178.80 (9) |
C2—N1—C6—C5 | −1.10 (14) | Co1—O4—C14—O8 | 177.20 (8) |
Co1—N1—C6—C5 | 176.31 (7) | Co1—O4—C14—C13 | −2.90 (10) |
C2—N1—C6—C7 | −179.62 (8) | N2—C13—C14—O8 | −176.90 (8) |
Co1—N1—C6—C7 | −2.21 (10) | C12—C13—C14—O8 | 3.64 (14) |
C4—C5—C6—N1 | 1.09 (15) | N2—C13—C14—O4 | 3.20 (12) |
C4—C5—C6—C7 | 179.41 (9) | C12—C13—C14—O4 | −176.26 (9) |
Co1—O2—C7—O6 | −170.41 (8) | N3—N4—C15—N6 | −178.78 (9) |
Co1—O2—C7—C6 | 7.75 (10) | N3—N4—C15—N5 | 1.67 (10) |
N1—C6—C7—O6 | 174.41 (8) | C16—N5—C15—N4 | −1.82 (10) |
C5—C6—C7—O6 | −4.03 (14) | C16—N5—C15—N6 | 178.65 (9) |
N1—C6—C7—O2 | −3.91 (11) | N4—N3—C16—N7 | 178.47 (9) |
C5—C6—C7—O2 | 177.65 (9) | Co2—N3—C16—N7 | −27.99 (15) |
Co1—O3—C8—O7 | 173.50 (9) | N4—N3—C16—N5 | −0.36 (10) |
Co1—O3—C8—C9 | −6.24 (10) | Co2—N3—C16—N5 | 153.18 (7) |
C13—N2—C9—C10 | −0.92 (13) | C15—N5—C16—N3 | 1.37 (10) |
Co1—N2—C9—C10 | −177.40 (7) | C15—N5—C16—N7 | −177.50 (9) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H1N4···O1ii | 0.88 (2) | 1.74 (2) | 2.6044 (12) | 165 (2) |
N5—H1N5···O7iii | 0.89 (2) | 1.77 (2) | 2.6402 (12) | 169 (2) |
N6—H1N6···O2 | 0.84 (2) | 2.15 (2) | 2.9117 (12) | 151.1 (19) |
N6—H2N6···O1Wiii | 0.92 (2) | 1.85 (2) | 2.7645 (12) | 173.6 (19) |
N7—H2N7···O6iv | 0.80 (2) | 2.24 (2) | 2.9956 (13) | 158.4 (18) |
O1W—H1W1···O3 | 0.83 (2) | 1.90 (2) | 2.7354 (13) | 171 (3) |
O1W—H2W1···O6v | 0.79 (2) | 2.09 (2) | 2.8711 (12) | 175 (2) |
O2W—H1W2···O5ii | 0.86 (2) | 1.80 (2) | 2.6666 (11) | 173 (2) |
O2W—H2W2···O4 | 0.82 (2) | 2.00 (2) | 2.8206 (11) | 175 (2) |
O3W—H1W3···O4ii | 0.79 (2) | 2.19 (2) | 2.9602 (11) | 163 (2) |
O3W—H2W3···O8i | 0.83 (2) | 1.76 (2) | 2.5795 (11) | 173 (2) |
C3—H3A···O5vi | 0.95 | 2.25 | 3.1816 (13) | 167 |
C5—H5A···N7vii | 0.95 | 2.50 | 3.4265 (15) | 164 |
C10—H10A···O6iii | 0.95 | 2.44 | 3.3898 (13) | 177 |
Symmetry codes: (i) −x, −y, −z; (ii) x−1, y, z; (iii) −x+1, y−1/2, −z+1/2; (iv) x, y−1, z; (v) x+1, y, z; (vi) −x+2, −y+1, −z; (vii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H1N4···O1i | 0.88 (2) | 1.74 (2) | 2.6044 (12) | 165 (2) |
N5—H1N5···O7ii | 0.89 (2) | 1.77 (2) | 2.6402 (12) | 169 (2) |
N6—H1N6···O2 | 0.84 (2) | 2.15 (2) | 2.9117 (12) | 151.1 (19) |
N6—H2N6···O1Wii | 0.92 (2) | 1.85 (2) | 2.7645 (12) | 173.6 (19) |
N7—H2N7···O6iii | 0.80 (2) | 2.24 (2) | 2.9956 (13) | 158.4 (18) |
O1W—H1W1···O3 | 0.83 (2) | 1.90 (2) | 2.7354 (13) | 171 (3) |
O1W—H2W1···O6iv | 0.79 (2) | 2.09 (2) | 2.8711 (12) | 175 (2) |
O2W—H1W2···O5i | 0.86 (2) | 1.80 (2) | 2.6666 (11) | 173 (2) |
O2W—H2W2···O4 | 0.82 (2) | 2.00 (2) | 2.8206 (11) | 175 (2) |
O3W—H1W3···O4i | 0.79 (2) | 2.19 (2) | 2.9602 (11) | 163 (2) |
O3W—H2W3···O8v | 0.83 (2) | 1.76 (2) | 2.5795 (11) | 173 (2) |
C3—H3A···O5vi | 0.9500 | 2.2500 | 3.1816 (13) | 167.00 |
C5—H5A···N7vii | 0.9500 | 2.5000 | 3.4265 (15) | 164.00 |
C10—H10A···O6ii | 0.9500 | 2.4400 | 3.3898 (13) | 177.00 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) x, y−1, z; (iv) x+1, y, z; (v) −x, −y, −z; (vi) −x+2, −y+1, −z; (vii) x, y+1, z. |
Acknowledgements
The authors extend their appreciation to The Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP VPP-207. WSL thanks the Malaysian Government for a MyBrain15 (MyPhD) scholarship. AJ thanks the Academy of Science for the Developing World (TWAS) for the award of a Research and Advanced Training Fellowship. AJ and ZH thank the H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan, for providing research facilities.
References
Aghabozorg, H., Ghadermazi, M., Zabihi, F., Nakhjavan, B., Soleimannejad, J., Sadr-khanlou, E. & Moghimi, A. (2008). J. Chem. Crystallogr. 38, 645–654. Web of Science CSD CrossRef CAS Google Scholar
Aghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Ghaedi, M. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 55–70. CrossRef CAS Google Scholar
Aghajani, Z., Aghabozorg, H., Sadr-Khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 373–385. CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Håkansson, K., Lindahl, M., Svensson, G. & Albertsson, J. (1993). Acta Chem. Scand. 47, 449–455. Google Scholar
MacDonald, J. C., Luo, T. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 4, 1203–1209. CSD CrossRef CAS Google Scholar
Moghimi, A., Moosavi, S. M., Kordestani, D., Maddah, B., Shamsipur, M., Aghabozorg, H., Ramezanipour, F. & Kickelbick, G. (2007). J. Mol. Struct. 828, 38–45. CSD CrossRef CAS Google Scholar
Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadha, R. K. (2002). Can. J. Chem. 80, 1687–1696. Web of Science CSD CrossRef CAS Google Scholar
Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902–908. Web of Science CSD CrossRef CAS Google Scholar
Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 305–307. CSD CrossRef CAS IUCr Journals Google Scholar
Pasdar, H., Ebdam, A., Aghabozorg, H. & Notash, B. (2011). Acta Cryst. E67, m294. CSD CrossRef IUCr Journals Google Scholar
Ramos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173–m1174. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, L., Wang, Z. & Wang, E. (2004). J. Coord. Chem. 57, 1353–1359. Web of Science CSD CrossRef CAS Google Scholar
Yousuf, S., Johnson, A. S., Kazmi, S. A., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, m1105–m1106. CSD CrossRef IUCr Journals Google Scholar
Yousuf, S., Johnson, A. S., Kazmi, S. A., Offiong, O. E. & Fun, H.-K. (2011a). Acta Cryst. E67, m509–m510. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.