research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 628-635

Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts

aChemistry Department, University of St Thomas, Mail OSS 402, Summit Avenue, St Paul, MN 55105-1079, USA, and bDept of Chemistry and Biochemistry, St. Catherine University, 2004 Randolph Avenue, St Paul, MN 55105, USA
*Correspondence e-mail: maguinoo@stthomas.edu

Edited by M. Zeller, Youngstown State University, USA (Received 7 May 2015; accepted 10 May 2015; online 16 May 2015)

The asymmetric units for the salts 4-(4-fluoro­phen­yl)-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3+·I, (1), 1-isopropyl-4-(4-methyl­phen­yl)-1,2,4-triazol-1-ium iodide, C12H16N3+·I, (2), 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3+·I, (3), and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3+·I, (4), contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3+·Br·H2O, (5), there is an additional single water mol­ecule. There is a predominant C—H⋯X(halide) inter­action for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π–anion inter­action between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the ππ inter­actions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects.

1. Chemical context

Literature syntheses of asymmetric 1,2,4-triazolium cations have increased in recent years due to their utility as cations in ionic liquids (ILs) and as precursors to N-heterocyclic carbenes (NHCs) (Dwivedi et al., 2014[Dwivedi, S., Gupta, S. & Das, S. (2014). Curr. Organocatal. (1), 13-39.]; Meyer & Strassner, 2011[Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.]; Mochida et al., 2011[Mochida, T., Miura, Y. & Shimizu, F. (2011). Cryst. Growth Des. 11, 262-268.]; Nelson, 2015[Nelson, D. J. (2015). Eur. J. Inorg. Chem. pp. 2012-2027.]; Porcar et al., 2013[Porcar, R., Ríos-Lombardía, N., Busto, E., Gotor-Fernández, V., Montejo-Bernardo, J., García-Granda, S., Luis, S. V., Gotor, V., Alfonso, I. & García-Verdugo, E. (2013). Chem. Eur. J. 19, 892-904.]; Strassner et al., 2013[Strassner, T., Unger, Y., Meyer, D., Molt, O., Münster, I. & Wagenblast, G. (2013). Inorg. Chem. Commun. 30, 39-41.]). Most structural analyses of these cations have been performed to understand how the inter­molecular features of ILs affect their physical properties. (Porcar et al., 2013[Porcar, R., Ríos-Lombardía, N., Busto, E., Gotor-Fernández, V., Montejo-Bernardo, J., García-Granda, S., Luis, S. V., Gotor, V., Alfonso, I. & García-Verdugo, E. (2013). Chem. Eur. J. 19, 892-904.]).

[Scheme 1]

Most recently, Strassner has introduced a new group of ionic liquids called `TAAILs' (tunable ar­yl–alkyl ionic liquids) (Ahrens et al., 2009[Ahrens, S., Peritz, A. & Strassner, T. (2009). Angew. Chem. Int. Ed. 48, 7908-7910.]). The idea is to tune the properties of the ionic liquids through modification of the aryl and alkyl substituents of an imidazole cation (Scheme 1). The new cations can still be combined with the previously used anions in ILs. These workers have demonstrated that electron-donating para-substituents on the aryl group lower the melting point, while electron-withdrawing para-substituents raise the melting point. Thus one can tune the IL properties through the introduction of an electronic variation through para-substitution on the aryl rings. This group has also extended the concept to the 1,2,4-triazolium cation core (Meyer & Strassner, 2011[Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.]).

Our group became inter­ested in learning how the ar­yl/alkyl substituents on the triazole ring affect the solid-state structures of the salts because strategic choice of substituents should allow tailorable ππ inter­actions as predicted by Strassner's group (Meyer & Strassner, 2011[Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.]). Herein, the preparation and crystal structure analyses of salts (1)–(5) are discussed (Scheme 2). Cations (1)–(3) compare the inductive effects of the electronic para-substituents in the aryl group, while cations (3)–(5) contrast the steric bulk of the alkyl substituents. None of the compounds presented here are ILs because we used iodide or bromide counter-anions to facilitate crystal formation. Understanding inter­actions in the solid state may help better design systems where the triazolium cations are needed.

[Scheme 2]

2. Structural commentary

Salts (1) and (2) crystallized in the ortho­rhom­bic space group Pccn, salt (3) in the monoclinic space group P21/n, and salt (5) in the monoclinic space group C2/c. Salt (4) crystallized in the non-centrosymmetric space group Cc with a Flack parameter of −0.01 (2) indicating the absolute structure is well determined.

The asymmetric unit for all salts contains one cation and one iodide or bromide ion, except for salt (5), where there is an additional single water mol­ecule. The bond lengths in the triazolium rings for all salts indicate aromaticity with C—N and N—N bond distances in the narrow range of 1.292 (6)–1.365 (5) Å for (1), 1.304 (5)–1.365 (4) Å for (2), 1.301 (3)–1.374 (3) Å for (3), 1.297 (6)–1.370 (5) Å for (4), and 1.299 (4)–1.375 (4) Å for (5); with N—C—N bond angles of 107.7 (4)° for (1), 107.5 (3)° for (2), 107.3 (2)° for (3), 107.5 (3)° for (4), and 107.2 (2)° for (5). These values are very similar to those reported for 4-phenyl-1-ethyl-4H-1,2,4-triazolium bromide, in which the C—N and N—N bond distances range is 1.301 (3)–1.469 (4) Å and the N—C—N bond angle is 107.8 (2)° (Meyer & Strassner, 2011[Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.]). The phenyl ring for these salts lies in almost the same plane as the triazole ring with torsion angles of 6.5 (7)° for (1), 24.1 (5)° for (2), 12.9 (4)° for (4), and 3.1 (4)° for (5); except for salt (3) where the phenyl ring is almost perpendicular to the triazole ring with a torsion angle of 65.1 (3)°. The torsion angle between the phenyl and triazole rings for the reported triazolium bromide is 5.8 (4)° (Meyer & Strassner, 2011[Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.]). There are no significant intra­molecular inter­actions found in any of the salts.

3. Supra­molecular features

For all five salts, there is a predominant C—H⋯halide inter­molecular inter­action between the hydrogen atoms in the triazolium ring and the counter ions, forming an extended network (Figs. 1–5[link][link][link][link][link] and Tables 1[link]–5[link][link][link][link]). For the asymmetric unit in salt (1), there are a total of four C—H⋯I inter­molecular inter­actions with two neighboring mol­ecules (Fig. 1[link], Table 1[link]). Each iodide ion inter­acts with two C—H moieties from the triazolium ring and two from the ortho C—H moieties of the aryl group. There is an additional C—H⋯N inter­action between the meta C—H of the aryl ring and the triazolium nitro­gen atom. The fluorine substituent in the para- position of the aryl ring is not an acceptor in any of the C—H inter­actions in salt (1). The asymmetric unit of salt (2) shows a total of three C—H⋯I inter­molecular inter­actions with two neighboring mol­ecules (Fig. 2[link], Table 2[link]). Two C—H moieties from the triazolium ring and one ortho C—H of the aryl ring inter­act with one iodide ion. In the asymmetric unit of salt (3) (Fig. 3[link], Table 3[link]), there are a total of three C—H⋯I inter­molecular inter­actions, two from the triazolium C—H moieties, and one methine hydrogen atom from the isopropyl group because the aryl ring does not lie on the plane of the triazolium ring. For salts (4) and (5) (Figs. 4[link] and 5[link], Tables 4[link] and 5[link]), there are only a total of two C—H⋯I/Br inter­molecular inter­actions, both from the triazole ring's C—H groups. However, in salt (5), a water mol­ecule is in the asymmetric unit along the plane of the triazole and phenyl rings and is also inter­acting with the Br ion and the ortho C—H of the phenyl ring. A square-shaped hydrogen-bonding network is formed between two bromide ions and water mol­ecules (Fig. 6[link] and Table 5[link]). Thus, each bromide ion has two acceptor inter­actions with water hydrogen atoms and one acceptor inter­action with the C—H of the triazolium ring, and each water mol­ecule has two donor inter­actions with the bromide ions and one acceptor inter­action with the ortho C—H of the aryl ring (Figs. 5[link] and 6[link], Table 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for salt (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯I1i 0.95 2.97 3.912 (4) 170
C2—H2⋯I1ii 0.95 2.83 3.774 (5) 173
C7—H7⋯I1i 0.95 2.86 3.801 (4) 170
C8—H8⋯N3iii 0.95 2.60 3.548 (6) 174
C11—H11⋯I1ii 0.95 3.13 4.083 (5) 177
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (ii) -x, -y, -z+1; (iii) [x+{\script{1\over 2}}, -y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for salt (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯I1i 0.95 3.06 3.901 (3) 149
C2—H2⋯I1ii 0.95 2.84 3.771 (4) 168
C3—H3⋯I1iii 1.00 3.00 3.870 (4) 146
C11—H11⋯I1i 0.95 2.98 3.930 (3) 174
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) x, y, z+1.

Table 3
Hydrogen-bond geometry (Å, °) for salt (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯I1i 0.95 2.87 3.744 (2) 153
C2—H2⋯I1ii 0.95 2.94 3.800 (2) 151
C3—H3⋯I1i 1.00 3.18 4.033 (2) 145
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for salt (4)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯I1i 0.95 2.85 3.707 (4) 150
C2—H2⋯I1ii 0.95 2.94 3.811 (4) 153
C3—H3B⋯I1iii 0.98 3.10 4.079 (6) 176
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) x, y, z-1.

Table 5
Hydrogen-bond geometry (Å, °) for salt (5)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1 0.95 2.59 3.455 (3) 151
C2—H2⋯Br1i 0.95 2.75 3.644 (3) 156
C11—H11⋯O1ii 0.95 2.55 3.247 (4) 130
O1—H1A⋯Br1ii 0.95 (6) 2.42 (6) 3.365 (3) 172 (4)
O1—H1B⋯Br1 0.92 (7) 2.43 (7) 3.341 (3) 170 (5)
Symmetry codes: (i) x, y-1, z; (ii) [-x+2, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Extended sheet network viewed along the c axis of salt (1). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 1[link].
[Figure 2]
Figure 2
Extended sheet network viewed along the c axis of salt (2). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 2[link].
[Figure 3]
Figure 3
Extended sheet network viewed along the c axis of salt (3). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 3[link].
[Figure 4]
Figure 4
Extended sheet network viewed along the a axis of salt (4). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 4[link].
[Figure 5]
Figure 5
Extended sheet network of salt (5). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 5[link].
[Figure 6]
Figure 6
Donor–acceptor inter­actions of bromide ions and water mol­ecules with each other, with the triazolium C—H, and the ortho C—H of the aryl ring found in salt (5). H atoms not participating in the inter­actions are not shown. For symmetry codes, see Table 5[link].

Salts (1), (2), and (4) pack as layered sheets as shown in Fig. 7[link]. In salt (1), there is an additional inter­molecular inter­action between the triazolium carbon and the iodide ion (C1⋯I1) with a distance of 3.546 (4) Å between layers along the unit cell c axis (Fig. 8[link]). While an anion–π inter­action is not common, similar inter­actions have been reported in the literature, especially in supra­molecular systems (Chifotides & Dunbar, 2013[Chifotides, H. T. & Dunbar, K. R. (2013). Acc. Chem. Res. 46, 894-906.]). Each cation in the sheet is further stabilized by an F⋯F inter­action with a distance of 2.889 (5) Å between neighboring cations (Fig. 8[link]). C—F⋯F—C contacts are reported in the literature to be weak but still relevant for crystal packing (Chopra, 2012[Chopra, D. (2012). Cryst. Growth Des. 12, 541-546.]). In salt (2), the iodide ion between layers is inter­acting with both the triazolium carbon [C1⋯I1 distance of 3.532 (4) Å, Fig. 9[link]] and the methine hydrogen atom of the isopropyl group (C3—H3⋯I1, Fig. 9[link], Table 2[link]), in addition to the three hydrogen-bonding inter­actions with the ortho hydrogen atom and triazolium hydrogen atom of a cation within the sheet (Figs. 2[link] and 9[link], Table 2[link]). Salt (4) also demonstrates iodide ion inter­action with both the triazolium carbon [C1⋯I1 distance of 3.503 (3) Å, Fig. 10[link]] and the methyl hydrogen atom (C3—H3⋯I1; Fig. 10[link], Table 4[link]) in alternating layers, in addition to the hydrogen bonding with the neighboring cation's triazolium hydrogen atoms (Fig. 3[link], Table 4[link]). The structure is stabilized further by ππ inter­actions between aryl carbon atoms in alternating layers [C6⋯C9 with a distance of 3.384 (5) Å] and an aryl carbon atom with a triazolium carbon atom [C1⋯C8 with a distance of 3.282 (4) Å], also in alternating layers (Fig. 10[link]). In salt (5) there are π-inter­actions [C11⋯C11 with a distance of 3.220 (5) Å and C1⋯C12 with a distance of 3.335 (4) Å] between triazolium and aryl rings in alternating layers which are closely associated with the donor–acceptor inter­actions of the bromide ions and water mol­ecules (Figs. 6[link] and 11[link]). Extending the layers further reveals another ππ inter­action [C1⋯C13 with a distance of 3.370 (4) Å] between the triazolium cation and aryl rings (Fig. 12[link]), and a ππ inter­action [C2⋯O1, 3.143 (5) Å] between the carbon atom of the tri­azole ring and the oxygen atom of the water mol­ecule (Fig. 12[link]a). This triazole–phenyl π stacking is parallel with the c axis (Fig. 12[link]b). The extended sheet network in salt (3) passes diagonally through the cell, but there are no significant inter­molecular inter­actions between cations, as shown in Fig. 13[link].

[Figure 7]
Figure 7
Layered structure observed in the packing of nearly flat cations with iodides. (a) Salt (1) viewed along the a axis; (b) salt (2) viewed along the a axis; and (c) salt (4) viewed along the b axis.
[Figure 8]
Figure 8
Salt (1) showing inter­molecular inter­actions between layers and neighboring cations. H atoms not participating in inter­molecular inter­actions are not shown. [Symmetry codes: (iv) −x, −y, −z + 1; (v) x − [{1\over 2}], −y − [{1\over 2}], z.]
[Figure 9]
Figure 9
Salt (2) showing inter­molecular inter­actions between layers and neighboring cations. H atoms not participating in inter­molecular inter­actions are not shown. [Symmetry codes: (iv) −x + [{1\over 2}], y, z + [{1\over 2}]; (v) −x + [{1\over 2}], y, z − [{1\over 2}].]
[Figure 10]
Figure 10
Salt (4) showing inter­molecular inter­actions between layers and neighboring cations as viewed along the a axis. H atoms not participating in inter­molecular inter­actions are not shown. [Symmetry codes: (iv) x, −y, z − [{1\over 2}]; (v) x, −y, z + [{1\over 2}].]
[Figure 11]
Figure 11
ππ inter­actions between the triazolium and phenyl rings in salt (5). H atoms not participating in the inter­actions are omitted. [Symmetry codes: (ii) −x + 2, y, −z + [{1\over 2}]; (iii) −x + 2, −y, −z; (iv) x, −y, z − [{1\over 2}].]
[Figure 12]
Figure 12
(a) Extended ππ inter­actions between triazolium and phenyl rings in salt (5). (b) Layered structure observed in the packing of nearly flat triazole and phenyl rings with a twisted benzyl ring of the cation in salt (5). H atoms not participating in the inter­actions are omitted. [Symmetry codes: (ii) −x + 2, y, −z + [{1\over 2}]; (iii) −x + 2, −y, −z; (iv) x, −y, z − [{1\over 2}].]
[Figure 13]
Figure 13
Extended sheet network in salt (3).

Inter­estingly, when there is para-substitution on the aryl ring [salts (1) and (2)], there are no observed ππ inter­actions between the phenyl­ene and triazole rings. The observed inter­actions are predominantly from the triazolium carbon atom with the iodide ion. The absence of the para-substituents allows ππ inter­actions between the phenyl and triazole rings as demonstrated in salts (4) and (5). However, to facilitate ππ inter­action, the aryl ring needs to be co-planar with the triazolium ring; thus there are no ππ inter­actions in salt (3). Salt (5) exhibited the lowest melting-point temperature, possibly due to the presence of water in the crystal lattice, and thus will not be included in the discussion here. The higher melting points of salts (1), (2) and (4) compared to salt (3) may reflect the layering of the triazolium-aryl cation core sheets and the resulting inter-layer inter­actions. As predicted by Strassner, the electron-withdrawing substituent in the aryl ring found in salt (1) increased the melting point when compared to salt (2), which contains an electron-donating substituent on the aryl ring (Meyer & Strassner, 2011[Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.]). The ππ inter­actions between the phenyl and triazole rings in salt (4) likely facilitate the increase in melting-point temperature.

In summary, for 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts, the predominant inter­molecular inter­action is the C—H⋯halide hydrogen bond between the hydrogen atoms in the triazolium cation and the halide ions forming extended sheets. For salts with para-substitution on the aryl ring, ππ inter­actions between the triazolium carbon and the halide are present. The melting points of these salts agree with substit­uent inductive effects predictions. For salts without the para-substitution on the aryl ring, ππ inter­actions displayed by the layers are between the triazolium and aryl rings.

4. Database survey

Salt (3) is one of the azolium salts that was utilized by Abdellah in the direct electrochemical reduction of the salt to form the N-heterocyclic carbene (Abdellah et al., 2011[Abdellah, I., Cassirame, B., Condon, S., Nedelec, J. & Pichon, C. (2011). Curr. Top. Electrochem. 16, 81-91.]). Salt (4) is a carbene-precursor to phospho­rescent platinum(II)–NHC complexes; the crystal structure as a carbene ligand is also reported (Tenne et al., 2013[Tenne, M., Metz, S., Münster, I., Wagenblast, G. & Strassner, T. (2013). Organometallics, 32, 6257-6264.]). Triazolium cation (5) was used in the investigation of kinetics and mechanism of azocoupling (Becker et al., 1991[Becker, H. G. O., Al Kurdi, H., Gwan, K. M. & Schütz, R. (1991). J. Prakt. Chem. 333, 7-18.]).

5. Synthesis and crystallization

General Methods. All salts were synthesized in two steps. The first step is an intra­molecular transamination pathway similar to literature methods (Meyer & Strassner, 2011[Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.]; Naik et al., 2008[Naik, A. D., Marchand-Brynaert, J. & Garcia, Y. (2008). Synthesis, pp. 149-154.]; Holm et al., 2010[Holm, S. C., Siegle, A. F., Loos, C., Rominger, F. & Straub, B. F. (2010). Synthesis, pp. 2278-2286.]). The products of this transamination step are 4-(4-fluoro­phen­yl)-1,2,4-triazole as the salt (1) precursor, 4-(4-methyl­phen­yl)-1,2,4-triazole as the salt (2) precursor, and 4-(phen­yl)-1,2,4-triazole as salts (3), (4) and (5) precursor. In our attempts, we utilized a microwave reactor to shorten the reaction time from 24 hrs to roughly 15–30 mins with 20–70% yields (Meyer & Strassner, 2011[Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.]; Naik et al., 2008[Naik, A. D., Marchand-Brynaert, J. & Garcia, Y. (2008). Synthesis, pp. 149-154.]; Holm et al., 2010[Holm, S. C., Siegle, A. F., Loos, C., Rominger, F. & Straub, B. F. (2010). Synthesis, pp. 2278-2286.]). The second step is a nucleophilic substitution between the first-step products, 4-aryl-1,2,4-triazoles, and an alkyl halide (2-iodo­propane, iodo­methane, and benzyl bromide). This synthetic approach was used in the literature (Meyer & Strassner, 2011[Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.]; Holm et al., 2010[Holm, S. C., Siegle, A. F., Loos, C., Rominger, F. & Straub, B. F. (2010). Synthesis, pp. 2278-2286.]), but in our attempts we again used the microwave reactor to shorten the reaction time from 48 hrs to 10-30 mins with 10-70% yields (Meyer & Strassner, 2011[Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.]; Holm et al., 2010[Holm, S. C., Siegle, A. F., Loos, C., Rominger, F. & Straub, B. F. (2010). Synthesis, pp. 2278-2286.]).

N,N-di­methyl­formamide azine di­hydro­chloride (DMFA·2HCl) was synthesized following literature methods (Naik et al., 2008[Naik, A. D., Marchand-Brynaert, J. & Garcia, Y. (2008). Synthesis, pp. 149-154.]; Holm et al., 2010[Holm, S. C., Siegle, A. F., Loos, C., Rominger, F. & Straub, B. F. (2010). Synthesis, pp. 2278-2286.]). All other reagents and solvents were purchased from Sigma-Aldrich. Tetra­hydro­furan (THF) and iso­propanol were dried with mol­ecular sieves (4Å). A Biotage microwave reactor was used for all synthetic preparations. All NMR spectra were recorded on a JEOL 400 MHz spectrometer. 1H and 13C NMR chemical shifts were determined by reference to residual 1H and 13C solvent peaks. All thermal analysis experiments were performed on a TA model TGA Q500 thermal gravimetric analyzer and TA model DSC Q100 differential scanning calorimeter. For TGA experiments, crystal samples with masses between 0.4 to 1.4 mg were loaded onto platinum pans. Dry grade nitro­gen gas was used for all samples with a balance purge rate of 40.00 mL/min and a sample purge rate of 60.00 mL/min. The temperature was ramped at 20.00 K per minute until a final temperature of 673.00 or 773.00 K was reached. For DSC experiments, crystal samples with masses between 3 and 9 mg were loaded onto platinum pans. Dry grade nitro­gen gas was used for all samples with a sample purge range of 50.00 mL/min. The samples were subjected to a heat/cool/heat cycle with a temperature ramp rate of 10.00 K per minute until a final temperature of 473–523 K was reached for the heating cycle, and a temperature ramp rate of 5.00 K per minute until a final temperature of 273 or 248 K was reached for the cooling cycle.

Step 1: synthesis of 4-aryl-1,2,4-triazoles. A 20 mL microwave reaction vessel with a stir bar was charged with 1:1 molar equivalents of N,N-di­methyl­formamide azine di­hydro­chloride (DMFA·2HCl), and a para-substituted aryl amine (4-fluoro­aniline or p-toluidine), or aniline. The microwave was set to 443 or 453 K at normal absorbance, and run for 10–30 mins. Once completed, the mixture was washed with THF, dried with anhydrous magnesium sulfate and filtered. The solvent was removed in vacuo, and the remaining solid was washed with diethyl ether. Salt (1) precursor: 4-(4-fluoro­phen­yl)-1,2,4-triazole. Brown oil (1.09 g, 72% yield).1H NMR (400 MHz, CDCl3): δ 8.44 (s, 2H, CH), 7.40–7.38 (m, 2H, Ar), 7.27–7.23 (m, 3H, Ar). Salt (2) precursor: 4-(4-methyl­phen­yl)-1,2,4-triazole. Brown solid (0.26 g, 27% yield). 1H NMR (400 MHz, CDCl3): δ 8.45 (s, 2H, CH), 7.35–7.32 (d, 2H, Ar), 7.28–7.2 (d, 2H, Ar), 2.43 (s, 3H, Me). The proton spectrum values are the same as the literature values (Holm et al., 2010[Holm, S. C., Siegle, A. F., Loos, C., Rominger, F. & Straub, B. F. (2010). Synthesis, pp. 2278-2286.]). Salts (3), (4) and (5) precursor: 4-phenyl-1,2,4-triazole. Brown solid (0.303 g, 22% yield). 1H NMR(400 MHz, CDCl3): δ 8.46 (s, 2H, CH), 7.54–7.49 (m, 2H, Ar) 7.47–7.42 (m, 1H, Ar), 7.39–7.36 (m, 2H, Ar). 13C NMR (101 MHz, CDCl3): δ 141.5, 133.9, 130.4, 129.1, 122.2. The proton and carbon spectra are the same as the literature values (Meyer & Strassner, 2011[Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.]; Holm, et al., 2010[Holm, S. C., Siegle, A. F., Loos, C., Rominger, F. & Straub, B. F. (2010). Synthesis, pp. 2278-2286.]).

Step 2: synthesis of 1-alkyl-4-aryl-1,2,4-triazole halides. A 20 mL microwave reaction vessel with a stir bar was charged with 1:2 molar equivalents of 4-aryl-1,2,4-triazole, a halide-substituted alkyl group (2-iodo­propane, iodo­methane, and benzyl bromide), and THF (5 mL). The microwave was set to 393–433 K at high absorbance for 10–30 mins. The resulting mixture was vacuum filtered, and washed with diethyl ether (3 × 10 mL). The solid product was recrystallized from hot iso­propanol and placed in the refrigerator for several days. Salt (1): 1-isopropyl-4-(4-fluoro­phen­yl)-1,2,4-triazol-1-ium iodide. Needle-like colorless crystals (0.070 g, 11% yield). 1H NMR (400 MHz, DMSO-d6): δ 10.70 (s, 1H, CH), 9.73 (s, 1H, CH), 7.94–7.90 (dd, 2H, Ar), 7.63–7.60 (dd, 2H, Ar), 4.84–4.82 (sept, 1H, iPr), 1.61–1.59 (d, 6H, iPr).13C NMR (101 MHz, DMSO-d6): δ 164.0, 161.5, 143.1, 140.8, 128.8, 125.5, 117.3, 117.1, 55.8, 21.3. Decomposition temp: 516.4 K. Salt (2): 1-isopropyl-4-(4-methyl­phen­yl)-1,2,4-triazol-1-ium iodide. Colorless prismatic crystals (0.22 g, 54% yield). 1H NMR (400 MHz, DMSO-d6): δ 10.68 (s, 1H, CH), 9.73 (s, 1H,) , 7.75–7.72 (dd, 2H, Ar), 7.71–7.50 (d, 2H, Ar), 4.88-4.78 (sept, 1H, iPr), 2.41 (s, 3H, Me), 1.60–1.58 (d, 6H, iPr).13C NMR (101 MHz, DMSO-d6): δ 142.7, 140.3, 140.2, 130.4, 129.8, 122.3, 55.6, 21.1, 20.7. Decomposition temp: 500.4 K. Salt (3): 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide. Colorless prismatic crystals (0.107 g, 24% yield). 1H NMR (400 MHz, DMSO-d6): δ 10.73 (s, 1H, CH), 9.77 (s, 1H, CH), 7.86–7.85 (d, 2H, Ar), 7.73–7.69 (t, 2H, Ar), 7.66–7.62 (t, 1H, Ar), 4.88–4.81 (sept, 1H, iPr), 1.60–1.58 (d, 6H, Me). 13C NMR (101 MHz, DMSO-d6): δ 142.8, 140.4, 132.2, 130.5, 130.2, 122.6, 55.7, 21.2. Decomposition temp: 500.9 K. Salt (4): 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide. Colorless prism crystals (0.144 g, 70% yield). 1H NMR (400 MHz, DMSO-d6): δ 10.77 (s, 1H, CH), 9.76 (s, 1H, CH), 7.84–7.81 (dt, 2H, Ar), 7.73–7.66 (tt, 2H, Ar), 7.65–7.62 (tt, 1H, Ar), 4.15 (s, 3H, Me). 13C NMR (101 MHz, DMSO-d6): δ 142.7, 142.0, 132.1, 130.6, 130.3, 122.5, 39.0. Decomposition temp: 506.2 K.The proton and carbon spectroscopic values are the same as the literature values (Tenne et al., 2013[Tenne, M., Metz, S., Münster, I., Wagenblast, G. & Strassner, T. (2013). Organometallics, 32, 6257-6264.]). Salt (5): 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide. Colorless prismatic crystals (0.065 g, 10% yield).1H NMR (400 MHz, DMSO-d6) δ 11.05 (s, 1H, CH), 9.81 (s, 1H, CH), 7.87–7.84 (dt, 1H, Ar), 7.85–7.84 (dd, 1H, Ar), 7.72–7.68 (tt, 2H, Ar), 7.66–7.62 (tt, 1H, Ar), 7.56 (m, 2H, Bn), 7.47–7.41 (m, 3H, Bn), 5.71 (s, 2H, CH2). 13C NMR (101 MHz, DMSO-d6) δ 143.4, 141.9, 133.0, 132.2, 130.5, 130.2, 129.1, 129.0, 128.9, 122.6, 55.2. Decomposition temp: 431.8 K.

Melting points: salt (1), m.p.: 512.8 K; salt (2), m.p.: 489.4 K; salt (3), m.p.: 455.3 K; salt (4), m.p.: 505.7 K; salt (5), m.p.: 389.2 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. H atoms for salts (1)–(4) were placed in calculated positions and allowed to ride on their parent atoms at C—H distances of 0.95 Å for the triazolium and aryl rings, 0.98 Å for the methyl groups, and 1.00 Å for the methine group. H atoms for salt (5) were treated with a mixture of independent and constrained refinement. The C—H distances are 0.95 Å for the triazolium and aryl rings, 0.99 Å for the methyl­ene group, and 0.95 (6) Å and 0.92 (7) Å for water. Salt (4) crystallized in the non-centrosymmetric space group Cc with a Flack parameter of −0.01 (2) indicating the absolute structure is well determined.

Table 6
Experimental details

  Salt (1) Salt (2) Salt (3)
Crystal data
Chemical formula C11H13FN3+·I C12H16N3+·I C11H14N3+·I
Mr 333.14 329.18 315.15
Crystal system, space group Orthorhombic, Pccn Orthorhombic, Pccn Monoclinic, P21/n
Temperature (K) 173 173 173
a, b, c (Å) 16.396 (3), 21.732 (4), 7.2412 (12) 15.843 (3), 21.933 (4), 7.8250 (14) 5.9326 (11), 17.826 (3), 12.129 (2)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 102.897 (7), 90
V3) 2580.1 (7) 2719.0 (8) 1250.3 (4)
Z 8 8 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.47 2.34 2.54
Crystal size (mm) 0.71 × 0.05 × 0.02 0.52 × 0.12 × 0.04 0.80 × 0.40 × 0.10
 
Data collection
Diffractometer Rigaku XtaLAB mini Rigaku XtaLAB mini Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.671, 0.952 0.564, 0.911 0.356, 0.776
No. of measured, independent and observed [I > 2σ(I)] reflections 17829, 2632, 1872 16099, 2767, 2150 12823, 2858, 2582
Rint 0.073 0.051 0.044
(sin θ/λ)max−1) 0.625 0.625 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.077, 1.03 0.031, 0.065, 1.04 0.023, 0.055, 1.09
No. of reflections 2632 2767 2858
No. of parameters 147 148 138
No. of restraints 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.58 0.43, −0.36 0.40, −0.69
  Salt (4) Salt (5)
Crystal data
Chemical formula C9H10N3+·I C15H14N3+·Br·H2O
Mr 287.10 334.22
Crystal system, space group Monoclinic, Cc Monoclinic, C2/c
Temperature (K) 173 173
a, b, c (Å) 7.660 (2), 16.912 (5), 8.412 (3) 24.783 (6), 8.996 (2), 13.089 (3)
α, β, γ (°) 90, 101.137 (7), 90 90, 100.068 (7), 90
V3) 1069.2 (6) 2873.3 (13)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.96 2.86
Crystal size (mm) 0.31 × 0.23 × 0.13 0.60 × 0.37 × 0.17
 
Data collection
Diffractometer Rigaku XtaLAB mini Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.439, 0.681 0.321, 0.614
No. of measured, independent and observed [I > 2σ(I)] reflections 5472, 2420, 2359 6672, 3259, 2630
Rint 0.020 0.031
(sin θ/λ)max−1) 0.649 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.037, 1.05 0.043, 0.098, 1.08
No. of reflections 2420 3259
No. of parameters 119 189
No. of restraints 2 0
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.36 0.75, −0.63
Absolute structure Flack x determined using 1112 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.012 (18)
Computer programs: CrystalClearSM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Chemical context top

Literature syntheses of asymmetric 1,2,4-triazolium cations have increased in recent years due to their utility as cations in ionic liquids (ILs) and as precursors to N-heterocyclic carbenes (NHCs) (Dwivedi et al., 2014; Meyer & Strassner, 2011; Mochida et al., 2011; Nelson, 2015; Porcar et al., 2013; Strassner et al., 2013). Most structural analyses of these cations have been performed to understand how the inter­molecular features of ILs affect their physical properties. (Porcar et al., 2013).

Most recently, Strassner has introduced a new group of ionic liquids called `TAAILs' (tunable aryl–alkyl ionic liquids) (Ahrens et al., 2009). The idea is to tune the properties of the ionic liquids through modification of the aryl and alkyl substituents of an imidazole cation (Scheme 1). The new cations can still be combined with the previously used anions in ILs. These workers have demonstrated that electron-donating para- substituents on the aryl group lower the melting point, while electron-withdrawing para- substituents raise the melting point. Thus one can tune the IL properties through the introduction of an electronic variation through para- substitution on the aryl rings. This group has also extended the concept to the 1,2,4-triazolium cation core (Meyer & Strassner, 2011).

Our group became inter­ested in learning how the aryl/alkyl substituents on the triazole ring affect the solid-state structures of the salts because strategic choice of substituents should allow tailorable ππ inter­actions as predicted by Strassner's group (Meyer & Strassner, 2011). Herein, the preparation and crystal structure analyses of salts (1)–(5) are discussed (Scheme 2). Cations (1)–(3) compare the inductive effects of the electronic para-substituents in the aryl group, while cations (3)–(5) contrast the steric bulk of the alkyl substituents. None of the compounds presented here are ILs because we used iodide or bromide counter-anions to facilitate crystal formation. Understanding inter­actions in the solid state may help better design systems where the triazolium cations are needed.

Structural commentary top

Salts (1) and (2) crystallized in the orthorhombic space group Pccn, salt (3) in the monoclinic space group P21/n, and salt (5) in the monoclinic space group C2/c. Salt (4) crystallized in the non-centrosymmetric space group Cc with a Flack parameter of -0.01 (2) indicating the absolute structure is well determined.

The asymmetric unit for all salts contains one cation and one iodide or bromide ion, except for salt (5), where there is an additional single water molecule. The bond lengths in the triazolium rings for all salts indicate aromaticity with C—N and N—N bond distances in the narrow range of 1.292 (6)–1.365 (5) Å for (1), 1.304 (5)–1.365 (4) Å for (2), 1.301 (3)–1.374 (3) Å for (3), 1.297 (6)–1.370 (5) Å for (4), and 1.299 (4)–1.375 (4) Å for (5); with N—C—N bond angles of 107.7 (4)° for (1), 107.5 (3)° for (2), 107.3 (2)° for (3), 107.5 (3)° for (4), and 107.2 (2)° for (5). These values are very similar to those reported for 4-phenyl-1-ethyl-4H-1,2,4-triazolium bromide, in which the C—N and N—N bond distances range is 1.301 (3)–1.469 (4) Å and the N—C—N bond angle is 107.8 (2)° (Meyer & Strassner, 2011). The phenyl ring for these salts lies in almost the same plane as the triazole ring with torsion angles of 6.5 (7)° for (1), 24.1 (5)° for (2), 12.9 (4)° for (4), and 3.1 (4)° for (5); except for salt (3) where the phenyl ring is almost perpendicular to the triazole ring with a torsion angle of 65.1 (3)°. The torsion angle between the phenyl and triazole rings for the reported triazolium bromide is 5.8 (4)° (Meyer & Strassner, 2011). There are no significant intra­molecular inter­actions found in any of the salts.

Supra­molecular features top

For all five salts, there is a predominant C—H···halide inter­molecular inter­action between the hydrogen atoms in the triazolium ring and the counter ions, forming an extended network (Fig.s 1–5, Tables 1–5). For the asymmetric unit in salt (1), there are a total of four C—H···I- inter­molecular inter­actions with two neighboring molecules (Fig. 1, Table 1). Each iodide ion inter­acts with two C—H moieties from the triazolium ring and two from the ortho C—H moieties of the aryl group. There is an additional C—H···N inter­action between the meta C—H of the aryl ring and the triazolium nitro­gen. The fluorine substituent in the para- position of the aryl ring is not an acceptor in any of the C—H inter­actions in salt (1). The asymmetric unit of salt (2) shows a total of three C—H···I- inter­molecular inter­actions with two neighboring molecules (Fig. 2, Table 2). Two C—H moieties from the triazolium ring and one ortho C—H of the aryl ring inter­act with one iodide ion. In the asymmetric unit of salt (3) (Fig. 3, Table 3), there are a total of three C—H···I- inter­molecular inter­actions, two from the triazolium C—H moieties, and one methine hydrogen from the iso­propyl group because the aryl ring does not lie on the plane of the triazolium ring. For salts (4) and (5) (Figs. 4 and 5, Tables 4 and 5), there are only a total of two C—H···I/Br- inter­molecular inter­actions, both from the triazole ring's C—H groups. However, in salt (5), a water molecule is in the asymmetric unit along the plane of the triazole and phenyl rings and is also inter­acting with the Br- ion and the ortho C—H of the phenyl ring. A square-shaped hydrogen-bonding network is formed between two bromide ions and water molecules (Fig. 6 and Table 5). Thus, each bromide ion has two acceptor inter­actions with water hydrogen atoms and one acceptor inter­action with the C—H of the triazolium ring, and each water molecule has two donor inter­actions with the bromide ions and one acceptor inter­action with the ortho C—H of the aryl ring (Figs. 5 and 6, Table 5).

Salts (1), (2), and (4) pack as layered sheets as shown in Fig. 7. In salt (1), there is an additional inter­molecular inter­action between the triazolium carbon and the iodide ion (C1···I1) with a distance of 3.546 (4) Å between layers along the unit cell c-axis (Fig. 8). While an anion–π inter­action is not common, similar inter­actions have been reported in the literature, especially in supra­molecular systems (Chifotides & Dunbar, 2013). Each cation in the sheet is further stabilized by an F···F inter­action with a distance of 2.889 (5) Å between neighboring cations (Fig. 8). C—F···F—C contacts are reported in the literature to be weak but still relevant for crystal packing (Chopra, 2012). In salt (2), the iodide ion between layers is inter­acting with both the triazolium carbon (C1···I1 distance of 3.532 (4) Å, Fig. 9) and the methine hydrogen atom of the iso­propyl group (C3—H3···I1, Fig. 9, Table 2), in addition to the three hydrogen-bonding inter­actions with the ortho hydrogen atom and triazolium hydrogen atom of a cation within the sheet (Figs. 2 and 9, Table 2). Salt (4) also demonstrates iodide ion inter­action with both the triazolium carbon [C1···I1 distance of 3.503 (3) Å, Fig. 10] and the methyl hydrogen atom (C3—H3···I1; Fig. 10, Table 4) in alternating layers, in addition to the hydrogen bonding with the neighboring cation's triazolium hydrogen atoms (Fig. 3, Table 4). The structure is stabilized further by ππ inter­actions between aryl carbons in alternating layers [C6···C9 with a distance of 3.384 (5) Å] and an aryl carbon with a triazolium carbon [C1···C8 with a distance of 3.282 (4) Å], also in alternating layers (Fig. 10). In salt (5) there are π-inter­actions [C11···C11 with a distance of 3.220 (5) Å and C1···C12 with a distance of 3.335 (4) Å] between triazolium and aryl rings in alternating layers which are closely associated with the donor–acceptor inter­actions of the bromide ions and water molecules (Figs. 6 and 11). Extending the layers further reveals another ππ inter­action [C1···C13 with a distance of 3.370 (4) Å] between the triazolium cation and aryl rings (Fig. 12), and a ππ inter­action [C2···O1, 3.143 (5) Å] between the carbon atom of the triazole ring and the oxygen atom of the water molecule (Fig. 12a). This triazole–phenyl π stacking is parallel with the c axis (Fig. 12b). The extended sheet network in salt (3) passes diagonally through the cell, but there are no significant inter­molecular inter­actions between cations, as shown in Fig. 13.

Inter­estingly, when there is para-substitution on the aryl ring [salts (1) and (2)], there are no observed ππ inter­actions between the phenyl­ene and triazole rings. The observed inter­actions are predominantly from the triazolium carbon atom with the iodide ion. The absence of the para-substitutents allows ππ inter­actions between the phenyl and triazole rings as demonstrated in salts (4) and (5). However, to facilitate ππ inter­action, the aryl ring needs to be co-planar with the triazolium ring; thus there are no ππ inter­actions in salt (3). Salt (5) exhibited the lowest melting-point temperature, possibly due to the presence of water in the crystal lattice, and thus will not be included in the discussion here. The higher melting points of salts (1), (2) and (4) compared to salt (3) may reflect the layering of the triazolium-aryl cation core sheets and the resulting inter-layer inter­actions. As predicted by Strassner, the electron-withdrawing substituent in the aryl ring found in salt (1) increased the melting point when compared to salt (2), which contains an electron-donating substituent on the aryl ring (Meyer & Strassner, 2011). The ππ inter­actions between the phenyl and triazole rings in salt (4) likely facilitate the increase in melting-point temperature.

In summary, for 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts, the predominant inter­molecular inter­action is the C—H···halide hydrogen bond between the hydrogen atoms in the triazolium cation and the halide ions forming extended sheets. For salts with para-substitution on the aryl ring, ππ inter­actions between the triazolium carbon and the halide are present. The melting points of these salts agree with substituent inductive effects predictions. For salts without the para-substitution on the aryl ring, ππ inter­actions displayed by the layers are between the triazolium and aryl rings.

Database survey top

Salt (3) is one of the azolium salts that was utilized by Abdellah in the direct electrochemical reduction of the salt to form the N-heterocyclic carbene (Abdellah et al., 2011). Salt (4) is a carbene-precursor to phospho­rescent platinum(II)–NHC complexes; the crystal structure as a carbene ligand is also reported (Tenne et al., 2013). Triazolium cation (5) was used in the investigation of kinetics and mechanism of azocoupling (Becker et al., 1991).

Synthesis and crystallization top

General Methods. All salts were synthesized in two steps. The first step is an intra­molecular transamination pathway similar to literature methods (Meyer & Strassner, 2011; Naik et al., 2008; Holm et al., 2010). The products of this transamination step are 4-(4-fluoro­phenyl)-1,2,4-triazole as the salt (1) precursor, 4-(4-methyl­phenyl)-1,2,4-triazole as the salt (2) precursor, and 4-(phenyl)-1,2,4-triazole as salts (3), (4) and (5) precursor. In our attempts, we utilized a microwave reactor to shorten the reaction time from 24 hrs to roughly 15–30 mins with 20–70% yields (Meyer & Strassner, 2011; Naik et al., 2008; Holm et al., 2010). The second step is a nucleophilic substitution between the first-step products, 4-aryl-1,2,4-triazoles, and an alkyl halide (2-iodo­propane, iodo­methane, and benzyl bromide). This synthetic approach was used in the literature (Meyer & Strassner, 2011; Holm et al., 2010), but in our attempts we again used the microwave reactor to shorten the reaction time from 48 hrs to 10-30 mins with 10-70% yields (Meyer & Strassner, 2011; Holm et al., 2010).

N,N-di­methyl­formamide azine di­hydro­chloride (DMFA·2HCl) was synthesized following literature methods (Naik et al., 2008; Holm et al., 2010). All other reagents and solvents were purchased from Sigma-Aldrich. Tetra­hydro­furan (THF) and iso­propanol were dried with molecular sieves (4Å). A Biotage microwave reactor was used for all synthetic preparations. All NMR spectra were recorded on a JEOL 400 MHz spectrometer. 1H and 13C NMR chemical shifts were determined by reference to residual 1H and 13C solvent peaks. All thermal analysis experiments were performed on a TA model TGA Q500 thermal gravimetric analyzer and TA model DSC Q100 differential scanning calorimeter. For TGA experiments, crystal samples with masses between 0.4 to 1.4 mg were loaded onto platinum pans. Dry grade nitro­gen gas was used for all samples with a balance purge rate of 40.00 mL/min and a sample purge rate of 60.00 mL/min. The temperature was ramped at 20.00 K per minute until a final temperature of 673.00 or 773.00 K was reached. For DSC experiments, crystal samples with masses between 3 and 9 mg were loaded onto platinum pans. Dry grade nitro­gen gas was used for all samples with a sample purge range of 50.00 mL/min. The samples were subjected to a heat/cool/heat cycle with a temperature ramp rate of 10.00 K per minute until a final temperature of 473–523 K was reached for the heating cycle, and a temperature ramp rate of 5.00 K per minute until a final temperature of 273 or 248 K was reached for the cooling cycle.

Step 1: synthesis of 4-aryl-1,2,4-triazoles. A 20 mL microwave reaction vessel with a stir bar was charged with 1:1 molar equivalents of N,N-di­methyl­formamide azine di­hydro­chloride (DMFA·2HCl), and a para-substituted aryl amine (4-fluoro­aniline or p-toluidine), or aniline. The microwave was set to 443 or 453 K at normal absorbance, and run for 10–30 mins. Once completed, the mixture was washed with THF, dried with anhydrous magnesium sulfate and filtered. The solvent was removed in vacuo, and the remaining solid was washed with di­ethyl ether. Salt (1) precursor: 4-(4-fluoro­phenyl)-1,2,4-triazole. Brown oil (1.09 g, 72% yield).1H NMR (400 MHz, CDCl3): δ 8.44 (s, 2H, CH), 7.40–7.38 (m, 2H, Ar), 7.27–7.23 (m, 3H, Ar). Salt (2) precursor: 4-(4-methyl­phenyl)-1,2,4-triazole. Brown solid (0.26 g, 27% yield). 1H NMR (400 MHz, CDCl3): δ 8.45 (s, 2H, CH), 7.35–7.32 (d, 2H, Ar), 7.28–7.2 (d, 2H, Ar), 2.43 (s, 3H, Me). The proton spectrum values are the same as the literature values (Holm et al., 2010). Salts (3), (4) and (5) precursor: 4-phenyl-1,2,4-triazole. Brown solid (0.303 g, 22% yield). 1H NMR(400 MHz, CDCl3): δ 8.46 (s, 2H, CH), 7.54–7.49 (m, 2H, Ar) 7.47–7.42 (m, 1H, Ar), 7.39–7.36 (m, 2H, Ar). 13C NMR (101 MHz, CDCl3): δ 141.5, 133.9, 130.4, 129.1, 122.2. The proton and carbon spectra are the same as the literature values (Meyer & Strassner, 2011; Holm, et al., 2010).

Step 2: synthesis of 1-alkyl-4-aryl-1,2,4-triazole halides. A 20 mL microwave reaction vessel with a stir bar was charged with 1:2 molar equivalents of 4-aryl-1,2,4-triazole, a halide-substituted alkyl group (2-iodo­propane, iodo­methane, and benzyl bromide), and THF (5 mL). The microwave was set to 393–433 k at high absorbance for 10–30 mins. The resulting mixture was vacuum filtered, and washed with di­ethyl ether (3 × 10 mL). The solid product was recrystallized from hot iso­propanol and placed in the refrigerator for several days. Salt (1): 1-iso­propyl-4-(4-fluoro­phenyl)-1,2,4-triazol-1-ium iodide. Needle-like colorless crystals (0.070 g, 11% yield). 1H NMR (400 MHz, DMSO-d6): δ 10.70 (s, 1H, CH), 9.73 (s, 1H, CH), 7.94–7.90 (dd, 2H, Ar), 7.63–7.60 (dd, 2H, Ar), 4.84–4.82 (sept, 1H, iPr), 1.61–1.59 (d, 6H, iPr).13C NMR (101 MHz, DMSO-d6): δ 164.0, 161.5, 143.1, 140.8, 128.8, 125.5, 117.3, 117.1, 55.8, 21.3. Decomposition temp: 516.4 K. Salt (2): 1-iso­propyl-4-(4-methyl­phenyl)-1,2,4-triazol-1-ium iodide. Colorless prismatic crystals (0.22 g, 54% yield). 1H NMR (400 MHz, DMSO-d6): δ 10.68 (s, 1H, CH), 9.73 (s, 1H, ), 7.75–7.72 (dd, 2H, Ar), 7.71–7.50 (d, 2H, Ar), 4.88-4.78 (sept, 1H, iPr), 2.41 (s, 3H, Me), 1.60–1.58 (d, 6H, iPr).13C NMR (101 MHz, DMSO-d6): δ 142.7, 140.3, 140.2, 130.4, 129.8, 122.3, 55.6, 21.1, 20.7. Decomposition temp: 500.4 K. Salt (3): 1-iso­propyl-4-phenyl-1,2,4-triazol-1-ium iodide. Colorless prismatic crystals (0.107 g, 24% yield). 1H NMR (400 MHz, DMSO-d6): δ 10.73 (s, 1H, CH), 9.77 (s, 1H, CH), 7.86–7.85 (d, 2H, Ar), 7.73–7.69 (t, 2H, Ar), 7.66–7.62 (t, 1H, Ar), 4.88–4.81 (sept, 1H, iPr), 1.60–1.58 (d, 6H, Me). 13C NMR (101 MHz, DMSO-d6): δ 142.8, 140.4, 132.2, 130.5, 130.2, 122.6, 55.7, 21.2. Decomposition temp: 500.9 K. Salt (4): 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide. Colorless prism crystals (0.144 g, 70% yield). 1H NMR (400 MHz, DMSO-d6): δ 10.77 (s, 1H, CH), 9.76 (s, 1H, CH), 7.84–7.81 (dt, 2H, Ar), 7.73–7.66 (tt, 2H, Ar), 7.65–7.62 (tt, 1H, Ar), 4.15 (s, 3H, Me). 13C NMR (101 MHz, DMSO-d6): δ 142.7, 142.0, 132.1, 130.6, 130.3, 122.5, 39.0. Decomposition temp: 506.2 K.The proton and carbon spectroscopic values are the same as the literature values (Tenne et al., 2013). Salt (5): 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide. Colorless prismatic crystals (0.065 g, 10% yield).1H NMR (400 MHz, DMSO-d6) δ 11.05 (s, 1H, CH), 9.81 (s, 1H, CH), 7.87–7.84 (dt, 1H, Ar), 7.85–7.84 (dd, 1H, Ar), 7.72–7.68 (tt, 2H, Ar), 7.66–7.62 (tt, 1H, Ar), 7.56 (m, 2H, Bn), 7.47–7.41 (m, 3H, Bn), 5.71 (s, 2H, CH2). 13C NMR (101 MHz, DMSO-d6) δ 143.4, 141.9, 133.0, 132.2, 130.5, 130.2, 129.1, 129.0, 128.9, 122.6, 55.2. Decomposition temp: 431.8 K.

Melting points: salt (1), m.p.: 512.8 K; salt (2), m.p.: 489.4 K; salt (3), m.p.: 455.3 K; salt (4), m.p.: 505.7 K; salt (5), m.p.: 389.2 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 6. H atoms for salts (1)–(4) were placed in calculated positions and allowed to ride on their parent atoms at C—H distances of 0.95 Å for the triazolium and aryl rings, 0.98 Å for the methyl groups, and 1.00 Å for the methine group. H atoms for salt (5) were treated with a mixture of independent and constrained refinement. The C—H distances are 0.95 Å for the triazolium and aryl rings, 0.99 Å for the methyl­ene group, and 0.95 (6) Å and 0.92 (7) Å for water. Salt (4) crystallized in the non-centrosymmetric space group Cc with a Flack parameter of -0.01 (2) indicating the absolute structure is well determined.

Related literature top

For related literature, see: Abdellah et al. (2011); Ahrens et al. (2009); Becker et al. (1991); Chifotides & Dunbar (2013); Chopra (2012); Dwivedi et al. (2014); Holm et al. (2010); Meyer & Strassner (2011); Mochida et al. (2011); Naik et al. (2008); Nelson (2015); Porcar et al. (2013); Strassner et al. (2013); Tenne et al. (2013).

Computing details top

For all compounds, data collection: CrystalClearSM Expert (Rigaku, 2011); cell refinement: CrystalClearSM Expert (Rigaku, 2011); data reduction: CrystalClearSM Expert (Rigaku, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. Extended sheet network viewed along the c axis of salt (1). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 1.
[Figure 2] Fig. 2. Extended sheet network viewed along the c axis of salt (2). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 2.
[Figure 3] Fig. 3. Extended sheet network viewed along the c axis of salt (3). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 3.
[Figure 4] Fig. 4. Extended sheet network viewed along the a axis of salt (4). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 4.
[Figure 5] Fig. 5. Extended sheet network of salt (5). H atoms not participating in the extended sheet network are not shown. For symmetry codes, see Table 5.
[Figure 6] Fig. 6. Donor–acceptor interactions of bromide ions and water molecules with each other, with the triazolium C—H, and the ortho C—H of the aryl ring found in salt (5). H atoms not participating in the interactions are not shown. For symmetry codes, see Table 5.
[Figure 7] Fig. 7. Layered structure observed in the packing of nearly flat cations with iodides. (a) Salt (1) viewed along the a axis; (b) salt (2) viewed along the a axis; and (c) salt (4) viewed along the b axis.
[Figure 8] Fig. 8. Salt (1) showing intermolecular interactions between layers and neighboring cations. H atoms not participating in intermolecular interactions are not shown. [Symmetry codes: (iv) -x, -y, -z + 1; (v) x - 1/2, -y - 1/2, z.]
[Figure 9] Fig. 9. Salt (2) showing intermolecular interactions between layers and neighboring cations. H atoms not participating in intermolecular interactions are not shown. [Symmetry codes: (iv) -x + 1/2, y, z + 1/2; (v) -x + 1/2, y, z - 1/2.]
[Figure 10] Fig. 10. Salt (4) showing intermolecular interactions between layers and neighboring cations as viewed along the a axis. H atoms not participating in intermolecular interactions are not shown. [Symmetry codes: (iv) x, -y, z - 1/2; (v) x, -y, z + 1/2.]
[Figure 11] Fig. 11. ππ interactions between the triazolium and phenyl rings in salt (5). H atoms not participating in the interactions are omitted. [Symmetry codes: (ii) -x + 2, y, -z + 1/2; (iii) -x + 2, -y, -z; (iv) x, -y, z - 1/2.]
[Figure 12] Fig. 12. (a) Extended ππ interactions between triazolium and phenyl rings in salt (5). (b) Layered structure observed in the packing of nearly flat triazole and phenyl rings with a twisted benzyl ring of the cation in salt (5). H atoms not participating in the interactions are omitted. [Symmetry codes: (ii) -x + 2, y, -z + 1/2; (iii) -x + 2, -y, -z; (iv) x, -y, z - 1/2.]
[Figure 13] Fig. 13. Extended sheet network in salt (3).
(salt1) 4-(4-Fluorophenyl)-1-isopropyl-1,2,4-triazol-1-ium iodide top
Crystal data top
C11H13FN3+·IDx = 1.715 Mg m3
Mr = 333.14Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, PccnCell parameters from 13432 reflections
a = 16.396 (3) Åθ = 3.1–26.5°
b = 21.732 (4) ŵ = 2.47 mm1
c = 7.2412 (12) ÅT = 173 K
V = 2580.1 (7) Å3Needle, colorless
Z = 80.71 × 0.05 × 0.02 mm
F(000) = 1296
Data collection top
Rigaku XtaLAB mini
diffractometer
1872 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.073
ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1620
Tmin = 0.671, Tmax = 0.952k = 2727
17829 measured reflectionsl = 99
2632 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0311P)2 + 1.7321P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2632 reflectionsΔρmax = 0.60 e Å3
147 parametersΔρmin = 0.58 e Å3
Crystal data top
C11H13FN3+·IV = 2580.1 (7) Å3
Mr = 333.14Z = 8
Orthorhombic, PccnMo Kα radiation
a = 16.396 (3) ŵ = 2.47 mm1
b = 21.732 (4) ÅT = 173 K
c = 7.2412 (12) Å0.71 × 0.05 × 0.02 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2632 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
1872 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.952Rint = 0.073
17829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.03Δρmax = 0.60 e Å3
2632 reflectionsΔρmin = 0.58 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.12779 (2)0.10735 (2)0.28479 (4)0.03130 (11)
F10.2967 (2)0.19361 (13)0.6333 (6)0.0857 (12)
N10.1110 (2)0.01458 (15)0.7471 (4)0.0293 (8)
N20.0756 (2)0.10799 (15)0.7882 (5)0.0304 (8)
N30.0050 (2)0.07473 (17)0.7909 (6)0.0419 (10)
C10.1383 (3)0.07255 (19)0.7626 (5)0.0287 (10)
H10.19360.08540.75590.034*
C20.0290 (3)0.0188 (2)0.7647 (7)0.0427 (12)
H20.00690.01550.75840.051*
C30.0723 (3)0.17592 (19)0.8200 (6)0.0313 (10)
H30.05500.18330.95060.038*
C40.0089 (3)0.2039 (2)0.6936 (7)0.0426 (12)
H4A0.04450.18590.72060.051*
H4B0.02350.19550.56490.051*
H4C0.00680.24850.71360.051*
C50.1571 (3)0.2027 (2)0.7944 (7)0.0398 (11)
H5A0.17640.19370.66920.048*
H5B0.19440.18430.88460.048*
H5C0.15520.24730.81290.048*
C60.1595 (3)0.0401 (2)0.7140 (6)0.0338 (10)
C70.2430 (3)0.03589 (19)0.7138 (7)0.0405 (12)
H70.26870.00270.73330.049*
C80.2895 (3)0.0880 (2)0.6851 (7)0.0472 (13)
H80.34740.08570.68270.057*
C90.2503 (3)0.1427 (2)0.6601 (8)0.0533 (14)
C100.1678 (3)0.1476 (2)0.6597 (9)0.0651 (17)
H100.14260.18640.64010.078*
C110.1205 (3)0.0954 (2)0.6883 (8)0.0515 (14)
H110.06260.09790.68990.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03225 (18)0.02454 (15)0.03710 (17)0.00037 (12)0.00019 (13)0.00025 (12)
F10.054 (2)0.0306 (16)0.173 (4)0.0116 (15)0.011 (2)0.010 (2)
N10.031 (2)0.0197 (16)0.037 (2)0.0012 (15)0.0021 (15)0.0028 (14)
N20.037 (2)0.0243 (18)0.0300 (18)0.0021 (16)0.0007 (16)0.0009 (17)
N30.027 (2)0.030 (2)0.069 (3)0.0055 (16)0.0044 (19)0.007 (2)
C10.031 (3)0.024 (2)0.031 (2)0.0044 (18)0.0006 (17)0.0012 (17)
C20.036 (3)0.025 (2)0.067 (4)0.006 (2)0.000 (2)0.003 (2)
C30.039 (3)0.023 (2)0.032 (3)0.0029 (19)0.0006 (18)0.0027 (19)
C40.045 (3)0.032 (2)0.051 (3)0.008 (2)0.001 (2)0.001 (2)
C50.038 (3)0.027 (2)0.055 (3)0.0022 (19)0.003 (2)0.004 (2)
C60.031 (3)0.027 (2)0.043 (3)0.0011 (19)0.003 (2)0.000 (2)
C70.037 (3)0.022 (2)0.062 (3)0.005 (2)0.000 (2)0.001 (2)
C80.033 (3)0.035 (3)0.073 (4)0.002 (2)0.001 (2)0.001 (2)
C90.044 (3)0.028 (3)0.089 (4)0.004 (2)0.011 (3)0.004 (3)
C100.042 (4)0.024 (3)0.129 (5)0.004 (2)0.010 (3)0.003 (3)
C110.027 (3)0.033 (3)0.094 (4)0.004 (2)0.010 (3)0.001 (3)
Geometric parameters (Å, º) top
F1—C91.356 (6)C4—H4C0.9800
N1—C11.342 (5)C5—H5A0.9800
N1—C21.354 (6)C5—H5B0.9800
N1—C61.450 (6)C5—H5C0.9800
N2—C11.298 (5)C6—C71.371 (6)
N2—N31.365 (5)C6—C111.375 (6)
N2—C31.495 (5)C7—C81.381 (6)
N3—C21.292 (6)C7—H70.9500
C1—H10.9500C8—C91.364 (7)
C2—H20.9500C8—H80.9500
C3—C41.512 (6)C9—C101.358 (7)
C3—C51.519 (6)C10—C111.390 (7)
C3—H31.0000C10—H100.9500
C4—H4A0.9800C11—H110.9500
C4—H4B0.9800
C1—N1—C2105.1 (4)C3—C5—H5A109.5
C1—N1—C6126.9 (4)C3—C5—H5B109.5
C2—N1—C6128.0 (4)H5A—C5—H5B109.5
C1—N2—N3111.1 (3)C3—C5—H5C109.5
C1—N2—C3129.5 (4)H5A—C5—H5C109.5
N3—N2—C3119.3 (3)H5B—C5—H5C109.5
C2—N3—N2103.8 (4)C7—C6—C11121.6 (4)
N2—C1—N1107.7 (4)C7—C6—N1119.5 (4)
N2—C1—H1126.1C11—C6—N1118.9 (4)
N1—C1—H1126.1C6—C7—C8119.8 (4)
N3—C2—N1112.3 (4)C6—C7—H7120.1
N3—C2—H2123.9C8—C7—H7120.1
N1—C2—H2123.9C9—C8—C7118.3 (5)
N2—C3—C4109.2 (3)C9—C8—H8120.9
N2—C3—C5109.0 (3)C7—C8—H8120.9
C4—C3—C5113.6 (4)F1—C9—C10119.6 (5)
N2—C3—H3108.3F1—C9—C8117.8 (5)
C4—C3—H3108.3C10—C9—C8122.6 (5)
C5—C3—H3108.3C9—C10—C11119.5 (5)
C3—C4—H4A109.5C9—C10—H10120.3
C3—C4—H4B109.5C11—C10—H10120.3
H4A—C4—H4B109.5C6—C11—C10118.3 (5)
C3—C4—H4C109.5C6—C11—H11120.9
H4A—C4—H4C109.5C10—C11—H11120.9
H4B—C4—H4C109.5
C1—N2—N3—C20.4 (5)C2—N1—C6—C7175.2 (5)
C3—N2—N3—C2178.2 (4)C1—N1—C6—C11175.1 (4)
N3—N2—C1—N10.1 (5)C2—N1—C6—C113.1 (7)
C3—N2—C1—N1177.7 (4)C11—C6—C7—C80.7 (8)
C2—N1—C1—N20.2 (4)N1—C6—C7—C8179.0 (4)
C6—N1—C1—N2178.8 (4)C6—C7—C8—C90.9 (8)
N2—N3—C2—N10.6 (5)C7—C8—C9—F1179.6 (5)
C1—N1—C2—N30.5 (5)C7—C8—C9—C101.0 (9)
C6—N1—C2—N3179.0 (4)F1—C9—C10—C11179.6 (6)
C1—N2—C3—C4132.0 (5)C8—C9—C10—C111.0 (10)
N3—N2—C3—C450.6 (5)C7—C6—C11—C100.6 (8)
C1—N2—C3—C57.3 (6)N1—C6—C11—C10178.9 (5)
N3—N2—C3—C5175.3 (4)C9—C10—C11—C60.7 (9)
C1—N1—C6—C76.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.952.973.912 (4)170
C2—H2···I1ii0.952.833.774 (5)173
C7—H7···I1i0.952.863.801 (4)170
C8—H8···N3iii0.952.603.548 (6)174
C11—H11···I1ii0.953.134.083 (5)177
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y, z+1; (iii) x+1/2, y, z+3/2.
(salt2) 1-Isopropyl-4-(4-methylphenyl)-1,2,4-triazol-1-ium iodide top
Crystal data top
C12H16N3+·IDx = 1.608 Mg m3
Mr = 329.18Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, PccnCell parameters from 12738 reflections
a = 15.843 (3) Åθ = 3.1–26.4°
b = 21.933 (4) ŵ = 2.34 mm1
c = 7.8250 (14) ÅT = 173 K
V = 2719.0 (8) Å3Prism, colorless
Z = 80.52 × 0.12 × 0.04 mm
F(000) = 1296
Data collection top
Rigaku XtaLAB mini
diffractometer
2150 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.051
ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1719
Tmin = 0.564, Tmax = 0.911k = 2727
16099 measured reflectionsl = 99
2767 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0241P)2 + 1.7237P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2767 reflectionsΔρmax = 0.43 e Å3
148 parametersΔρmin = 0.36 e Å3
Crystal data top
C12H16N3+·IV = 2719.0 (8) Å3
Mr = 329.18Z = 8
Orthorhombic, PccnMo Kα radiation
a = 15.843 (3) ŵ = 2.34 mm1
b = 21.933 (4) ÅT = 173 K
c = 7.8250 (14) Å0.52 × 0.12 × 0.04 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2767 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2150 reflections with I > 2σ(I)
Tmin = 0.564, Tmax = 0.911Rint = 0.051
16099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
2767 reflectionsΔρmin = 0.36 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.39750 (2)0.11566 (2)0.28064 (3)0.03506 (9)
N10.36095 (16)0.01570 (12)0.6774 (4)0.0323 (7)
N20.40416 (16)0.10301 (12)0.7635 (4)0.0323 (7)
N30.47092 (18)0.06448 (14)0.7832 (4)0.0474 (8)
C10.3387 (2)0.07437 (14)0.7003 (4)0.0327 (8)
H10.28520.09180.67520.039*
C20.4431 (2)0.01195 (17)0.7293 (5)0.0466 (10)
H20.47580.02430.72660.056*
C30.4142 (2)0.16834 (15)0.8098 (5)0.0360 (8)
H30.42720.17080.93470.043*
C40.3329 (2)0.20152 (16)0.7779 (6)0.0558 (12)
H4A0.28770.18260.84500.067*
H4B0.31880.19930.65610.067*
H4C0.33910.24430.81170.067*
C50.4878 (2)0.19528 (16)0.7123 (5)0.0483 (10)
H5A0.47630.19330.58940.058*
H5B0.53920.17210.73790.058*
H5C0.49580.23790.74650.058*
C60.3098 (2)0.03293 (14)0.6067 (4)0.0335 (8)
C70.3493 (2)0.08364 (16)0.5362 (5)0.0417 (9)
H70.40900.08580.52960.050*
C80.3000 (2)0.13047 (15)0.4763 (5)0.0449 (10)
H80.32690.16550.43010.054*
C90.2121 (2)0.12853 (15)0.4805 (5)0.0387 (9)
C100.1751 (2)0.07632 (15)0.5485 (5)0.0401 (9)
H100.11530.07310.55060.048*
C110.2231 (2)0.02902 (14)0.6130 (5)0.0377 (9)
H110.19660.00580.66120.045*
C120.1601 (3)0.18091 (17)0.4159 (6)0.0535 (11)
H12A0.10660.16550.37030.064*
H12B0.14870.20930.50990.064*
H12C0.19100.20220.32520.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03260 (14)0.02809 (12)0.04449 (16)0.00250 (9)0.00283 (10)0.00031 (10)
N10.0298 (15)0.0265 (14)0.0406 (18)0.0021 (11)0.0055 (13)0.0034 (12)
N20.0265 (15)0.0293 (14)0.0411 (18)0.0028 (11)0.0026 (13)0.0011 (12)
N30.0322 (16)0.0385 (17)0.071 (2)0.0074 (13)0.0089 (17)0.0046 (16)
C10.0283 (17)0.0266 (16)0.043 (2)0.0031 (14)0.0050 (16)0.0047 (15)
C20.036 (2)0.036 (2)0.068 (3)0.0101 (17)0.003 (2)0.0004 (19)
C30.038 (2)0.0299 (18)0.040 (2)0.0017 (14)0.0005 (16)0.0045 (15)
C40.039 (2)0.0287 (19)0.100 (4)0.0033 (16)0.004 (2)0.005 (2)
C50.039 (2)0.042 (2)0.064 (3)0.0091 (17)0.006 (2)0.006 (2)
C60.0343 (19)0.0263 (17)0.040 (2)0.0014 (15)0.0069 (17)0.0046 (14)
C70.034 (2)0.035 (2)0.057 (3)0.0052 (16)0.0123 (18)0.0020 (17)
C80.047 (2)0.028 (2)0.060 (3)0.0077 (16)0.015 (2)0.0016 (16)
C90.042 (2)0.0297 (19)0.044 (2)0.0033 (15)0.0061 (18)0.0026 (15)
C100.0319 (19)0.037 (2)0.051 (2)0.0029 (16)0.0060 (18)0.0005 (17)
C110.035 (2)0.0264 (17)0.051 (3)0.0067 (14)0.0062 (18)0.0030 (16)
C120.055 (2)0.041 (2)0.065 (3)0.0058 (19)0.012 (2)0.006 (2)
Geometric parameters (Å, º) top
N1—C11.346 (4)C5—H5B0.9800
N1—C21.365 (4)C5—H5C0.9800
N1—C61.449 (4)C6—C111.377 (4)
N2—C11.310 (4)C6—C71.390 (4)
N2—N31.363 (4)C7—C81.372 (5)
N2—C31.487 (4)C7—H70.9500
N3—C21.304 (5)C8—C91.394 (5)
C1—H10.9500C8—H80.9500
C2—H20.9500C9—C101.392 (5)
C3—C41.500 (5)C9—C121.502 (5)
C3—C51.514 (5)C10—C111.383 (5)
C3—H31.0000C10—H100.9500
C4—H4A0.9800C11—H110.9500
C4—H4B0.9800C12—H12A0.9800
C4—H4C0.9800C12—H12B0.9800
C5—H5A0.9800C12—H12C0.9800
C1—N1—C2105.5 (3)C3—C5—H5C109.5
C1—N1—C6127.5 (3)H5A—C5—H5C109.5
C2—N1—C6127.0 (3)H5B—C5—H5C109.5
C1—N2—N3111.1 (3)C11—C6—C7120.8 (3)
C1—N2—C3129.7 (3)C11—C6—N1119.9 (3)
N3—N2—C3119.1 (3)C7—C6—N1119.3 (3)
C2—N3—N2104.4 (3)C8—C7—C6118.6 (3)
N2—C1—N1107.5 (3)C8—C7—H7120.7
N2—C1—H1126.2C6—C7—H7120.7
N1—C1—H1126.2C7—C8—C9122.5 (3)
N3—C2—N1111.4 (3)C7—C8—H8118.8
N3—C2—H2124.3C9—C8—H8118.8
N1—C2—H2124.3C10—C9—C8117.1 (3)
N2—C3—C4109.6 (3)C10—C9—C12121.8 (3)
N2—C3—C5109.6 (3)C8—C9—C12121.1 (3)
C4—C3—C5112.8 (3)C11—C10—C9121.6 (3)
N2—C3—H3108.2C11—C10—H10119.2
C4—C3—H3108.2C9—C10—H10119.2
C5—C3—H3108.2C6—C11—C10119.3 (3)
C3—C4—H4A109.5C6—C11—H11120.3
C3—C4—H4B109.5C10—C11—H11120.3
H4A—C4—H4B109.5C9—C12—H12A109.5
C3—C4—H4C109.5C9—C12—H12B109.5
H4A—C4—H4C109.5H12A—C12—H12B109.5
H4B—C4—H4C109.5C9—C12—H12C109.5
C3—C5—H5A109.5H12A—C12—H12C109.5
C3—C5—H5B109.5H12B—C12—H12C109.5
H5A—C5—H5B109.5
C1—N2—N3—C20.1 (4)C2—N1—C6—C11158.4 (4)
C3—N2—N3—C2178.7 (3)C1—N1—C6—C7157.1 (3)
N3—N2—C1—N10.3 (4)C2—N1—C6—C720.4 (5)
C3—N2—C1—N1178.9 (3)C11—C6—C7—C81.4 (5)
C2—N1—C1—N20.5 (4)N1—C6—C7—C8177.3 (3)
C6—N1—C1—N2178.4 (3)C6—C7—C8—C91.3 (6)
N2—N3—C2—N10.4 (4)C7—C8—C9—C100.2 (6)
C1—N1—C2—N30.6 (4)C7—C8—C9—C12179.2 (4)
C6—N1—C2—N3178.6 (3)C8—C9—C10—C111.6 (6)
C1—N2—C3—C41.5 (5)C12—C9—C10—C11177.9 (4)
N3—N2—C3—C4179.9 (3)C7—C6—C11—C100.1 (5)
C1—N2—C3—C5122.8 (4)N1—C6—C11—C10178.6 (3)
N3—N2—C3—C555.8 (4)C9—C10—C11—C61.4 (6)
C1—N1—C6—C1124.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.953.063.901 (3)149
C2—H2···I1ii0.952.843.771 (4)168
C3—H3···I1iii1.003.003.870 (4)146
C11—H11···I1i0.952.983.930 (3)174
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y, z+1; (iii) x, y, z+1.
(salt3) 1-Isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide top
Crystal data top
C11H14N3+·IF(000) = 616
Mr = 315.15Dx = 1.674 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 5.9326 (11) ÅCell parameters from 11444 reflections
b = 17.826 (3) Åθ = 3.4–27.6°
c = 12.129 (2) ŵ = 2.54 mm1
β = 102.897 (7)°T = 173 K
V = 1250.3 (4) Å3Prism, colorless
Z = 40.80 × 0.40 × 0.10 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2582 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.044
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 77
Tmin = 0.356, Tmax = 0.776k = 2323
12823 measured reflectionsl = 1515
2858 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0167P)2 + 0.5394P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
2858 reflectionsΔρmax = 0.40 e Å3
138 parametersΔρmin = 0.69 e Å3
Crystal data top
C11H14N3+·IV = 1250.3 (4) Å3
Mr = 315.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.9326 (11) ŵ = 2.54 mm1
b = 17.826 (3) ÅT = 173 K
c = 12.129 (2) Å0.80 × 0.40 × 0.10 mm
β = 102.897 (7)°
Data collection top
Rigaku XtaLAB mini
diffractometer
2858 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2582 reflections with I > 2σ(I)
Tmin = 0.356, Tmax = 0.776Rint = 0.044
12823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.09Δρmax = 0.40 e Å3
2858 reflectionsΔρmin = 0.69 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.15256 (2)0.20965 (2)0.66252 (2)0.02352 (6)
N10.3956 (3)0.19026 (11)0.39549 (15)0.0187 (4)
N20.5118 (3)0.29644 (10)0.46845 (17)0.0209 (4)
N30.3012 (3)0.31018 (12)0.39771 (16)0.0236 (4)
C10.5686 (4)0.22566 (13)0.46767 (19)0.0212 (5)
H10.70620.20330.51010.025*
C20.2350 (4)0.24481 (13)0.35485 (19)0.0226 (5)
H20.09320.23590.30200.027*
C30.6455 (4)0.35740 (13)0.53664 (19)0.0257 (5)
H30.76190.33420.59990.031*
C40.7738 (5)0.40192 (15)0.4629 (2)0.0392 (6)
H4A0.66250.42280.39820.047*
H4B0.88170.36880.43580.047*
H4C0.85990.44280.50730.047*
C50.4824 (4)0.40497 (14)0.5871 (2)0.0335 (6)
H5A0.40010.37300.63080.040*
H5B0.37050.42960.52620.040*
H5C0.57100.44300.63690.040*
C60.3826 (4)0.11147 (13)0.36959 (18)0.0205 (5)
C70.5430 (4)0.08035 (15)0.3150 (2)0.0294 (5)
H70.65930.11050.29450.035*
C80.5291 (5)0.00422 (16)0.2914 (2)0.0393 (6)
H80.63880.01850.25560.047*
C90.3563 (4)0.03878 (15)0.3195 (2)0.0376 (6)
H90.34620.09070.30160.045*
C100.1980 (5)0.00676 (15)0.3736 (2)0.0349 (6)
H100.08000.03680.39280.042*
C110.2112 (4)0.06924 (14)0.4001 (2)0.0285 (5)
H110.10470.09160.43820.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01997 (9)0.02622 (11)0.02322 (10)0.00035 (5)0.00235 (6)0.00040 (6)
N10.0184 (9)0.0182 (9)0.0187 (9)0.0009 (7)0.0021 (7)0.0004 (8)
N20.0204 (10)0.0189 (10)0.0220 (10)0.0016 (7)0.0015 (8)0.0004 (8)
N30.0237 (10)0.0198 (10)0.0254 (10)0.0050 (8)0.0013 (8)0.0028 (8)
C10.0205 (11)0.0176 (11)0.0235 (11)0.0014 (9)0.0009 (9)0.0013 (9)
C20.0206 (11)0.0218 (13)0.0236 (11)0.0031 (9)0.0011 (9)0.0009 (10)
C30.0275 (12)0.0162 (12)0.0291 (12)0.0003 (9)0.0024 (9)0.0032 (10)
C40.0370 (14)0.0268 (14)0.0583 (18)0.0093 (11)0.0202 (13)0.0114 (13)
C50.0430 (15)0.0260 (14)0.0333 (13)0.0031 (11)0.0125 (11)0.0098 (11)
C60.0220 (10)0.0183 (12)0.0186 (10)0.0023 (9)0.0008 (8)0.0002 (9)
C70.0272 (12)0.0267 (13)0.0351 (13)0.0014 (10)0.0091 (10)0.0034 (11)
C80.0406 (15)0.0309 (15)0.0462 (16)0.0097 (12)0.0091 (12)0.0090 (13)
C90.0534 (17)0.0160 (13)0.0371 (14)0.0016 (11)0.0032 (12)0.0042 (11)
C100.0454 (15)0.0238 (14)0.0340 (14)0.0097 (11)0.0061 (11)0.0029 (11)
C110.0350 (13)0.0247 (13)0.0271 (12)0.0025 (10)0.0096 (10)0.0004 (10)
Geometric parameters (Å, º) top
N1—C11.348 (3)C5—H5A0.9800
N1—C21.374 (3)C5—H5B0.9800
N1—C61.437 (3)C5—H5C0.9800
N2—C11.306 (3)C6—C111.380 (3)
N2—N31.371 (3)C6—C71.390 (3)
N2—C31.484 (3)C7—C81.386 (4)
N3—C21.301 (3)C7—H70.9500
C1—H10.9500C8—C91.382 (4)
C2—H20.9500C8—H80.9500
C3—C51.515 (3)C9—C101.384 (4)
C3—C41.520 (3)C9—H90.9500
C3—H31.0000C10—C111.390 (4)
C4—H4A0.9800C10—H100.9500
C4—H4B0.9800C11—H110.9500
C4—H4C0.9800
C1—N1—C2105.57 (19)C3—C5—H5A109.5
C1—N1—C6126.54 (19)C3—C5—H5B109.5
C2—N1—C6127.88 (19)H5A—C5—H5B109.5
C1—N2—N3111.62 (19)C3—C5—H5C109.5
C1—N2—C3127.22 (19)H5A—C5—H5C109.5
N3—N2—C3121.14 (18)H5B—C5—H5C109.5
C2—N3—N2103.99 (18)C11—C6—C7122.2 (2)
N2—C1—N1107.3 (2)C11—C6—N1118.8 (2)
N2—C1—H1126.4C7—C6—N1119.0 (2)
N1—C1—H1126.4C8—C7—C6118.3 (2)
N3—C2—N1111.6 (2)C8—C7—H7120.9
N3—C2—H2124.2C6—C7—H7120.9
N1—C2—H2124.2C9—C8—C7120.3 (2)
N2—C3—C5108.96 (19)C9—C8—H8119.8
N2—C3—C4109.27 (19)C7—C8—H8119.8
C5—C3—C4113.2 (2)C8—C9—C10120.5 (3)
N2—C3—H3108.4C8—C9—H9119.7
C5—C3—H3108.4C10—C9—H9119.7
C4—C3—H3108.4C9—C10—C11120.1 (2)
C3—C4—H4A109.5C9—C10—H10119.9
C3—C4—H4B109.5C11—C10—H10119.9
H4A—C4—H4B109.5C6—C11—C10118.5 (2)
C3—C4—H4C109.5C6—C11—H11120.8
H4A—C4—H4C109.5C10—C11—H11120.8
H4B—C4—H4C109.5
C1—N2—N3—C20.0 (2)C1—N1—C6—C11114.7 (3)
C3—N2—N3—C2178.7 (2)C2—N1—C6—C1163.7 (3)
N3—N2—C1—N10.1 (3)C1—N1—C6—C765.1 (3)
C3—N2—C1—N1178.8 (2)C2—N1—C6—C7116.5 (3)
C2—N1—C1—N20.2 (2)C11—C6—C7—C80.3 (4)
C6—N1—C1—N2178.9 (2)N1—C6—C7—C8179.6 (2)
N2—N3—C2—N10.1 (2)C6—C7—C8—C91.3 (4)
C1—N1—C2—N30.2 (3)C7—C8—C9—C101.3 (4)
C6—N1—C2—N3178.9 (2)C8—C9—C10—C110.1 (4)
C1—N2—C3—C5135.4 (2)C7—C6—C11—C100.9 (4)
N3—N2—C3—C543.1 (3)N1—C6—C11—C10179.3 (2)
C1—N2—C3—C4100.5 (3)C9—C10—C11—C60.9 (4)
N3—N2—C3—C481.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.952.873.744 (2)153
C2—H2···I1ii0.952.943.800 (2)151
C3—H3···I1i1.003.184.033 (2)145
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2.
(salt4) 1-Methyl-4-phenyl-1,2,4-triazol-1-ium iodide top
Crystal data top
C9H10N3+·IF(000) = 552
Mr = 287.10Dx = 1.783 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71075 Å
a = 7.660 (2) ÅCell parameters from 5405 reflections
b = 16.912 (5) Åθ = 3.5–27.6°
c = 8.412 (3) ŵ = 2.96 mm1
β = 101.137 (7)°T = 173 K
V = 1069.2 (6) Å3Prism, colorless
Z = 40.31 × 0.23 × 0.13 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2359 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.020
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 99
Tmin = 0.439, Tmax = 0.681k = 2121
5472 measured reflectionsl = 1010
2420 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0128P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.18 e Å3
2420 reflectionsΔρmin = 0.36 e Å3
119 parametersAbsolute structure: Flack x determined using 1112 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.012 (18)
Crystal data top
C9H10N3+·IV = 1069.2 (6) Å3
Mr = 287.10Z = 4
Monoclinic, CcMo Kα radiation
a = 7.660 (2) ŵ = 2.96 mm1
b = 16.912 (5) ÅT = 173 K
c = 8.412 (3) Å0.31 × 0.23 × 0.13 mm
β = 101.137 (7)°
Data collection top
Rigaku XtaLAB mini
diffractometer
2420 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2359 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 0.681Rint = 0.020
5472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.037Δρmax = 0.18 e Å3
S = 1.05Δρmin = 0.36 e Å3
2420 reflectionsAbsolute structure: Flack x determined using 1112 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
119 parametersAbsolute structure parameter: 0.012 (18)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.70097 (5)0.18929 (2)0.53544 (5)0.03177 (8)
N10.4911 (4)0.06092 (17)0.1783 (3)0.0223 (6)
N20.7314 (6)0.0784 (2)0.0734 (5)0.0399 (12)
N30.6399 (4)0.14778 (18)0.0768 (4)0.0271 (7)
C10.4981 (5)0.1377 (2)0.1394 (4)0.0258 (8)
H10.41520.17740.15460.031*
C20.6381 (6)0.0273 (2)0.1362 (5)0.0362 (10)
H20.66820.02700.15110.043*
C30.7052 (12)0.2216 (2)0.0167 (8)0.0414 (12)
H3A0.62480.26510.03040.050*
H3B0.70950.21580.09840.050*
H3C0.82470.23320.07800.050*
C40.3552 (5)0.0234 (2)0.2475 (5)0.0227 (8)
C50.2349 (7)0.0696 (3)0.3098 (6)0.0333 (11)
H50.24460.12560.31070.040*
C60.0998 (6)0.0327 (3)0.3709 (6)0.0378 (11)
H60.01560.06360.41300.045*
C70.0876 (7)0.0481 (3)0.3707 (5)0.0399 (12)
H70.00500.07300.41280.048*
C80.2093 (7)0.0936 (3)0.3098 (5)0.0381 (11)
H80.19990.14960.31060.046*
C90.3449 (7)0.0583 (2)0.2475 (5)0.0296 (10)
H90.42880.08950.20570.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03583 (13)0.02441 (11)0.03571 (12)0.00729 (17)0.00855 (9)0.00034 (18)
N10.0210 (15)0.0225 (15)0.0248 (14)0.0018 (13)0.0077 (12)0.0007 (12)
N20.035 (3)0.0347 (19)0.056 (3)0.0041 (18)0.024 (2)0.0023 (16)
N30.0305 (17)0.0241 (16)0.0293 (16)0.0016 (14)0.0120 (14)0.0002 (13)
C10.0268 (19)0.0248 (19)0.0268 (18)0.0041 (15)0.0080 (16)0.0011 (15)
C20.033 (2)0.025 (2)0.056 (3)0.0062 (17)0.023 (2)0.0004 (18)
C30.055 (2)0.0333 (19)0.043 (3)0.014 (3)0.026 (2)0.003 (3)
C40.0172 (18)0.032 (2)0.0181 (18)0.0002 (17)0.0023 (15)0.0020 (16)
C50.031 (3)0.036 (3)0.034 (3)0.001 (2)0.009 (2)0.006 (2)
C60.025 (2)0.058 (3)0.033 (3)0.001 (2)0.013 (2)0.005 (2)
C70.032 (3)0.060 (3)0.028 (2)0.014 (2)0.004 (2)0.005 (2)
C80.042 (3)0.040 (3)0.033 (2)0.012 (3)0.009 (2)0.005 (2)
C90.032 (3)0.029 (2)0.028 (2)0.0018 (18)0.0072 (19)0.0048 (17)
Geometric parameters (Å, º) top
N1—C11.343 (4)C4—C91.384 (6)
N1—C21.368 (5)C4—C51.386 (6)
N1—C41.435 (5)C5—C61.389 (7)
N2—C21.297 (6)C5—H50.9500
N2—N31.370 (5)C6—C71.369 (7)
N3—C11.306 (5)C6—H60.9500
N3—C31.471 (6)C7—C81.381 (8)
C1—H10.9500C7—H70.9500
C2—H20.9500C8—C91.385 (7)
C3—H3A0.9800C8—H80.9500
C3—H3B0.9800C9—H90.9500
C3—H3C0.9800
C1—N1—C2105.4 (3)C9—C4—C5121.3 (4)
C1—N1—C4126.4 (3)C9—C4—N1119.2 (4)
C2—N1—C4128.2 (3)C5—C4—N1119.4 (4)
C2—N2—N3103.8 (4)C4—C5—C6119.0 (4)
C1—N3—N2111.4 (3)C4—C5—H5120.5
C1—N3—C3127.9 (4)C6—C5—H5120.5
N2—N3—C3120.7 (4)C7—C6—C5120.2 (5)
N3—C1—N1107.5 (3)C7—C6—H6119.9
N3—C1—H1126.3C5—C6—H6119.9
N1—C1—H1126.3C6—C7—C8120.4 (5)
N2—C2—N1112.0 (3)C6—C7—H7119.8
N2—C2—H2124.0C8—C7—H7119.8
N1—C2—H2124.0C7—C8—C9120.6 (5)
N3—C3—H3A109.5C7—C8—H8119.7
N3—C3—H3B109.5C9—C8—H8119.7
H3A—C3—H3B109.5C4—C9—C8118.5 (5)
N3—C3—H3C109.5C4—C9—H9120.8
H3A—C3—H3C109.5C8—C9—H9120.8
H3B—C3—H3C109.5
C2—N2—N3—C10.0 (4)C1—N1—C4—C512.9 (6)
C2—N2—N3—C3179.3 (4)C2—N1—C4—C5167.9 (4)
N2—N3—C1—N10.4 (4)C9—C4—C5—C61.0 (7)
C3—N3—C1—N1179.6 (4)N1—C4—C5—C6177.6 (4)
C2—N1—C1—N30.6 (4)C4—C5—C6—C70.7 (7)
C4—N1—C1—N3178.7 (3)C5—C6—C7—C80.0 (7)
N3—N2—C2—N10.4 (5)C6—C7—C8—C90.2 (7)
C1—N1—C2—N20.6 (5)C5—C4—C9—C80.7 (6)
C4—N1—C2—N2178.6 (4)N1—C4—C9—C8177.9 (4)
C1—N1—C4—C9165.7 (4)C7—C8—C9—C40.1 (7)
C2—N1—C4—C913.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.952.853.707 (4)150
C2—H2···I1ii0.952.943.811 (4)153
C3—H3B···I1iii0.983.104.079 (6)176
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z1/2; (iii) x, y, z1.
(salt5) 1-Benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate top
Crystal data top
C15H14N3+·Br·H2OF(000) = 1360
Mr = 334.22Dx = 1.545 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 24.783 (6) ÅCell parameters from 10996 reflections
b = 8.996 (2) Åθ = 3.2–27.7°
c = 13.089 (3) ŵ = 2.86 mm1
β = 100.068 (7)°T = 173 K
V = 2873.3 (13) Å3Prism, colorless
Z = 80.60 × 0.37 × 0.17 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2630 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.031
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1632
Tmin = 0.321, Tmax = 0.614k = 119
6672 measured reflectionsl = 1617
3259 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0376P)2 + 4.9222P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3259 reflectionsΔρmax = 0.75 e Å3
189 parametersΔρmin = 0.63 e Å3
Crystal data top
C15H14N3+·Br·H2OV = 2873.3 (13) Å3
Mr = 334.22Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.783 (6) ŵ = 2.86 mm1
b = 8.996 (2) ÅT = 173 K
c = 13.089 (3) Å0.60 × 0.37 × 0.17 mm
β = 100.068 (7)°
Data collection top
Rigaku XtaLAB mini
diffractometer
3259 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2630 reflections with I > 2σ(I)
Tmin = 0.321, Tmax = 0.614Rint = 0.031
6672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.75 e Å3
3259 reflectionsΔρmin = 0.63 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.91115 (2)0.40151 (3)0.12909 (3)0.03409 (12)
O10.95493 (13)0.3722 (3)0.3846 (2)0.0497 (7)
N10.93559 (9)0.0969 (2)0.07656 (16)0.0202 (5)
N20.85547 (9)0.0072 (2)0.02922 (17)0.0230 (5)
N30.84900 (10)0.1587 (3)0.0213 (2)0.0310 (6)
C10.90660 (11)0.0297 (3)0.0619 (2)0.0218 (6)
H10.92060.12780.07310.026*
C20.89834 (12)0.2097 (3)0.0504 (2)0.0282 (6)
H20.90750.31230.05330.034*
C30.80795 (12)0.0930 (3)0.0032 (2)0.0272 (6)
H3A0.78700.06620.06570.033*
H3B0.82100.19660.00050.033*
C40.77094 (11)0.0834 (3)0.0831 (2)0.0228 (6)
C50.78422 (12)0.1609 (3)0.1760 (2)0.0279 (6)
H50.81600.22190.18830.034*
C60.75109 (13)0.1493 (3)0.2505 (2)0.0339 (7)
H60.76050.20080.31450.041*
C70.70429 (12)0.0627 (3)0.2321 (2)0.0310 (7)
H70.68170.05440.28340.037*
C80.69055 (13)0.0116 (4)0.1389 (3)0.0357 (7)
H80.65810.06970.12570.043*
C90.72382 (12)0.0019 (3)0.0647 (2)0.0306 (7)
H90.71430.05390.00090.037*
C100.99369 (11)0.1085 (3)0.11401 (19)0.0219 (6)
C111.02340 (12)0.0196 (3)0.1428 (2)0.0248 (6)
H111.00600.11400.13670.030*
C121.07896 (12)0.0078 (3)0.1805 (2)0.0289 (6)
H121.09990.09470.20070.035*
C131.10438 (13)0.1303 (4)0.1889 (2)0.0321 (7)
H131.14250.13800.21510.038*
C141.07384 (13)0.2566 (4)0.1590 (2)0.0360 (7)
H141.09120.35110.16450.043*
C151.01828 (12)0.2467 (3)0.1210 (2)0.0310 (7)
H150.99740.33340.10010.037*
H1A0.992 (2)0.389 (5)0.377 (4)0.086 (17)*
H1B0.939 (3)0.372 (7)0.315 (5)0.13 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0347 (2)0.02343 (17)0.0440 (2)0.00110 (13)0.00651 (13)0.00295 (13)
O10.0535 (18)0.0457 (15)0.0542 (18)0.0036 (13)0.0215 (14)0.0063 (13)
N10.0236 (12)0.0192 (11)0.0183 (10)0.0007 (9)0.0051 (9)0.0014 (9)
N20.0225 (13)0.0221 (12)0.0251 (12)0.0027 (9)0.0060 (10)0.0001 (9)
N30.0275 (14)0.0210 (12)0.0435 (15)0.0013 (10)0.0034 (11)0.0025 (11)
C10.0252 (15)0.0185 (13)0.0225 (13)0.0019 (11)0.0059 (11)0.0009 (10)
C20.0275 (16)0.0201 (14)0.0366 (16)0.0003 (12)0.0044 (12)0.0026 (12)
C30.0237 (15)0.0290 (15)0.0287 (14)0.0070 (12)0.0039 (11)0.0062 (12)
C40.0188 (14)0.0224 (14)0.0265 (14)0.0070 (11)0.0021 (11)0.0042 (11)
C50.0215 (15)0.0298 (15)0.0316 (15)0.0024 (12)0.0018 (12)0.0013 (12)
C60.0359 (18)0.0369 (17)0.0286 (15)0.0007 (14)0.0047 (13)0.0028 (13)
C70.0266 (16)0.0319 (16)0.0361 (17)0.0041 (12)0.0101 (13)0.0057 (13)
C80.0233 (16)0.0350 (18)0.049 (2)0.0060 (13)0.0068 (14)0.0003 (15)
C90.0256 (16)0.0309 (16)0.0340 (16)0.0005 (12)0.0014 (13)0.0059 (13)
C100.0235 (14)0.0284 (14)0.0144 (12)0.0017 (11)0.0050 (10)0.0008 (10)
C110.0280 (16)0.0260 (15)0.0201 (13)0.0021 (12)0.0036 (11)0.0024 (11)
C120.0280 (16)0.0380 (17)0.0204 (13)0.0063 (13)0.0039 (11)0.0009 (12)
C130.0255 (16)0.0476 (19)0.0226 (14)0.0063 (13)0.0027 (12)0.0032 (13)
C140.0331 (18)0.0334 (17)0.0403 (18)0.0106 (14)0.0027 (14)0.0006 (14)
C150.0290 (17)0.0265 (15)0.0358 (16)0.0054 (12)0.0009 (13)0.0023 (13)
Geometric parameters (Å, º) top
O1—H1A0.95 (6)C6—C71.382 (4)
O1—H1B0.92 (7)C6—H60.9500
N1—C11.342 (3)C7—C81.381 (4)
N1—C21.375 (4)C7—H70.9500
N1—C101.441 (4)C8—C91.382 (4)
N2—C11.307 (3)C8—H80.9500
N2—N31.374 (3)C9—H90.9500
N2—C31.475 (3)C10—C151.380 (4)
N3—C21.299 (4)C10—C111.384 (4)
C1—H10.9500C11—C121.383 (4)
C2—H20.9500C11—H110.9500
C3—C41.508 (4)C12—C131.388 (4)
C3—H3A0.9900C12—H120.9500
C3—H3B0.9900C13—C141.383 (5)
C4—C91.383 (4)C13—H130.9500
C4—C51.391 (4)C14—C151.383 (4)
C5—C61.384 (4)C14—H140.9500
C5—H50.9500C15—H150.9500
H1A—O1—H1B98 (5)C5—C6—H6119.9
C1—N1—C2105.8 (2)C8—C7—C6119.8 (3)
C1—N1—C10126.0 (2)C8—C7—H7120.1
C2—N1—C10128.2 (2)C6—C7—H7120.1
C1—N2—N3111.7 (2)C7—C8—C9120.3 (3)
C1—N2—C3127.5 (2)C7—C8—H8119.8
N3—N2—C3120.7 (2)C9—C8—H8119.8
C2—N3—N2103.7 (2)C8—C9—C4120.1 (3)
N2—C1—N1107.2 (2)C8—C9—H9119.9
N2—C1—H1126.4C4—C9—H9119.9
N1—C1—H1126.4C15—C10—C11121.6 (3)
N3—C2—N1111.7 (3)C15—C10—N1119.4 (2)
N3—C2—H2124.2C11—C10—N1119.0 (2)
N1—C2—H2124.2C12—C11—C10118.8 (3)
N2—C3—C4111.3 (2)C12—C11—H11120.6
N2—C3—H3A109.4C10—C11—H11120.6
C4—C3—H3A109.4C11—C12—C13120.4 (3)
N2—C3—H3B109.4C11—C12—H12119.8
C4—C3—H3B109.4C13—C12—H12119.8
H3A—C3—H3B108.0C14—C13—C12119.6 (3)
C9—C4—C5119.6 (3)C14—C13—H13120.2
C9—C4—C3120.6 (3)C12—C13—H13120.2
C5—C4—C3119.8 (3)C15—C14—C13120.7 (3)
C6—C5—C4120.0 (3)C15—C14—H14119.7
C6—C5—H5120.0C13—C14—H14119.7
C4—C5—H5120.0C10—C15—C14118.8 (3)
C7—C6—C5120.2 (3)C10—C15—H15120.6
C7—C6—H6119.9C14—C15—H15120.6
C1—N2—N3—C20.1 (3)C6—C7—C8—C91.1 (5)
C3—N2—N3—C2179.6 (2)C7—C8—C9—C40.5 (5)
N3—N2—C1—N10.0 (3)C5—C4—C9—C80.9 (4)
C3—N2—C1—N1179.4 (2)C3—C4—C9—C8179.1 (3)
C2—N1—C1—N20.1 (3)C1—N1—C10—C15177.3 (3)
C10—N1—C1—N2178.9 (2)C2—N1—C10—C154.0 (4)
N2—N3—C2—N10.2 (3)C1—N1—C10—C113.1 (4)
C1—N1—C2—N30.1 (3)C2—N1—C10—C11175.6 (3)
C10—N1—C2—N3178.8 (2)C15—C10—C11—C120.7 (4)
C1—N2—C3—C4108.9 (3)N1—C10—C11—C12178.8 (2)
N3—N2—C3—C470.5 (3)C10—C11—C12—C130.2 (4)
N2—C3—C4—C999.5 (3)C11—C12—C13—C140.3 (4)
N2—C3—C4—C580.5 (3)C12—C13—C14—C150.2 (5)
C9—C4—C5—C61.7 (4)C11—C10—C15—C140.8 (4)
C3—C4—C5—C6178.3 (3)N1—C10—C15—C14178.8 (2)
C4—C5—C6—C71.1 (5)C13—C14—C15—C100.3 (5)
C5—C6—C7—C80.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.952.593.455 (3)151
C2—H2···Br1i0.952.753.644 (3)156
C11—H11···O1ii0.952.553.247 (4)130
O1—H1A···Br1ii0.95 (6)2.42 (6)3.365 (3)172 (4)
O1—H1B···Br10.92 (7)2.43 (7)3.341 (3)170 (5)
Symmetry codes: (i) x, y1, z; (ii) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (salt1) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.952.973.912 (4)169.6
C2—H2···I1ii0.952.833.774 (5)172.5
C7—H7···I1i0.952.863.801 (4)169.9
C8—H8···N3iii0.952.603.548 (6)174.3
C11—H11···I1ii0.953.134.083 (5)177.3
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y, z+1; (iii) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) for (salt2) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.953.063.901 (3)149.1
C2—H2···I1ii0.952.843.771 (4)168.0
C3—H3···I1iii1.003.003.870 (4)145.8
C11—H11···I1i0.952.983.930 (3)174.2
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y, z+1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) for (salt3) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.952.873.744 (2)152.7
C2—H2···I1ii0.952.943.800 (2)150.6
C3—H3···I1i1.003.184.033 (2)144.6
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (salt4) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.952.853.707 (4)149.9
C2—H2···I1ii0.952.943.811 (4)153.3
C3—H3B···I1iii0.983.104.079 (6)176.0
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z1/2; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) for (salt5) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.952.593.455 (3)151.3
C2—H2···Br1i0.952.753.644 (3)156.2
C11—H11···O1ii0.952.553.247 (4)130.3
O1—H1A···Br1ii0.95 (6)2.42 (6)3.365 (3)172 (4)
O1—H1B···Br10.92 (7)2.43 (7)3.341 (3)170 (5)
Symmetry codes: (i) x, y1, z; (ii) x+2, y, z+1/2.

Experimental details

(salt1)(salt2)(salt3)
Crystal data
Chemical formulaC11H13FN3+·IC12H16N3+·IC11H14N3+·I
Mr333.14329.18315.15
Crystal system, space groupOrthorhombic, PccnOrthorhombic, PccnMonoclinic, P21/n
Temperature (K)173173173
a, b, c (Å)16.396 (3), 21.732 (4), 7.2412 (12)15.843 (3), 21.933 (4), 7.8250 (14)5.9326 (11), 17.826 (3), 12.129 (2)
α, β, γ (°)90, 90, 9090, 90, 9090, 102.897 (7), 90
V3)2580.1 (7)2719.0 (8)1250.3 (4)
Z884
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.472.342.54
Crystal size (mm)0.71 × 0.05 × 0.020.52 × 0.12 × 0.040.80 × 0.40 × 0.10
Data collection
DiffractometerRigaku XtaLAB mini
diffractometer
Rigaku XtaLAB mini
diffractometer
Rigaku XtaLAB mini
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Multi-scan
(REQAB; Rigaku, 1998)
Multi-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.671, 0.9520.564, 0.9110.356, 0.776
No. of measured, independent and
observed [I > 2σ(I)] reflections
17829, 2632, 1872 16099, 2767, 2150 12823, 2858, 2582
Rint0.0730.0510.044
(sin θ/λ)max1)0.6250.6250.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.077, 1.03 0.031, 0.065, 1.04 0.023, 0.055, 1.09
No. of reflections263227672858
No. of parameters147148138
No. of restraints000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.580.43, 0.360.40, 0.69
Absolute structure???
Absolute structure parameter???


(salt4)(salt5)
Crystal data
Chemical formulaC9H10N3+·IC15H14N3+·Br·H2O
Mr287.10334.22
Crystal system, space groupMonoclinic, CcMonoclinic, C2/c
Temperature (K)173173
a, b, c (Å)7.660 (2), 16.912 (5), 8.412 (3)24.783 (6), 8.996 (2), 13.089 (3)
α, β, γ (°)90, 101.137 (7), 9090, 100.068 (7), 90
V3)1069.2 (6)2873.3 (13)
Z48
Radiation typeMo KαMo Kα
µ (mm1)2.962.86
Crystal size (mm)0.31 × 0.23 × 0.130.60 × 0.37 × 0.17
Data collection
DiffractometerRigaku XtaLAB mini
diffractometer
Rigaku XtaLAB mini
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Multi-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.439, 0.6810.321, 0.614
No. of measured, independent and
observed [I > 2σ(I)] reflections
5472, 2420, 2359 6672, 3259, 2630
Rint0.0200.031
(sin θ/λ)max1)0.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.037, 1.05 0.043, 0.098, 1.08
No. of reflections24203259
No. of parameters119189
No. of restraints20
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.360.75, 0.63
Absolute structureFlack x determined using 1112 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)?
Absolute structure parameter0.012 (18)?

Computer programs: CrystalClearSM Expert (Rigaku, 2011), SIR97 (Altomare et al., 1999), SHELXL2014 (Sheldrick, 2015), CrystalStructure (Rigaku, 2010), Mercury (Macrae et al., 2006).

 

Acknowledgements

For financial support, we are indebted to the University of St. Thomas start-up funds, Partnership in Learning and Research Grant funds for MAG; work-study, Young Scholars and Collaborative Inquiry grants for MT, MS, TP and MA; the NSF–MRI grant No. 095322 `MRI:R2: Acquisition of a 400 MHz Nuclear Magnetic Resonance (NMR) Spectrometer'; St. Catherine University and the NSF–MRI grant No. 1125975 `MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility'. We would like to also acknowledge Dr Victor Young (UMN–Twin Cities) and Dr Steve Berry (UMN–Duluth) with their assistance while gathering preliminary data, and Dr William Ojala (UST) for providing helpful discussions with this project.

References

First citationAbdellah, I., Cassirame, B., Condon, S., Nedelec, J. & Pichon, C. (2011). Curr. Top. Electrochem. 16, 81–91.  CAS Google Scholar
First citationAhrens, S., Peritz, A. & Strassner, T. (2009). Angew. Chem. Int. Ed. 48, 7908–7910.  Web of Science CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBecker, H. G. O., Al Kurdi, H., Gwan, K. M. & Schütz, R. (1991). J. Prakt. Chem. 333, 7–18.  CrossRef CAS Web of Science Google Scholar
First citationChifotides, H. T. & Dunbar, K. R. (2013). Acc. Chem. Res. 46, 894–906.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChopra, D. (2012). Cryst. Growth Des. 12, 541–546.  Web of Science CrossRef CAS Google Scholar
First citationDwivedi, S., Gupta, S. & Das, S. (2014). Curr. Organocatal. (1), 13–39.  CrossRef Google Scholar
First citationHolm, S. C., Siegle, A. F., Loos, C., Rominger, F. & Straub, B. F. (2010). Synthesis, pp. 2278–2286.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305–308.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMochida, T., Miura, Y. & Shimizu, F. (2011). Cryst. Growth Des. 11, 262–268.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaik, A. D., Marchand-Brynaert, J. & Garcia, Y. (2008). Synthesis, pp. 149–154.  Google Scholar
First citationNelson, D. J. (2015). Eur. J. Inorg. Chem. pp. 2012–2027.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPorcar, R., Ríos-Lombardía, N., Busto, E., Gotor-Fernández, V., Montejo-Bernardo, J., García-Granda, S., Luis, S. V., Gotor, V., Alfonso, I. & García-Verdugo, E. (2013). Chem. Eur. J. 19, 892–904.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrassner, T., Unger, Y., Meyer, D., Molt, O., Münster, I. & Wagenblast, G. (2013). Inorg. Chem. Commun. 30, 39–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationTenne, M., Metz, S., Münster, I., Wagenblast, G. & Strassner, T. (2013). Organometallics, 32, 6257–6264.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 628-635
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds