metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages m139-m140

Crystal structure of tetra­aqua­bis­(3,5-di­amino-4H-1,2,4-triazol-1-ium)cobalt(II) bis­­[bis­­(pyridine-2,6-di­carboxyl­ato)cobaltate(II)] dihydrate

aH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75720, Pakistan, bDepartment of Chemistry, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State, Nigeria, cDepartment of Chemistry, Federal University of Petroleum Recourses Effurun, Delta State, Nigeria, dDepartment of Chemistry, Karakoram International University, Gilgit, Baltistan, Pakistan, eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and fDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia
*Correspondence e-mail: hfun.c@ksu.edu.sa

Edited by M. Zeller, Youngstown State University, USA (Received 20 April 2015; accepted 23 May 2015; online 30 May 2015)

The asymmetric unit of the title compound, [Co(C2H6N5)2(H2O)4][Co(C7H3NO4)2]2·2H2O, features 1.5 CoII ions (one anionic complex and one half cationic complex) and one water mol­ecule. In the cationic complex, the CoII atom is located on an inversion centre and is coordinated by two triazolium cations and four water mol­ecules, adopting an octa­hedral geometry where the N atoms of the two triazolium cations occupy the axial positions and the O atoms of the four water mol­ecules the equatorial positions. The two triazole ligands are parallel offset (with a distance of 1.38 Å between their planes). In the anionic complex, the CoII ion is six-coordinated by two N and four O atoms of the two pyridine-2,6-di­carboxyl­ate anions, exhibiting a slightly distorted octa­hedral coordination geometry in which the mean plane of the two pyridine-2,6-di­carboxyl­ate anions are almost perpendicular to each other, making a dihedral angle of 85.87 (2)°. In the crystal, mol­ecules are linked into a three-dimensional network via C—H⋯O, C—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds.

1. Related literature

For the different coordination modes of transition metal–dipicolinate complexes, see: Håkansson et al. (1993[Håkansson, K., Lindahl, M., Svensson, G. & Albertsson, J. (1993). Acta Chem. Scand. 47, 449-455.]); Okabe & Oya (2000[Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 305-307.]); Aghajani et al. (2009[Aghajani, Z., Aghabozorg, H., Sadr-Khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 373-385.]). For crystal structures of related complexes, see: Yousuf et al. (2011a[Yousuf, S., Johnson, A. S., Kazmi, S. A., Offiong, O. E. & Fun, H.-K. (2011a). Acta Cryst. E67, m509-m510.],b[Yousuf, S., Johnson, A. S., Kazmi, S. A., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, m1105-m1106.]); Aghabozorg et al. (2009[Aghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Ghaedi, M. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 55-70.]); Ramos Silva et al. (2008[Ramos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173-m1174.]); Wang et al. (2004[Wang, L., Wang, Z. & Wang, E. (2004). J. Coord. Chem. 57, 1353-1359.]); MacDonald et al. (2004[MacDonald, J. C., Luo, T. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 4, 1203-1209.]). For studies on proton transfer from carb­oxy­lic acids to both heterocyclic and substituted amine N atoms, see: Aghabozorg et al. (2008[Aghabozorg, H., Ghadermazi, M., Zabihi, F., Nakhjavan, B., Soleimannejad, J., Sadr-khanlou, E. & Moghimi, A. (2008). J. Chem. Crystallogr. 38, 645-654.]); Moghimi et al. (2002[Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadha, R. K. (2002). Can. J. Chem. 80, 1687-1696.], 2005[Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902-908.], 2007[Moghimi, A., Moosavi, S. M., Kordestani, D., Maddah, B., Shamsipur, M., Aghabozorg, H., Ramezanipour, F. & Kickelbick, G. (2007). J. Mol. Struct. 828, 38-45.]); Pasdar et al. (2011[Pasdar, H., Ebdam, A., Aghabozorg, H. & Notash, B. (2011). Acta Cryst. E67, m294.]); Tabatabaee et al. (2009[Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473-m474.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co(C2H6N5)2(H2O)4][Co(C7H3NO4)2]2·2H2O

  • Mr = 1145.54

  • Monoclinic, P 21 /c

  • a = 7.1499 (2) Å

  • b = 10.8807 (2) Å

  • c = 26.6877 (6) Å

  • β = 90.649 (1)°

  • V = 2076.06 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 100 K

  • 0.43 × 0.28 × 0.28 mm

2.2. Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.607, Tmax = 0.718

  • 35534 measured reflections

  • 9081 independent reflections

  • 8203 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.068

  • S = 1.05

  • 9081 reflections

  • 370 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯O1i 0.88 (2) 1.74 (2) 2.6044 (12) 165 (2)
N5—H1N5⋯O7ii 0.89 (2) 1.77 (2) 2.6402 (12) 169 (2)
N6—H1N6⋯O2 0.84 (2) 2.15 (2) 2.9117 (12) 151.1 (19)
N6—H2N6⋯O1Wii 0.92 (2) 1.85 (2) 2.7645 (12) 173.6 (19)
N7—H2N7⋯O6iii 0.80 (2) 2.24 (2) 2.9956 (13) 158.4 (18)
O1W—H1W1⋯O3 0.83 (2) 1.90 (2) 2.7354 (13) 171 (3)
O1W—H2W1⋯O6iv 0.79 (2) 2.09 (2) 2.8711 (12) 175 (2)
O2W—H1W2⋯O5i 0.86 (2) 1.80 (2) 2.6666 (11) 173 (2)
O2W—H2W2⋯O4 0.82 (2) 2.00 (2) 2.8206 (11) 175 (2)
O3W—H1W3⋯O4i 0.79 (2) 2.19 (2) 2.9602 (11) 163 (2)
O3W—H2W3⋯O8v 0.83 (2) 1.76 (2) 2.5795 (11) 173 (2)
C3—H3A⋯O5vi 0.95 2.25 3.1816 (13) 167
C5—H5A⋯N7vii 0.95 2.50 3.4265 (15) 164
C10—H10A⋯O6ii 0.95 2.44 3.3898 (13) 177
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) x+1, y, z; (v) -x, -y, -z; (vi) -x+2, -y+1, -z; (vii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Among different multidentate species, compounds bearing carboxyl­ate functions are widely studied ligands for producing stable transition metals coordination polymers and supra­molecular architectures, mostly because of the versatile ligating abilities of the -COO moieties and also due to the enhanced affinity of these metal ions towards such O donors. There have been a number of successful attempts at utilizing proton transfer from carb­oxy­lic acids to both heterocyclic and substituted amine nitro­gens (Moghimi et al., 2002; Moghimi et al., 2005; Moghimi et al., 2007; Aghabozorg et al., 2008; Aghabozorg et al., 2009; Tabatabaee et al., 2009, Pasdar et al., 2011, Yousuf et al., 2011b). Di­carb­oxy­lic acids possess a good potential to be used as proton donors in the synthesis of proton transfer compounds. In continuation of our work, we report herein the trinuclear complex of CoII with pyridine-2,6-di­carb­oxy­lic acid as proton donor and 3,5-di­amino-1,2,4-triazole as proton acceptor.

Structural commentary top

The asymmetric unit consits of half whole repeating unit of the title compound (Fig. 1) and is composed of 1.5 CoII ions (one anionic complex and one half cationic complex) and one water molecule. In the cationic complex, the CoII atom (Co2) is located on an inversion centre and is coordinated by two triazolium cations and four water molecules, adopting an o­cta­hedral geometry where the N atoms of the two triazolium cations (N3 & N3A) occupy the axial positions (Co–N = 2.2016 (7) Å) and the O atoms of the four water molecules (O2W, O2WA, O3W & O3WA) occupy the equatorial positions (Co–O = 2.0590 (7) - 2.1080 (7) Å). Atoms with suffix A were generated by the symmetry operation -x, -y, -z. The two triazole ligands are parallel offset (with a distance of 1.377 Å between the exact parallel planes). The angle between the Co–N bond and the centroid of the triazole plane is 158.56°. The bond distances are comparable with those reported for similar complexes (Aghabozorg et al., 2008; Prasad & Rajasekharan, 2007; Colak et al., 2009). In the anionic complex, the CoII ion (Co1) is six-coordinated by two N (Co–N = 2.0273 (9) - 2.0308 (9) Å) and four O (Co–O = 2.1471 (7) - 2.2223 (7) Å) atoms of the two pyridine-2,6-di­carboxyl­ate anions, exhibiting a slightly distorted o­cta­hedral coordination geometry where the mean plane of the two pyridine-2,6-di­carboxyl­ate anions (maximum deviation = 0.0851 (9) Å at C7) are almost perpendicular to each other with a dihedral angle of 85.87 (2)°.

Supra­molecular features top

In the crystal packing (Fig. 2), the molecules are linked into a three dimensional network via inter­molecular C—H···O, C—H···N, O—H···O and N—H···O hydrogen bonds (Table 1).

Synthesis and crystallization top

An aqueous solution (10 ml) containing 0.5mmol (0.0496 g) of 3,5-di­amino-1,2,4-triazole was added to a hot and stirring aqueous solution (20 ml) containing 1mmol (0.167 g) of pyridine-2,6-di­carb­oxy­lic acid and 1mmol (0.238 g) of CoCl2.6H2O. The resulting pink solution was stirred for 30 min and allowed to stand at room temperature. Crystals formed after 3 days but single crystals suitable for X-ray analysis were separated after one month.

Refinement details top

N- and O- bound H atoms were located from the difference Fourier map and were refined freely [N—H = 0.79 (2) to 0.92 (2) Å; O—H = 0.79 (2) to 0.86 (2) Å]. The remaining H atoms were calculated geometrically and were refined using a riding model with Uiso = 1.2 Ueq(C), with the bond lengths of C–H being 0.95 Å.

Related literature top

For the different coordination modes of transition metal–dipicolinate complexes, see: Håkansson et al. (1993); Okabe & Oya (2000); Aghajani et al. (2009). For crystal structures of related complexes, see: Yousuf et al. (2011a,b); Aghabozorg et al. (2009); Ramos Silva et al. (2008); Wang et al. (2004); MacDonald et al. (2004). For studies on proton transfer from carboxylic acids to both heterocyclic and substituted amine N atoms, see: Aghabozorg et al. (2008); Moghimi et al. (2002, 2005, 2007); Pasdar et al. (2011); Tabatabaee et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. Atoms with suffix A were generated by the symmetry operation -x, -y, -z.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the three-dimensional network. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Tetraaquabis(3,5-diamino-4H-1,2,4-triazol-1-ium)cobalt(II) bis[bis(pyridine-2,6-dicarboxylato)cobaltate(II)] dihydrate top
Crystal data top
[Co(C2H6N5)2(H2O)4][Co(C7H3NO4)2]2·2H2OF(000) = 1166
Mr = 1145.54Dx = 1.833 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1499 (2) ÅCell parameters from 9904 reflections
b = 10.8807 (2) Åθ = 2.4–35.0°
c = 26.6877 (6) ŵ = 1.29 mm1
β = 90.649 (1)°T = 100 K
V = 2076.06 (8) Å3Block, purple
Z = 20.43 × 0.28 × 0.28 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9081 independent reflections
Radiation source: fine-focus sealed tube8203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 35.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 911
Tmin = 0.607, Tmax = 0.718k = 1717
35534 measured reflectionsl = 4241
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0314P)2 + 1.0292P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
9081 reflectionsΔρmax = 0.56 e Å3
370 parametersΔρmin = 0.31 e Å3
Crystal data top
[Co(C2H6N5)2(H2O)4][Co(C7H3NO4)2]2·2H2OV = 2076.06 (8) Å3
Mr = 1145.54Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.1499 (2) ŵ = 1.29 mm1
b = 10.8807 (2) ÅT = 100 K
c = 26.6877 (6) Å0.43 × 0.28 × 0.28 mm
β = 90.649 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9081 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8203 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 0.718Rint = 0.021
35534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.56 e Å3
9081 reflectionsΔρmin = 0.31 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.55162 (2)0.25891 (2)0.13399 (2)0.00894 (3)
Co20.00000.00000.00000.00821 (4)
O10.82104 (10)0.26153 (6)0.09788 (3)0.01282 (12)
O20.27767 (10)0.33471 (6)0.14695 (3)0.01253 (12)
O30.65732 (11)0.31798 (7)0.20566 (3)0.01412 (12)
O40.46908 (10)0.11281 (6)0.07992 (2)0.01164 (11)
O50.98594 (10)0.35876 (7)0.03895 (3)0.01370 (12)
O60.11089 (10)0.50933 (6)0.13722 (3)0.01255 (12)
O70.79218 (12)0.24719 (7)0.27668 (3)0.01834 (14)
O80.44182 (11)0.09334 (7)0.07506 (3)0.01482 (13)
N10.54987 (11)0.41617 (7)0.09324 (3)0.00998 (12)
N20.59941 (11)0.09926 (7)0.17147 (3)0.00943 (12)
N30.00429 (11)0.02963 (7)0.08158 (3)0.01012 (12)
N40.03927 (11)0.07247 (7)0.11156 (3)0.01056 (12)
N50.08642 (11)0.08746 (7)0.15824 (3)0.01057 (12)
N60.13643 (13)0.11292 (8)0.19445 (3)0.01373 (14)
N70.00180 (14)0.24234 (8)0.09908 (3)0.01487 (15)
C10.85009 (12)0.34939 (8)0.06704 (3)0.01023 (14)
C20.69856 (12)0.44549 (8)0.06584 (3)0.01026 (14)
C30.70679 (14)0.55422 (9)0.03875 (4)0.01333 (15)
H3A0.81190.57330.01870.016*
C40.55548 (15)0.63436 (9)0.04196 (4)0.01642 (17)
H4A0.55760.71050.02460.020*
C50.40079 (14)0.60293 (9)0.07070 (4)0.01499 (16)
H5A0.29670.65680.07300.018*
C60.40236 (13)0.49099 (8)0.09586 (3)0.01047 (14)
C70.24820 (12)0.44216 (8)0.12908 (3)0.00996 (13)
C80.71223 (13)0.23375 (9)0.23540 (3)0.01208 (15)
C90.67492 (13)0.10389 (8)0.21746 (3)0.01040 (14)
C100.71742 (14)0.00249 (9)0.24395 (3)0.01303 (15)
H10A0.77080.00160.27670.016*
C110.67989 (14)0.11541 (9)0.22139 (4)0.01395 (15)
H11A0.70700.18960.23880.017*
C120.60241 (13)0.11954 (8)0.17318 (3)0.01207 (15)
H12A0.57620.19570.15720.014*
C130.56501 (12)0.00872 (8)0.14938 (3)0.00955 (13)
C140.48503 (12)0.00302 (8)0.09707 (3)0.00989 (14)
C150.09005 (12)0.03737 (8)0.15732 (3)0.01009 (14)
C160.02562 (12)0.12445 (8)0.11143 (3)0.00985 (13)
O1W0.81160 (12)0.54803 (8)0.20623 (3)0.01822 (14)
O2W0.16935 (10)0.15580 (6)0.01259 (3)0.01110 (11)
O3W0.23235 (10)0.11122 (7)0.00395 (3)0.01179 (11)
H1N40.017 (2)0.1420 (17)0.1043 (6)0.024 (4)*
H1N50.124 (3)0.1360 (19)0.1831 (7)0.037 (5)*
H1N60.147 (2)0.1885 (17)0.1873 (7)0.026 (4)*
H2N60.151 (3)0.0852 (17)0.2268 (7)0.030 (5)*
H1N70.047 (3)0.2572 (17)0.0707 (8)0.030 (5)*
H2N70.024 (2)0.2988 (17)0.1167 (6)0.023 (4)*
H1W10.753 (3)0.482 (2)0.2054 (8)0.043 (6)*
H2W10.899 (3)0.5365 (19)0.1887 (8)0.038 (5)*
H1W20.113 (3)0.2197 (18)0.0235 (7)0.030 (5)*
H2W20.261 (3)0.1440 (18)0.0306 (7)0.032 (5)*
H1W30.295 (3)0.1150 (18)0.0282 (7)0.035 (5)*
H2W30.308 (3)0.1054 (18)0.0198 (7)0.033 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01044 (5)0.00761 (5)0.00876 (5)0.00044 (4)0.00033 (4)0.00075 (4)
Co20.00864 (7)0.00831 (7)0.00767 (7)0.00067 (5)0.00032 (5)0.00030 (5)
O10.0124 (3)0.0111 (3)0.0150 (3)0.0025 (2)0.0028 (2)0.0036 (2)
O20.0126 (3)0.0105 (3)0.0145 (3)0.0007 (2)0.0027 (2)0.0029 (2)
O30.0188 (3)0.0109 (3)0.0126 (3)0.0005 (2)0.0018 (2)0.0012 (2)
O40.0143 (3)0.0100 (3)0.0106 (3)0.0002 (2)0.0021 (2)0.0011 (2)
O50.0120 (3)0.0122 (3)0.0170 (3)0.0011 (2)0.0051 (2)0.0012 (2)
O60.0118 (3)0.0128 (3)0.0132 (3)0.0027 (2)0.0025 (2)0.0001 (2)
O70.0262 (4)0.0160 (3)0.0126 (3)0.0015 (3)0.0069 (3)0.0036 (2)
O80.0184 (3)0.0113 (3)0.0146 (3)0.0006 (2)0.0057 (2)0.0035 (2)
N10.0101 (3)0.0093 (3)0.0105 (3)0.0005 (2)0.0017 (2)0.0006 (2)
N20.0102 (3)0.0097 (3)0.0084 (3)0.0006 (2)0.0005 (2)0.0002 (2)
N30.0127 (3)0.0083 (3)0.0093 (3)0.0014 (2)0.0004 (2)0.0004 (2)
N40.0143 (3)0.0086 (3)0.0088 (3)0.0013 (2)0.0007 (2)0.0005 (2)
N50.0129 (3)0.0102 (3)0.0086 (3)0.0006 (2)0.0010 (2)0.0019 (2)
N60.0190 (4)0.0125 (3)0.0097 (3)0.0029 (3)0.0009 (3)0.0002 (2)
N70.0210 (4)0.0088 (3)0.0147 (3)0.0004 (3)0.0025 (3)0.0008 (3)
C10.0099 (3)0.0093 (3)0.0116 (3)0.0001 (3)0.0004 (3)0.0006 (3)
C20.0103 (3)0.0090 (3)0.0115 (3)0.0007 (3)0.0017 (3)0.0006 (3)
C30.0135 (4)0.0095 (3)0.0170 (4)0.0003 (3)0.0046 (3)0.0027 (3)
C40.0166 (4)0.0112 (4)0.0216 (4)0.0031 (3)0.0070 (3)0.0059 (3)
C50.0146 (4)0.0107 (4)0.0198 (4)0.0032 (3)0.0058 (3)0.0040 (3)
C60.0107 (3)0.0097 (3)0.0111 (3)0.0014 (3)0.0018 (3)0.0006 (3)
C70.0104 (3)0.0104 (3)0.0091 (3)0.0003 (3)0.0007 (3)0.0002 (3)
C80.0133 (4)0.0122 (4)0.0108 (3)0.0013 (3)0.0000 (3)0.0027 (3)
C90.0116 (3)0.0115 (3)0.0081 (3)0.0011 (3)0.0007 (3)0.0006 (3)
C100.0155 (4)0.0137 (4)0.0099 (3)0.0011 (3)0.0022 (3)0.0015 (3)
C110.0172 (4)0.0117 (4)0.0129 (4)0.0004 (3)0.0024 (3)0.0037 (3)
C120.0143 (4)0.0094 (3)0.0125 (3)0.0012 (3)0.0022 (3)0.0011 (3)
C130.0101 (3)0.0094 (3)0.0091 (3)0.0010 (3)0.0009 (3)0.0000 (3)
C140.0097 (3)0.0100 (3)0.0100 (3)0.0002 (3)0.0008 (3)0.0006 (3)
C150.0103 (3)0.0110 (3)0.0090 (3)0.0005 (3)0.0008 (3)0.0012 (3)
C160.0101 (3)0.0098 (3)0.0097 (3)0.0010 (3)0.0006 (3)0.0010 (3)
O1W0.0221 (4)0.0180 (3)0.0146 (3)0.0055 (3)0.0041 (3)0.0028 (3)
O2W0.0109 (3)0.0105 (3)0.0118 (3)0.0005 (2)0.0007 (2)0.0000 (2)
O3W0.0110 (3)0.0155 (3)0.0088 (3)0.0026 (2)0.0005 (2)0.0011 (2)
Geometric parameters (Å, º) top
Co1—N12.0275 (8)N6—C151.3269 (12)
Co1—N22.0315 (8)N6—H1N60.848 (19)
Co1—O32.1471 (7)N6—H2N60.921 (18)
Co1—O22.1567 (7)N7—C161.3383 (12)
Co1—O12.1640 (7)N7—H1N70.84 (2)
Co1—O42.2223 (7)N7—H2N70.795 (18)
Co2—O3W2.0590 (7)C1—C21.5058 (13)
Co2—O3Wi2.0590 (7)C2—C31.3880 (13)
Co2—O2Wi2.1080 (7)C3—C41.3929 (14)
Co2—O2W2.1080 (7)C3—H3A0.9500
Co2—N3i2.2015 (7)C4—C51.3957 (13)
Co2—N32.2016 (7)C4—H4A0.9500
O1—C11.2800 (11)C5—C61.3908 (13)
O2—C71.2792 (11)C5—H5A0.9500
O3—C81.2715 (12)C6—C71.5183 (12)
O4—C141.2840 (11)C8—C91.5146 (13)
O5—C11.2378 (11)C9—C101.3881 (13)
O6—C71.2451 (11)C10—C111.3928 (14)
O7—C81.2440 (11)C10—H10A0.9500
O8—C141.2392 (11)C11—C121.3959 (13)
N1—C61.3347 (12)C11—H11A0.9500
N1—C21.3358 (11)C12—C131.3873 (12)
N2—C131.3361 (11)C12—H12A0.9500
N2—C91.3363 (11)C13—C141.5080 (12)
N3—C161.3194 (11)O1W—H1W10.83 (2)
N3—N41.4020 (11)O1W—H2W10.79 (2)
N4—C151.3261 (11)O2W—H1W20.86 (2)
N4—H1N40.877 (18)O2W—H2W20.817 (19)
N5—C151.3587 (12)O3W—H1W30.79 (2)
N5—C161.3781 (12)O3W—H2W30.830 (19)
N5—H1N50.89 (2)
N1—Co1—N2170.32 (3)O5—C1—O1125.80 (9)
N1—Co1—O3103.02 (3)O5—C1—C2119.95 (8)
N2—Co1—O376.22 (3)O1—C1—C2114.23 (8)
N1—Co1—O276.30 (3)N1—C2—C3121.83 (8)
N2—Co1—O2113.33 (3)N1—C2—C1113.54 (8)
O3—Co1—O293.09 (3)C3—C2—C1124.62 (8)
N1—Co1—O175.53 (3)C2—C3—C4117.64 (8)
N2—Co1—O194.87 (3)C2—C3—H3A121.2
O3—Co1—O194.97 (3)C4—C3—H3A121.2
O2—Co1—O1151.77 (3)C3—C4—C5120.09 (9)
N1—Co1—O4104.80 (3)C3—C4—H4A120.0
N2—Co1—O475.52 (3)C5—C4—H4A120.0
O3—Co1—O4151.74 (3)C6—C5—C4118.54 (9)
O2—Co1—O498.20 (3)C6—C5—H5A120.7
O1—Co1—O487.21 (3)C4—C5—H5A120.7
O3W—Co2—O3Wi180.0N1—C6—C5120.72 (8)
O3W—Co2—O2Wi91.06 (3)N1—C6—C7113.36 (8)
O3Wi—Co2—O2Wi88.94 (3)C5—C6—C7125.90 (8)
O3W—Co2—O2W88.94 (3)O6—C7—O2126.75 (8)
O3Wi—Co2—O2W91.06 (3)O6—C7—C6118.39 (8)
O2Wi—Co2—O2W180.0O2—C7—C6114.83 (8)
O3W—Co2—N3i89.13 (3)O7—C8—O3127.12 (9)
O3Wi—Co2—N3i90.87 (3)O7—C8—C9117.84 (8)
O2Wi—Co2—N3i88.54 (3)O3—C8—C9115.04 (8)
O2W—Co2—N3i91.46 (3)N2—C9—C10121.34 (8)
O3W—Co2—N390.87 (3)N2—C9—C8113.16 (8)
O3Wi—Co2—N389.13 (3)C10—C9—C8125.47 (8)
O2Wi—Co2—N391.46 (3)C9—C10—C11118.39 (8)
O2W—Co2—N388.54 (3)C9—C10—H10A120.8
N3i—Co2—N3180.0C11—C10—H10A120.8
C1—O1—Co1116.61 (6)C10—C11—C12119.95 (8)
C7—O2—Co1115.83 (6)C10—C11—H11A120.0
C8—O3—Co1116.32 (6)C12—C11—H11A120.0
C14—O4—Co1114.34 (6)C13—C12—C11117.80 (8)
C6—N1—C2121.15 (8)C13—C12—H12A121.1
C6—N1—Co1119.12 (6)C11—C12—H12A121.1
C2—N1—Co1119.68 (6)N2—C13—C12121.93 (8)
C13—N2—C9120.58 (8)N2—C13—C14113.57 (7)
C13—N2—Co1120.38 (6)C12—C13—C14124.50 (8)
C9—N2—Co1118.95 (6)O8—C14—O4126.69 (8)
C16—N3—N4103.98 (7)O8—C14—C13117.20 (8)
C16—N3—Co2135.05 (6)O4—C14—C13116.11 (8)
N4—N3—Co2116.28 (5)N4—C15—N6124.95 (9)
C15—N4—N3110.73 (7)N4—C15—N5107.43 (8)
C15—N4—H1N4124.9 (11)N6—C15—N5127.62 (8)
N3—N4—H1N4117.3 (11)N3—C16—N7125.34 (8)
C15—N5—C16106.34 (7)N3—C16—N5111.49 (8)
C15—N5—H1N5127.1 (13)N7—C16—N5123.16 (8)
C16—N5—H1N5126.4 (13)H1W1—O1W—H2W1104 (2)
C15—N6—H1N6117.0 (12)Co2—O2W—H1W2115.8 (13)
C15—N6—H2N6121.6 (12)Co2—O2W—H2W2115.0 (14)
H1N6—N6—H2N6121.3 (17)H1W2—O2W—H2W2107.6 (18)
C16—N7—H1N7117.6 (13)Co2—O3W—H1W3122.4 (14)
C16—N7—H2N7124.3 (13)Co2—O3W—H2W3115.8 (13)
H1N7—N7—H2N7118.2 (18)H1W3—O3W—H2W3104.9 (18)
C16—N3—N4—C150.82 (10)C13—N2—C9—C8177.27 (8)
Co2—N3—N4—C15160.26 (6)Co1—N2—C9—C80.78 (10)
Co1—O1—C1—O5171.62 (7)O7—C8—C9—N2176.02 (9)
Co1—O1—C1—C27.05 (10)O3—C8—C9—N23.74 (12)
C6—N1—C2—C30.26 (14)O7—C8—C9—C102.07 (14)
Co1—N1—C2—C3177.65 (7)O3—C8—C9—C10178.16 (9)
C6—N1—C2—C1179.43 (8)N2—C9—C10—C110.15 (14)
Co1—N1—C2—C13.18 (10)C8—C9—C10—C11177.80 (9)
O5—C1—C2—N1172.01 (8)C9—C10—C11—C120.38 (14)
O1—C1—C2—N16.75 (12)C10—C11—C12—C130.15 (14)
O5—C1—C2—C37.13 (14)C9—N2—C13—C121.16 (13)
O1—C1—C2—C3174.11 (9)Co1—N2—C13—C12177.60 (7)
N1—C2—C3—C41.55 (15)C9—N2—C13—C14178.31 (8)
C1—C2—C3—C4179.38 (9)Co1—N2—C13—C141.88 (10)
C2—C3—C4—C51.50 (16)C11—C12—C13—N20.62 (14)
C3—C4—C5—C60.24 (16)C11—C12—C13—C14178.80 (9)
C2—N1—C6—C51.10 (14)Co1—O4—C14—O8177.20 (8)
Co1—N1—C6—C5176.31 (7)Co1—O4—C14—C132.90 (10)
C2—N1—C6—C7179.62 (8)N2—C13—C14—O8176.90 (8)
Co1—N1—C6—C72.21 (10)C12—C13—C14—O83.64 (14)
C4—C5—C6—N11.09 (15)N2—C13—C14—O43.20 (12)
C4—C5—C6—C7179.41 (9)C12—C13—C14—O4176.26 (9)
Co1—O2—C7—O6170.41 (8)N3—N4—C15—N6178.78 (9)
Co1—O2—C7—C67.75 (10)N3—N4—C15—N51.67 (10)
N1—C6—C7—O6174.41 (8)C16—N5—C15—N41.82 (10)
C5—C6—C7—O64.03 (14)C16—N5—C15—N6178.65 (9)
N1—C6—C7—O23.91 (11)N4—N3—C16—N7178.47 (9)
C5—C6—C7—O2177.65 (9)Co2—N3—C16—N727.99 (15)
Co1—O3—C8—O7173.50 (9)N4—N3—C16—N50.36 (10)
Co1—O3—C8—C96.24 (10)Co2—N3—C16—N5153.18 (7)
C13—N2—C9—C100.92 (13)C15—N5—C16—N31.37 (10)
Co1—N2—C9—C10177.40 (7)C15—N5—C16—N7177.50 (9)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O1ii0.88 (2)1.74 (2)2.6044 (12)165 (2)
N5—H1N5···O7iii0.89 (2)1.77 (2)2.6402 (12)169 (2)
N6—H1N6···O20.84 (2)2.15 (2)2.9117 (12)151.1 (19)
N6—H2N6···O1Wiii0.92 (2)1.85 (2)2.7645 (12)173.6 (19)
N7—H2N7···O6iv0.80 (2)2.24 (2)2.9956 (13)158.4 (18)
O1W—H1W1···O30.83 (2)1.90 (2)2.7354 (13)171 (3)
O1W—H2W1···O6v0.79 (2)2.09 (2)2.8711 (12)175 (2)
O2W—H1W2···O5ii0.86 (2)1.80 (2)2.6666 (11)173 (2)
O2W—H2W2···O40.82 (2)2.00 (2)2.8206 (11)175 (2)
O3W—H1W3···O4ii0.79 (2)2.19 (2)2.9602 (11)163 (2)
O3W—H2W3···O8i0.83 (2)1.76 (2)2.5795 (11)173 (2)
C3—H3A···O5vi0.952.253.1816 (13)167
C5—H5A···N7vii0.952.503.4265 (15)164
C10—H10A···O6iii0.952.443.3898 (13)177
Symmetry codes: (i) x, y, z; (ii) x1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x, y1, z; (v) x+1, y, z; (vi) x+2, y+1, z; (vii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O1i0.88 (2)1.74 (2)2.6044 (12)165 (2)
N5—H1N5···O7ii0.89 (2)1.77 (2)2.6402 (12)169 (2)
N6—H1N6···O20.84 (2)2.15 (2)2.9117 (12)151.1 (19)
N6—H2N6···O1Wii0.92 (2)1.85 (2)2.7645 (12)173.6 (19)
N7—H2N7···O6iii0.80 (2)2.24 (2)2.9956 (13)158.4 (18)
O1W—H1W1···O30.83 (2)1.90 (2)2.7354 (13)171 (3)
O1W—H2W1···O6iv0.79 (2)2.09 (2)2.8711 (12)175 (2)
O2W—H1W2···O5i0.86 (2)1.80 (2)2.6666 (11)173 (2)
O2W—H2W2···O40.82 (2)2.00 (2)2.8206 (11)175 (2)
O3W—H1W3···O4i0.79 (2)2.19 (2)2.9602 (11)163 (2)
O3W—H2W3···O8v0.83 (2)1.76 (2)2.5795 (11)173 (2)
C3—H3A···O5vi0.95002.25003.1816 (13)167.00
C5—H5A···N7vii0.95002.50003.4265 (15)164.00
C10—H10A···O6ii0.95002.44003.3898 (13)177.00
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y, z; (v) x, y, z; (vi) x+2, y+1, z; (vii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors extend their appreciation to The Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP VPP-207. WSL thanks the Malaysian Government for a MyBrain15 (MyPhD) scholarship. AJ thanks the Academy of Science for the Developing World (TWAS) for the award of a Research and Advanced Training Fellowship. AJ and ZH thank the H. E. J. Research Institute of Chemistry, Inter­national Center for Chemical and Biological Sciences, University of Karachi, Pakistan, for providing research facilities.

References

First citationAghabozorg, H., Ghadermazi, M., Zabihi, F., Nakhjavan, B., Soleimannejad, J., Sadr-khanlou, E. & Moghimi, A. (2008). J. Chem. Crystallogr. 38, 645–654.  Web of Science CSD CrossRef CAS Google Scholar
First citationAghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Ghaedi, M. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 55–70.  CrossRef CAS Google Scholar
First citationAghajani, Z., Aghabozorg, H., Sadr-Khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 373–385.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHåkansson, K., Lindahl, M., Svensson, G. & Albertsson, J. (1993). Acta Chem. Scand. 47, 449–455.  Google Scholar
First citationMacDonald, J. C., Luo, T. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 4, 1203–1209.  CSD CrossRef CAS Google Scholar
First citationMoghimi, A., Moosavi, S. M., Kordestani, D., Maddah, B., Shamsipur, M., Aghabozorg, H., Ramezanipour, F. & Kickelbick, G. (2007). J. Mol. Struct. 828, 38–45.  CSD CrossRef CAS Google Scholar
First citationMoghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadha, R. K. (2002). Can. J. Chem. 80, 1687–1696.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationOkabe, N. & Oya, N. (2000). Acta Cryst. C56, 305–307.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPasdar, H., Ebdam, A., Aghabozorg, H. & Notash, B. (2011). Acta Cryst. E67, m294.  CSD CrossRef IUCr Journals Google Scholar
First citationRamos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173–m1174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, L., Wang, Z. & Wang, E. (2004). J. Coord. Chem. 57, 1353–1359.  Web of Science CSD CrossRef CAS Google Scholar
First citationYousuf, S., Johnson, A. S., Kazmi, S. A., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, m1105–m1106.  CSD CrossRef IUCr Journals Google Scholar
First citationYousuf, S., Johnson, A. S., Kazmi, S. A., Offiong, O. E. & Fun, H.-K. (2011a). Acta Cryst. E67, m509–m510.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages m139-m140
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds