organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o401-o402

Crystal structure of di­methyl 2,5-bis­­[(di­phen­­oxy­phosphor­yl)­­oxy]cyclo­hexa-1,4-diene-1,4-di­carboxyl­ate

aCollege of Life Science and Bio-engineering, Beijing University of Technology, Pingleyuan Street No. 100, Chaoyang District, Beijing 100124, People's Republic of China
*Correspondence e-mail: hongyan@bjut.edu.cn

Edited by G. Smith, Queensland University of Technology, Australia (Received 15 April 2015; accepted 4 May 2015; online 13 May 2015)

In the title compound, C34H30O12P2, which was synthesized via the esterification of dimethyl 2,5-dioxo-1,4-cyclo­hexa­nedi­carboxyl­ate with diphenyl chloro­phosphate, the mol­ecule has crystallographic inversion symmetry. The dihedral angles between the plane of the cyclo­hexa-1,4-diene ring and those of the two benzene rings of the substituent phosphate groups are 41.0 (1) and 89.5 (1)°, while that with the ester group is 3.1 (3)°. In the crystal, only weak inter­molecular C—H⋯O hydrogen bonds are present.

1. Related literature

For background information on cyclo­hexa-1,4-dienes, see: El-Rayyes & Al-Hajjar (1978[El-Rayyes, N. R. & Al-Hajjar, F. H. (1978). J. Prakt. Chem. 320, 991-998.]). For the synthesis of the title compound, see: Chaignaud et al. (2008[Chaignaud, M., Gillaizeau, I., Ouhamou, N. & Coudert, G. (2008). Tetrahedron, 64, 8059-8066.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C34H30O12P2

  • Mr = 692.52

  • Monoclinic, P 21 /c

  • a = 12.272 (10) Å

  • b = 10.629 (8) Å

  • c = 13.174 (10) Å

  • β = 113.644 (10)°

  • V = 1574 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

2.2. Data collection

  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.960, Tmax = 0.976

  • 15948 measured reflections

  • 3758 independent reflections

  • 2264 reflections with I > 2σ(I)

  • Rint = 0.100

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.099

  • S = 1.00

  • 3758 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.50 3.345 (4) 148
C9—H9⋯O5ii 0.95 2.59 3.405 (4) 144
C10—H10⋯O3iii 0.95 2.46 3.381 (4) 163
C15—H15B⋯O1iv 0.99 2.56 3.409 (4) 144
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

1,4-Cyclohexadiene is a useful and fundamental structural motif found in a wide range of organic materials and biologically active molecules (El-Rayyes & Al-Hajjar, 1978). The synthetic routes for the preparation of derivatives of this parent compound have been reported (Chaignaud et al., 2008) but their crystal structures were not described.

The title compound, C34H30O12P2, was synthesized by the esterification of dimethyl 2,5-dioxo-1,4-cyclohexanedicarboxylate with diphenyl chlorophosphate using the reported procedure of Chaignaud et al. (2008) and the structure is reported herein.

The molecule of the title compound has crystallographic inversion symmetry (Fig. 1), with dihedral angles between the cyclohexa-1,4-diene ring and the two benzene rings of the substituent phosphate group of 41.0 (1) [C1–C6] and 89.5 (1)° [C7–C12]. The ester group is essentially coplanar with the cyclohexadiene group [dihedral angle = 3.1 (3)°]. In the crystal, only weak intermolecular C—H···O hydrogen bonds are present (Table 1).

Related literature top

For background information on cyclohexa-1,4-dienes, see: El-Rayyes & Al-Hajjar (1978). For the synthesis of the title compound, see: Chaignaud et al. (2008).

Experimental top

The title compound was synthesized using the basic procedure of Chaignaud et al. (2008) (Fig. 2), as follows: A solution of LiHMDS (1 M in THF, 7.9 mL) in THF (20 mL) was cooled to -78 °C under nitrogen. Subsequently, a mixture of dimethyl 2,5-dioxo-1,4-cyclohexanedicarboxylate (3.19 mmol), diphenyl chlorophosphate (6.67 mmol) and HMPA (8.90 mmol) in anhydrous THF (5 mL) were added dropwise over 5 min. The mixture was stirred at -78 °C for 1h under nitrogen and after completion of the reaction, the mixture was diluted with water (30 mL) and extracted with ethyl acetate (3×15 mL), dried with anhydrous MgSO4 and filtered. Subsequently, the product obtained by evaporation of the solvent was recrystallized from ethyl acetate giving a white solid in 10% yield (m.p. 118–120 °C).

Refinement top

H atoms were were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) (aromatic) or 1.5Ueq(C) (methyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom numbering scheme for the title compound, with probability ellipsoids drawn at the 50% level. For symmetry code (a): -x, -y + 1, -z.
[Figure 2] Fig. 2. Synthetic route for the title compound.
Dimethyl 2,5-bis[(diphenoxyphosphoryl)oxy]cyclohexa-1,4-diene-1,4-dicarboxylate top
Crystal data top
C34H30O12P2F(000) = 720
Mr = 692.52Dx = 1.461 Mg m3
Monoclinic, P21/cMelting point = 391–393 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.272 (10) ÅCell parameters from 5446 reflections
b = 10.629 (8) Åθ = 1.7–28.3°
c = 13.174 (10) ŵ = 0.21 mm1
β = 113.644 (10)°T = 113 K
V = 1574 (2) Å3Prism, colorless
Z = 20.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
3758 independent reflections
Radiation source: rotating anode2264 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.100
Detector resolution: 14.22 pixels mm-1θmax = 28.0°, θmin = 1.8°
ω and ϕ scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.960, Tmax = 0.976l = 1717
15948 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.012P)2]
where P = (Fo2 + 2Fc2)/3
3758 reflections(Δ/σ)max = 0.002
218 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C34H30O12P2V = 1574 (2) Å3
Mr = 692.52Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.272 (10) ŵ = 0.21 mm1
b = 10.629 (8) ÅT = 113 K
c = 13.174 (10) Å0.20 × 0.18 × 0.12 mm
β = 113.644 (10)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3758 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2264 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.976Rint = 0.100
15948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.54 e Å3
3758 reflectionsΔρmin = 0.62 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.17401 (5)0.72276 (5)0.24500 (4)0.01714 (15)
O10.12748 (11)0.81381 (12)0.31240 (10)0.0189 (3)
O20.26861 (12)0.64338 (12)0.34149 (11)0.0211 (3)
O30.21532 (12)0.77428 (12)0.16508 (10)0.0194 (3)
O40.06126 (12)0.63451 (12)0.19634 (10)0.0187 (3)
O50.16106 (13)0.79217 (13)0.10725 (11)0.0285 (4)
O60.06056 (12)0.82652 (13)0.07360 (11)0.0259 (4)
C10.20189 (18)0.91573 (18)0.36916 (16)0.0181 (5)
C20.20083 (19)1.02272 (19)0.30979 (17)0.0229 (5)
H20.15451.02660.23230.027*
C30.2684 (2)1.1239 (2)0.36526 (18)0.0288 (6)
H30.26901.19860.32590.035*
C40.3353 (2)1.1172 (2)0.47791 (18)0.0310 (6)
H40.38181.18730.51590.037*
C50.3350 (2)1.0088 (2)0.53572 (18)0.0298 (6)
H50.38161.00460.61320.036*
C60.26714 (19)0.90613 (19)0.48111 (17)0.0237 (5)
H60.26590.83130.52010.028*
C70.37059 (18)0.58701 (19)0.33647 (16)0.0193 (5)
C80.45474 (17)0.6591 (2)0.31964 (15)0.0221 (5)
H80.44320.74690.30630.027*
C90.55660 (19)0.6006 (2)0.32263 (17)0.0294 (6)
H90.61580.64830.31050.035*
C100.5728 (2)0.4722 (2)0.34328 (17)0.0317 (6)
H100.64310.43260.34550.038*
C110.4874 (2)0.4024 (2)0.36046 (17)0.0290 (6)
H110.49870.31470.37470.035*
C120.38516 (19)0.46028 (19)0.35698 (17)0.0247 (5)
H120.32560.41280.36870.030*
C130.02855 (17)0.57494 (18)0.09354 (16)0.0173 (5)
C140.04157 (18)0.62776 (18)0.00080 (16)0.0167 (5)
C150.07850 (18)0.55461 (17)0.10704 (15)0.0186 (5)
H15A0.16640.54900.14120.022*
H15B0.05320.60150.15880.022*
C160.09356 (18)0.75651 (19)0.01748 (16)0.0196 (5)
C170.11425 (19)0.95035 (18)0.05728 (18)0.0302 (6)
H17A0.09050.99850.00610.045*
H17B0.08760.99430.12860.045*
H17C0.20110.94200.02620.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0148 (3)0.0166 (3)0.0186 (3)0.0009 (2)0.0052 (2)0.0017 (2)
O10.0177 (8)0.0178 (8)0.0225 (8)0.0025 (6)0.0093 (7)0.0050 (6)
O20.0168 (8)0.0239 (8)0.0207 (8)0.0035 (7)0.0056 (7)0.0029 (6)
O30.0193 (8)0.0208 (8)0.0194 (7)0.0011 (6)0.0090 (7)0.0005 (6)
O40.0166 (7)0.0197 (8)0.0182 (8)0.0054 (6)0.0055 (6)0.0040 (6)
O50.0344 (9)0.0248 (9)0.0226 (8)0.0067 (7)0.0078 (8)0.0036 (7)
O60.0235 (8)0.0227 (8)0.0258 (9)0.0062 (7)0.0038 (7)0.0043 (7)
C10.0165 (11)0.0177 (11)0.0200 (11)0.0006 (9)0.0070 (9)0.0040 (9)
C20.0272 (13)0.0221 (12)0.0168 (11)0.0012 (10)0.0060 (10)0.0016 (9)
C30.0354 (14)0.0208 (13)0.0301 (13)0.0050 (11)0.0131 (12)0.0028 (10)
C40.0334 (14)0.0261 (14)0.0310 (14)0.0123 (11)0.0103 (12)0.0132 (11)
C50.0276 (13)0.0379 (15)0.0179 (12)0.0024 (11)0.0029 (10)0.0045 (10)
C60.0271 (13)0.0225 (13)0.0217 (12)0.0013 (10)0.0101 (10)0.0023 (10)
C70.0143 (11)0.0238 (12)0.0158 (11)0.0044 (9)0.0017 (9)0.0044 (9)
C80.0171 (11)0.0216 (12)0.0237 (12)0.0007 (10)0.0041 (10)0.0038 (9)
C90.0161 (12)0.0398 (15)0.0307 (14)0.0035 (11)0.0077 (11)0.0036 (11)
C100.0184 (12)0.0442 (16)0.0264 (13)0.0096 (12)0.0026 (11)0.0099 (11)
C110.0289 (13)0.0248 (13)0.0296 (13)0.0069 (11)0.0077 (11)0.0034 (11)
C120.0216 (12)0.0228 (13)0.0275 (12)0.0006 (10)0.0074 (10)0.0010 (10)
C130.0147 (10)0.0186 (11)0.0189 (11)0.0052 (9)0.0071 (9)0.0058 (9)
C140.0144 (10)0.0169 (11)0.0188 (11)0.0012 (9)0.0066 (9)0.0009 (9)
C150.0154 (11)0.0201 (12)0.0182 (11)0.0005 (9)0.0046 (9)0.0002 (9)
C160.0158 (11)0.0240 (13)0.0199 (11)0.0025 (9)0.0079 (10)0.0003 (9)
C170.0270 (13)0.0246 (13)0.0355 (14)0.0094 (11)0.0088 (12)0.0039 (11)
Geometric parameters (Å, º) top
P1—O11.5677 (19)C11—C121.382 (4)
P1—O21.5785 (19)C13—C141.320 (3)
P1—O31.4469 (19)C13—C15i1.489 (3)
P1—O41.579 (2)C14—C151.503 (3)
O1—C11.421 (3)C14—C161.489 (3)
O2—C71.413 (3)C2—H20.9500
O4—C131.400 (3)C3—H30.9500
O5—C161.201 (3)C4—H40.9500
O6—C161.330 (3)C5—H50.9500
O6—C171.449 (3)C6—H60.9500
C1—C21.377 (3)C8—H80.9500
C1—C61.371 (3)C9—H90.9500
C2—C31.376 (3)C10—H100.9500
C3—C41.380 (3)C11—H110.9500
C4—C51.382 (3)C12—H120.9500
C5—C61.386 (3)C15—H15A0.9900
C7—C81.374 (3)C15—H15B0.9900
C7—C121.371 (3)C17—H17A0.9800
C8—C91.383 (3)C17—H17B0.9800
C9—C101.390 (3)C17—H17C0.9800
C10—C111.375 (4)
O1—P1—O2101.02 (7)O5—C16—C14121.40 (18)
O1—P1—O3119.47 (8)O6—C16—C14115.08 (17)
O1—P1—O497.92 (8)C1—C2—H2121.00
O2—P1—O3115.41 (9)C3—C2—H2121.00
O2—P1—O4104.54 (8)C2—C3—H3120.00
O3—P1—O4115.79 (8)C4—C3—H3120.00
P1—O1—C1117.75 (13)C3—C4—H4120.00
P1—O2—C7124.62 (13)C5—C4—H4120.00
P1—O4—C13121.73 (14)C4—C5—H5120.00
C16—O6—C17114.76 (16)C6—C5—H5120.00
O1—C1—C2118.23 (17)C1—C6—H6121.00
O1—C1—C6118.96 (17)C5—C6—H6121.00
C2—C1—C6122.74 (19)C7—C8—H8121.00
C1—C2—C3118.52 (19)C9—C8—H8121.00
C2—C3—C4120.2 (2)C8—C9—H9120.00
C3—C4—C5120.3 (2)C10—C9—H9120.00
C4—C5—C6120.3 (2)C9—C10—H10120.00
C1—C6—C5118.03 (19)C11—C10—H10120.00
O2—C7—C8120.56 (18)C10—C11—H11120.00
O2—C7—C12117.1 (2)C12—C11—H11120.00
C8—C7—C12122.2 (2)C7—C12—H12120.00
C7—C8—C9118.3 (2)C11—C12—H12120.00
C8—C9—C10120.3 (2)C14—C15—H15A109.00
C9—C10—C11120.2 (2)C14—C15—H15B109.00
C10—C11—C12119.8 (2)H15A—C15—H15B108.00
C7—C12—C11119.3 (2)C13i—C15—H15A109.00
O4—C13—C14122.97 (18)C13i—C15—H15B109.00
O4—C13—C15i110.99 (16)O6—C17—H17A109.00
C14—C13—C15i125.99 (18)O6—C17—H17B109.00
C13—C14—C15119.73 (18)O6—C17—H17C109.00
C13—C14—C16127.52 (18)H17A—C17—H17B109.00
C15—C14—C16112.75 (16)H17A—C17—H17C109.00
C13i—C15—C14114.28 (16)H17B—C17—H17C109.00
O5—C16—O6123.51 (19)
O2—P1—O1—C175.66 (14)C3—C4—C5—C60.3 (4)
O3—P1—O1—C152.09 (15)C4—C5—C6—C10.4 (4)
O4—P1—O1—C1177.76 (12)O2—C7—C8—C9175.83 (17)
O1—P1—O2—C7151.58 (15)C12—C7—C8—C90.6 (3)
O3—P1—O2—C721.23 (17)O2—C7—C12—C11175.66 (18)
O4—P1—O2—C7107.15 (15)C8—C7—C12—C110.3 (3)
O1—P1—O4—C13149.57 (14)C7—C8—C9—C100.6 (3)
O2—P1—O4—C13106.81 (14)C8—C9—C10—C110.3 (3)
O3—P1—O4—C1321.34 (17)C9—C10—C11—C120.1 (3)
P1—O1—C1—C281.9 (2)C10—C11—C12—C70.1 (3)
P1—O1—C1—C6101.1 (2)O4—C13—C14—C15176.33 (19)
P1—O2—C7—C859.5 (2)O4—C13—C14—C162.7 (4)
P1—O2—C7—C12125.04 (17)C15i—C13—C14—C150.7 (4)
P1—O4—C13—C1488.2 (2)C15i—C13—C14—C16179.7 (2)
P1—O4—C13—C15i94.39 (18)O4—C13—C15i—C14i176.67 (18)
C17—O6—C16—O51.1 (3)C14—C13—C15i—C14i0.7 (3)
C17—O6—C16—C14178.27 (19)C13—C14—C15—C13i0.6 (3)
O1—C1—C2—C3177.0 (2)C16—C14—C15—C13i179.77 (19)
C6—C1—C2—C30.2 (4)C13—C14—C16—O5176.4 (2)
O1—C1—C6—C5177.2 (2)C13—C14—C16—O62.9 (4)
C2—C1—C6—C50.4 (4)C15—C14—C16—O52.7 (3)
C1—C2—C3—C40.0 (4)C15—C14—C16—O6177.98 (19)
C2—C3—C4—C50.1 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5ii0.952.563.191 (4)124
C6—H6···O3iii0.952.503.345 (4)148
C9—H9···O5iv0.952.593.405 (4)144
C10—H10···O3v0.952.463.381 (4)163
C15—H15B···O1vi0.992.563.409 (4)144
Symmetry codes: (ii) x, y+2, z; (iii) x, y+3/2, z+1/2; (iv) x+1, y+3/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.503.345 (4)148
C9—H9···O5ii0.952.593.405 (4)144
C10—H10···O3iii0.952.463.381 (4)163
C15—H15B···O1iv0.992.563.409 (4)144
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported financially by the Key Projects in the National Science and Technology Pillar Program (No. 2012ZX10001007-008-002) and the Doctoral Fund of Innovation of Beijing University of Technology.

References

First citationChaignaud, M., Gillaizeau, I., Ouhamou, N. & Coudert, G. (2008). Tetrahedron, 64, 8059–8066.  Web of Science CrossRef CAS Google Scholar
First citationEl-Rayyes, N. R. & Al-Hajjar, F. H. (1978). J. Prakt. Chem. 320, 991–998.  CAS Google Scholar
First citationRigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o401-o402
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds